Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [140,2,Mod(19,140)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(140, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("140.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 140 = 2^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 140.s (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.11790562830\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −1.41371 | + | 0.0377920i | 0.634715 | − | 0.366453i | 1.99714 | − | 0.106854i | −0.661137 | + | 2.13609i | −0.883452 | + | 0.542044i | 2.56107 | − | 0.664037i | −2.81934 | + | 0.226536i | −1.23142 | + | 2.13289i | 0.853928 | − | 3.04480i |
19.2 | −1.38503 | + | 0.285823i | 2.24836 | − | 1.29809i | 1.83661 | − | 0.791746i | 2.07525 | − | 0.832668i | −2.74302 | + | 2.44053i | −2.57589 | − | 0.603960i | −2.31746 | + | 1.62154i | 1.87009 | − | 3.23909i | −2.63629 | + | 1.74642i |
19.3 | −1.36614 | − | 0.365598i | −1.28100 | + | 0.739583i | 1.73268 | + | 0.998916i | −1.26649 | − | 1.84283i | 2.02041 | − | 0.542044i | 0.664037 | + | 2.56107i | −2.00188 | − | 1.99812i | −0.406034 | + | 0.703271i | 1.05646 | + | 2.98058i |
19.4 | −1.13507 | + | 0.843578i | −1.62820 | + | 0.940044i | 0.576753 | − | 1.91503i | 0.430625 | − | 2.19421i | 1.05512 | − | 2.44053i | 0.603960 | − | 2.57589i | 0.960828 | + | 2.66023i | 0.267367 | − | 0.463092i | 1.36220 | + | 2.85384i |
19.5 | −0.999687 | − | 1.00031i | 1.28100 | − | 0.739583i | −0.00125109 | + | 2.00000i | −1.26649 | − | 1.84283i | −2.02041 | − | 0.542044i | −0.664037 | − | 2.56107i | 2.00188 | − | 1.99812i | −0.406034 | + | 0.703271i | −0.577314 | + | 3.10913i |
19.6 | −0.674125 | − | 1.24320i | −0.634715 | + | 0.366453i | −1.09111 | + | 1.67615i | −0.661137 | + | 2.13609i | 0.883452 | + | 0.542044i | −2.56107 | + | 0.664037i | 2.81934 | + | 0.226536i | −1.23142 | + | 2.13289i | 3.10129 | − | 0.618067i |
19.7 | −0.444985 | − | 1.34238i | −2.24836 | + | 1.29809i | −1.60398 | + | 1.19468i | 2.07525 | − | 0.832668i | 2.74302 | + | 2.44053i | 2.57589 | + | 0.603960i | 2.31746 | + | 1.62154i | 1.87009 | − | 3.23909i | −2.04121 | − | 2.41525i |
19.8 | −0.163027 | + | 1.40479i | −1.62820 | + | 0.940044i | −1.94684 | − | 0.458035i | −1.68493 | + | 1.47004i | −1.05512 | − | 2.44053i | 0.603960 | − | 2.57589i | 0.960828 | − | 2.66023i | 0.267367 | − | 0.463092i | −1.79040 | − | 2.60662i |
19.9 | 0.163027 | − | 1.40479i | 1.62820 | − | 0.940044i | −1.94684 | − | 0.458035i | 0.430625 | − | 2.19421i | −1.05512 | − | 2.44053i | −0.603960 | + | 2.57589i | −0.960828 | + | 2.66023i | 0.267367 | − | 0.463092i | −3.01219 | − | 0.962651i |
19.10 | 0.444985 | + | 1.34238i | 2.24836 | − | 1.29809i | −1.60398 | + | 1.19468i | 0.316513 | + | 2.21355i | 2.74302 | + | 2.44053i | −2.57589 | − | 0.603960i | −2.31746 | − | 1.62154i | 1.87009 | − | 3.23909i | −2.83059 | + | 1.40988i |
19.11 | 0.674125 | + | 1.24320i | 0.634715 | − | 0.366453i | −1.09111 | + | 1.67615i | 1.51934 | − | 1.64061i | 0.883452 | + | 0.542044i | 2.56107 | − | 0.664037i | −2.81934 | − | 0.226536i | −1.23142 | + | 2.13289i | 3.06384 | + | 0.782877i |
19.12 | 0.999687 | + | 1.00031i | −1.28100 | + | 0.739583i | −0.00125109 | + | 2.00000i | −2.22918 | − | 0.175395i | −2.02041 | − | 0.542044i | 0.664037 | + | 2.56107i | −2.00188 | + | 1.99812i | −0.406034 | + | 0.703271i | −2.05303 | − | 2.40522i |
19.13 | 1.13507 | − | 0.843578i | 1.62820 | − | 0.940044i | 0.576753 | − | 1.91503i | −1.68493 | + | 1.47004i | 1.05512 | − | 2.44053i | −0.603960 | + | 2.57589i | −0.960828 | − | 2.66023i | 0.267367 | − | 0.463092i | −0.672416 | + | 3.08996i |
19.14 | 1.36614 | + | 0.365598i | 1.28100 | − | 0.739583i | 1.73268 | + | 0.998916i | −2.22918 | − | 0.175395i | 2.02041 | − | 0.542044i | −0.664037 | − | 2.56107i | 2.00188 | + | 1.99812i | −0.406034 | + | 0.703271i | −2.98125 | − | 1.05460i |
19.15 | 1.38503 | − | 0.285823i | −2.24836 | + | 1.29809i | 1.83661 | − | 0.791746i | 0.316513 | + | 2.21355i | −2.74302 | + | 2.44053i | 2.57589 | + | 0.603960i | 2.31746 | − | 1.62154i | 1.87009 | − | 3.23909i | 1.07106 | + | 2.97537i |
19.16 | 1.41371 | − | 0.0377920i | −0.634715 | + | 0.366453i | 1.99714 | − | 0.106854i | 1.51934 | − | 1.64061i | −0.883452 | + | 0.542044i | −2.56107 | + | 0.664037i | 2.81934 | − | 0.226536i | −1.23142 | + | 2.13289i | 2.08591 | − | 2.37676i |
59.1 | −1.41371 | − | 0.0377920i | 0.634715 | + | 0.366453i | 1.99714 | + | 0.106854i | −0.661137 | − | 2.13609i | −0.883452 | − | 0.542044i | 2.56107 | + | 0.664037i | −2.81934 | − | 0.226536i | −1.23142 | − | 2.13289i | 0.853928 | + | 3.04480i |
59.2 | −1.38503 | − | 0.285823i | 2.24836 | + | 1.29809i | 1.83661 | + | 0.791746i | 2.07525 | + | 0.832668i | −2.74302 | − | 2.44053i | −2.57589 | + | 0.603960i | −2.31746 | − | 1.62154i | 1.87009 | + | 3.23909i | −2.63629 | − | 1.74642i |
59.3 | −1.36614 | + | 0.365598i | −1.28100 | − | 0.739583i | 1.73268 | − | 0.998916i | −1.26649 | + | 1.84283i | 2.02041 | + | 0.542044i | 0.664037 | − | 2.56107i | −2.00188 | + | 1.99812i | −0.406034 | − | 0.703271i | 1.05646 | − | 2.98058i |
59.4 | −1.13507 | − | 0.843578i | −1.62820 | − | 0.940044i | 0.576753 | + | 1.91503i | 0.430625 | + | 2.19421i | 1.05512 | + | 2.44053i | 0.603960 | + | 2.57589i | 0.960828 | − | 2.66023i | 0.267367 | + | 0.463092i | 1.36220 | − | 2.85384i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
20.d | odd | 2 | 1 | inner |
28.f | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
140.s | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 140.2.s.b | ✓ | 32 |
4.b | odd | 2 | 1 | inner | 140.2.s.b | ✓ | 32 |
5.b | even | 2 | 1 | inner | 140.2.s.b | ✓ | 32 |
5.c | odd | 4 | 2 | 700.2.p.e | 32 | ||
7.b | odd | 2 | 1 | 980.2.s.e | 32 | ||
7.c | even | 3 | 1 | 980.2.c.d | 32 | ||
7.c | even | 3 | 1 | 980.2.s.e | 32 | ||
7.d | odd | 6 | 1 | inner | 140.2.s.b | ✓ | 32 |
7.d | odd | 6 | 1 | 980.2.c.d | 32 | ||
20.d | odd | 2 | 1 | inner | 140.2.s.b | ✓ | 32 |
20.e | even | 4 | 2 | 700.2.p.e | 32 | ||
28.d | even | 2 | 1 | 980.2.s.e | 32 | ||
28.f | even | 6 | 1 | inner | 140.2.s.b | ✓ | 32 |
28.f | even | 6 | 1 | 980.2.c.d | 32 | ||
28.g | odd | 6 | 1 | 980.2.c.d | 32 | ||
28.g | odd | 6 | 1 | 980.2.s.e | 32 | ||
35.c | odd | 2 | 1 | 980.2.s.e | 32 | ||
35.i | odd | 6 | 1 | inner | 140.2.s.b | ✓ | 32 |
35.i | odd | 6 | 1 | 980.2.c.d | 32 | ||
35.j | even | 6 | 1 | 980.2.c.d | 32 | ||
35.j | even | 6 | 1 | 980.2.s.e | 32 | ||
35.k | even | 12 | 2 | 700.2.p.e | 32 | ||
140.c | even | 2 | 1 | 980.2.s.e | 32 | ||
140.p | odd | 6 | 1 | 980.2.c.d | 32 | ||
140.p | odd | 6 | 1 | 980.2.s.e | 32 | ||
140.s | even | 6 | 1 | inner | 140.2.s.b | ✓ | 32 |
140.s | even | 6 | 1 | 980.2.c.d | 32 | ||
140.x | odd | 12 | 2 | 700.2.p.e | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
140.2.s.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
140.2.s.b | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
140.2.s.b | ✓ | 32 | 5.b | even | 2 | 1 | inner |
140.2.s.b | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
140.2.s.b | ✓ | 32 | 20.d | odd | 2 | 1 | inner |
140.2.s.b | ✓ | 32 | 28.f | even | 6 | 1 | inner |
140.2.s.b | ✓ | 32 | 35.i | odd | 6 | 1 | inner |
140.2.s.b | ✓ | 32 | 140.s | even | 6 | 1 | inner |
700.2.p.e | 32 | 5.c | odd | 4 | 2 | ||
700.2.p.e | 32 | 20.e | even | 4 | 2 | ||
700.2.p.e | 32 | 35.k | even | 12 | 2 | ||
700.2.p.e | 32 | 140.x | odd | 12 | 2 | ||
980.2.c.d | 32 | 7.c | even | 3 | 1 | ||
980.2.c.d | 32 | 7.d | odd | 6 | 1 | ||
980.2.c.d | 32 | 28.f | even | 6 | 1 | ||
980.2.c.d | 32 | 28.g | odd | 6 | 1 | ||
980.2.c.d | 32 | 35.i | odd | 6 | 1 | ||
980.2.c.d | 32 | 35.j | even | 6 | 1 | ||
980.2.c.d | 32 | 140.p | odd | 6 | 1 | ||
980.2.c.d | 32 | 140.s | even | 6 | 1 | ||
980.2.s.e | 32 | 7.b | odd | 2 | 1 | ||
980.2.s.e | 32 | 7.c | even | 3 | 1 | ||
980.2.s.e | 32 | 28.d | even | 2 | 1 | ||
980.2.s.e | 32 | 28.g | odd | 6 | 1 | ||
980.2.s.e | 32 | 35.c | odd | 2 | 1 | ||
980.2.s.e | 32 | 35.j | even | 6 | 1 | ||
980.2.s.e | 32 | 140.c | even | 2 | 1 | ||
980.2.s.e | 32 | 140.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{16} - 13T_{3}^{14} + 116T_{3}^{12} - 535T_{3}^{10} + 1780T_{3}^{8} - 3353T_{3}^{6} + 4445T_{3}^{4} - 2156T_{3}^{2} + 784 \) acting on \(S_{2}^{\mathrm{new}}(140, [\chi])\).