Defining parameters
| Level: | \( N \) | \(=\) | \( 140 = 2^{2} \cdot 5 \cdot 7 \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 140.s (of order \(6\) and degree \(2\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 140 \) | 
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(140, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 56 | 56 | 0 | 
| Cusp forms | 40 | 40 | 0 | 
| Eisenstein series | 16 | 16 | 0 | 
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(140, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 140.2.s.a | $8$ | $1.118$ | 8.0.3317760000.3 | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{5}q^{2}+(\beta _{1}-\beta _{5})q^{3}-2\beta _{4}q^{4}-\beta _{7}q^{5}+\cdots\) | 
| 140.2.s.b | $32$ | $1.118$ | None | \(0\) | \(0\) | \(-6\) | \(0\) | ||