Properties

Label 140.2.s.b
Level $140$
Weight $2$
Character orbit 140.s
Analytic conductor $1.118$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 140.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.11790562830\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32q + 6q^{4} - 6q^{5} + 4q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 32q + 6q^{4} - 6q^{5} + 4q^{9} - 12q^{10} + 22q^{14} + 18q^{16} - 52q^{21} - 48q^{24} - 26q^{25} - 18q^{26} - 26q^{30} - 28q^{36} + 42q^{40} - 26q^{44} + 36q^{45} - 22q^{46} + 36q^{50} + 48q^{54} - 16q^{56} + 4q^{60} + 36q^{61} + 36q^{64} - 4q^{65} - 24q^{66} + 26q^{70} + 14q^{74} + 72q^{80} + 72q^{81} + 56q^{84} + 20q^{85} + 8q^{86} - 108q^{89} + 30q^{94} + 60q^{96} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1 −1.41371 + 0.0377920i 0.634715 0.366453i 1.99714 0.106854i −0.661137 + 2.13609i −0.883452 + 0.542044i 2.56107 0.664037i −2.81934 + 0.226536i −1.23142 + 2.13289i 0.853928 3.04480i
19.2 −1.38503 + 0.285823i 2.24836 1.29809i 1.83661 0.791746i 2.07525 0.832668i −2.74302 + 2.44053i −2.57589 0.603960i −2.31746 + 1.62154i 1.87009 3.23909i −2.63629 + 1.74642i
19.3 −1.36614 0.365598i −1.28100 + 0.739583i 1.73268 + 0.998916i −1.26649 1.84283i 2.02041 0.542044i 0.664037 + 2.56107i −2.00188 1.99812i −0.406034 + 0.703271i 1.05646 + 2.98058i
19.4 −1.13507 + 0.843578i −1.62820 + 0.940044i 0.576753 1.91503i 0.430625 2.19421i 1.05512 2.44053i 0.603960 2.57589i 0.960828 + 2.66023i 0.267367 0.463092i 1.36220 + 2.85384i
19.5 −0.999687 1.00031i 1.28100 0.739583i −0.00125109 + 2.00000i −1.26649 1.84283i −2.02041 0.542044i −0.664037 2.56107i 2.00188 1.99812i −0.406034 + 0.703271i −0.577314 + 3.10913i
19.6 −0.674125 1.24320i −0.634715 + 0.366453i −1.09111 + 1.67615i −0.661137 + 2.13609i 0.883452 + 0.542044i −2.56107 + 0.664037i 2.81934 + 0.226536i −1.23142 + 2.13289i 3.10129 0.618067i
19.7 −0.444985 1.34238i −2.24836 + 1.29809i −1.60398 + 1.19468i 2.07525 0.832668i 2.74302 + 2.44053i 2.57589 + 0.603960i 2.31746 + 1.62154i 1.87009 3.23909i −2.04121 2.41525i
19.8 −0.163027 + 1.40479i −1.62820 + 0.940044i −1.94684 0.458035i −1.68493 + 1.47004i −1.05512 2.44053i 0.603960 2.57589i 0.960828 2.66023i 0.267367 0.463092i −1.79040 2.60662i
19.9 0.163027 1.40479i 1.62820 0.940044i −1.94684 0.458035i 0.430625 2.19421i −1.05512 2.44053i −0.603960 + 2.57589i −0.960828 + 2.66023i 0.267367 0.463092i −3.01219 0.962651i
19.10 0.444985 + 1.34238i 2.24836 1.29809i −1.60398 + 1.19468i 0.316513 + 2.21355i 2.74302 + 2.44053i −2.57589 0.603960i −2.31746 1.62154i 1.87009 3.23909i −2.83059 + 1.40988i
19.11 0.674125 + 1.24320i 0.634715 0.366453i −1.09111 + 1.67615i 1.51934 1.64061i 0.883452 + 0.542044i 2.56107 0.664037i −2.81934 0.226536i −1.23142 + 2.13289i 3.06384 + 0.782877i
19.12 0.999687 + 1.00031i −1.28100 + 0.739583i −0.00125109 + 2.00000i −2.22918 0.175395i −2.02041 0.542044i 0.664037 + 2.56107i −2.00188 + 1.99812i −0.406034 + 0.703271i −2.05303 2.40522i
19.13 1.13507 0.843578i 1.62820 0.940044i 0.576753 1.91503i −1.68493 + 1.47004i 1.05512 2.44053i −0.603960 + 2.57589i −0.960828 2.66023i 0.267367 0.463092i −0.672416 + 3.08996i
19.14 1.36614 + 0.365598i 1.28100 0.739583i 1.73268 + 0.998916i −2.22918 0.175395i 2.02041 0.542044i −0.664037 2.56107i 2.00188 + 1.99812i −0.406034 + 0.703271i −2.98125 1.05460i
19.15 1.38503 0.285823i −2.24836 + 1.29809i 1.83661 0.791746i 0.316513 + 2.21355i −2.74302 + 2.44053i 2.57589 + 0.603960i 2.31746 1.62154i 1.87009 3.23909i 1.07106 + 2.97537i
19.16 1.41371 0.0377920i −0.634715 + 0.366453i 1.99714 0.106854i 1.51934 1.64061i −0.883452 + 0.542044i −2.56107 + 0.664037i 2.81934 0.226536i −1.23142 + 2.13289i 2.08591 2.37676i
59.1 −1.41371 0.0377920i 0.634715 + 0.366453i 1.99714 + 0.106854i −0.661137 2.13609i −0.883452 0.542044i 2.56107 + 0.664037i −2.81934 0.226536i −1.23142 2.13289i 0.853928 + 3.04480i
59.2 −1.38503 0.285823i 2.24836 + 1.29809i 1.83661 + 0.791746i 2.07525 + 0.832668i −2.74302 2.44053i −2.57589 + 0.603960i −2.31746 1.62154i 1.87009 + 3.23909i −2.63629 1.74642i
59.3 −1.36614 + 0.365598i −1.28100 0.739583i 1.73268 0.998916i −1.26649 + 1.84283i 2.02041 + 0.542044i 0.664037 2.56107i −2.00188 + 1.99812i −0.406034 0.703271i 1.05646 2.98058i
59.4 −1.13507 0.843578i −1.62820 0.940044i 0.576753 + 1.91503i 0.430625 + 2.19421i 1.05512 + 2.44053i 0.603960 + 2.57589i 0.960828 2.66023i 0.267367 + 0.463092i 1.36220 2.85384i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 59.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
7.d odd 6 1 inner
20.d odd 2 1 inner
28.f even 6 1 inner
35.i odd 6 1 inner
140.s even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.2.s.b 32
4.b odd 2 1 inner 140.2.s.b 32
5.b even 2 1 inner 140.2.s.b 32
5.c odd 4 2 700.2.p.e 32
7.b odd 2 1 980.2.s.e 32
7.c even 3 1 980.2.c.d 32
7.c even 3 1 980.2.s.e 32
7.d odd 6 1 inner 140.2.s.b 32
7.d odd 6 1 980.2.c.d 32
20.d odd 2 1 inner 140.2.s.b 32
20.e even 4 2 700.2.p.e 32
28.d even 2 1 980.2.s.e 32
28.f even 6 1 inner 140.2.s.b 32
28.f even 6 1 980.2.c.d 32
28.g odd 6 1 980.2.c.d 32
28.g odd 6 1 980.2.s.e 32
35.c odd 2 1 980.2.s.e 32
35.i odd 6 1 inner 140.2.s.b 32
35.i odd 6 1 980.2.c.d 32
35.j even 6 1 980.2.c.d 32
35.j even 6 1 980.2.s.e 32
35.k even 12 2 700.2.p.e 32
140.c even 2 1 980.2.s.e 32
140.p odd 6 1 980.2.c.d 32
140.p odd 6 1 980.2.s.e 32
140.s even 6 1 inner 140.2.s.b 32
140.s even 6 1 980.2.c.d 32
140.x odd 12 2 700.2.p.e 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.2.s.b 32 1.a even 1 1 trivial
140.2.s.b 32 4.b odd 2 1 inner
140.2.s.b 32 5.b even 2 1 inner
140.2.s.b 32 7.d odd 6 1 inner
140.2.s.b 32 20.d odd 2 1 inner
140.2.s.b 32 28.f even 6 1 inner
140.2.s.b 32 35.i odd 6 1 inner
140.2.s.b 32 140.s even 6 1 inner
700.2.p.e 32 5.c odd 4 2
700.2.p.e 32 20.e even 4 2
700.2.p.e 32 35.k even 12 2
700.2.p.e 32 140.x odd 12 2
980.2.c.d 32 7.c even 3 1
980.2.c.d 32 7.d odd 6 1
980.2.c.d 32 28.f even 6 1
980.2.c.d 32 28.g odd 6 1
980.2.c.d 32 35.i odd 6 1
980.2.c.d 32 35.j even 6 1
980.2.c.d 32 140.p odd 6 1
980.2.c.d 32 140.s even 6 1
980.2.s.e 32 7.b odd 2 1
980.2.s.e 32 7.c even 3 1
980.2.s.e 32 28.d even 2 1
980.2.s.e 32 28.g odd 6 1
980.2.s.e 32 35.c odd 2 1
980.2.s.e 32 35.j even 6 1
980.2.s.e 32 140.c even 2 1
980.2.s.e 32 140.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{3}^{16} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(140, [\chi])\).