Properties

Label 14.50.a.c.1.6
Level $14$
Weight $50$
Character 14.1
Self dual yes
Analytic conductor $212.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,50,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 50, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 50); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 50 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,100663296] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(212.892687139\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-3.89328e11\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67772e7 q^{2} +8.78703e11 q^{3} +2.81475e14 q^{4} +1.48490e17 q^{5} +1.47422e19 q^{6} -1.91581e20 q^{7} +4.72237e21 q^{8} +5.32820e23 q^{9} +2.49126e24 q^{10} -6.02233e25 q^{11} +2.47333e26 q^{12} +3.38006e27 q^{13} -3.21420e27 q^{14} +1.30479e29 q^{15} +7.92282e28 q^{16} -1.40970e30 q^{17} +8.93924e30 q^{18} +2.43277e31 q^{19} +4.17963e31 q^{20} -1.68343e32 q^{21} -1.01038e33 q^{22} +1.26861e33 q^{23} +4.14956e33 q^{24} +4.28583e33 q^{25} +5.67081e34 q^{26} +2.57917e35 q^{27} -5.39253e34 q^{28} -2.17959e35 q^{29} +2.18907e36 q^{30} +5.42308e36 q^{31} +1.32923e36 q^{32} -5.29184e37 q^{33} -2.36509e37 q^{34} -2.84480e37 q^{35} +1.49975e38 q^{36} -1.59816e38 q^{37} +4.08151e38 q^{38} +2.97007e39 q^{39} +7.01226e38 q^{40} +3.70818e39 q^{41} -2.82433e39 q^{42} -2.52413e39 q^{43} -1.69513e40 q^{44} +7.91186e40 q^{45} +2.12838e40 q^{46} +4.46936e40 q^{47} +6.96180e40 q^{48} +3.67034e40 q^{49} +7.19043e40 q^{50} -1.23871e42 q^{51} +9.51403e41 q^{52} +9.39821e41 q^{53} +4.32714e42 q^{54} -8.94258e42 q^{55} -9.04717e41 q^{56} +2.13768e43 q^{57} -3.65674e42 q^{58} -2.95940e43 q^{59} +3.67266e43 q^{60} +2.01716e43 q^{61} +9.09842e43 q^{62} -1.02078e44 q^{63} +2.23007e43 q^{64} +5.01907e44 q^{65} -8.87823e44 q^{66} +9.85080e44 q^{67} -3.96797e44 q^{68} +1.11474e45 q^{69} -4.77278e44 q^{70} -2.67705e44 q^{71} +2.51617e45 q^{72} +4.56319e45 q^{73} -2.68128e45 q^{74} +3.76597e45 q^{75} +6.84763e45 q^{76} +1.15376e46 q^{77} +4.98295e46 q^{78} -2.38318e46 q^{79} +1.17646e46 q^{80} +9.91295e46 q^{81} +6.22129e46 q^{82} +1.73175e47 q^{83} -4.73844e46 q^{84} -2.09328e47 q^{85} -4.23478e46 q^{86} -1.91521e47 q^{87} -2.84396e47 q^{88} -8.41114e46 q^{89} +1.32739e48 q^{90} -6.47557e47 q^{91} +3.57083e47 q^{92} +4.76528e48 q^{93} +7.49834e47 q^{94} +3.61243e48 q^{95} +1.16800e48 q^{96} -2.32920e48 q^{97} +6.15780e47 q^{98} -3.20882e49 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 100663296 q^{2} + 600288540488 q^{3} + 16\!\cdots\!36 q^{4} + 23\!\cdots\!44 q^{5} + 10\!\cdots\!08 q^{6} - 11\!\cdots\!06 q^{7} + 28\!\cdots\!76 q^{8} + 24\!\cdots\!58 q^{9} + 39\!\cdots\!04 q^{10}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67772e7 0.707107
\(3\) 8.78703e11 1.79627 0.898135 0.439721i \(-0.144923\pi\)
0.898135 + 0.439721i \(0.144923\pi\)
\(4\) 2.81475e14 0.500000
\(5\) 1.48490e17 1.11412 0.557062 0.830471i \(-0.311929\pi\)
0.557062 + 0.830471i \(0.311929\pi\)
\(6\) 1.47422e19 1.27015
\(7\) −1.91581e20 −0.377964
\(8\) 4.72237e21 0.353553
\(9\) 5.32820e23 2.22658
\(10\) 2.49126e24 0.787804
\(11\) −6.02233e25 −1.84350 −0.921751 0.387783i \(-0.873241\pi\)
−0.921751 + 0.387783i \(0.873241\pi\)
\(12\) 2.47333e26 0.898135
\(13\) 3.38006e27 1.72708 0.863540 0.504280i \(-0.168242\pi\)
0.863540 + 0.504280i \(0.168242\pi\)
\(14\) −3.21420e27 −0.267261
\(15\) 1.30479e29 2.00127
\(16\) 7.92282e28 0.250000
\(17\) −1.40970e30 −1.00723 −0.503616 0.863928i \(-0.667997\pi\)
−0.503616 + 0.863928i \(0.667997\pi\)
\(18\) 8.93924e30 1.57443
\(19\) 2.43277e31 1.13930 0.569649 0.821888i \(-0.307079\pi\)
0.569649 + 0.821888i \(0.307079\pi\)
\(20\) 4.17963e31 0.557062
\(21\) −1.68343e32 −0.678926
\(22\) −1.01038e33 −1.30355
\(23\) 1.26861e33 0.550805 0.275402 0.961329i \(-0.411189\pi\)
0.275402 + 0.961329i \(0.411189\pi\)
\(24\) 4.14956e33 0.635077
\(25\) 4.28583e33 0.241271
\(26\) 5.67081e34 1.22123
\(27\) 2.57917e35 2.20327
\(28\) −5.39253e34 −0.188982
\(29\) −2.17959e35 −0.323313 −0.161656 0.986847i \(-0.551684\pi\)
−0.161656 + 0.986847i \(0.551684\pi\)
\(30\) 2.18907e36 1.41511
\(31\) 5.42308e36 1.56995 0.784973 0.619530i \(-0.212677\pi\)
0.784973 + 0.619530i \(0.212677\pi\)
\(32\) 1.32923e36 0.176777
\(33\) −5.29184e37 −3.31143
\(34\) −2.36509e37 −0.712221
\(35\) −2.84480e37 −0.421099
\(36\) 1.49975e38 1.11329
\(37\) −1.59816e38 −0.606288 −0.303144 0.952945i \(-0.598036\pi\)
−0.303144 + 0.952945i \(0.598036\pi\)
\(38\) 4.08151e38 0.805606
\(39\) 2.97007e39 3.10230
\(40\) 7.01226e38 0.393902
\(41\) 3.70818e39 1.13751 0.568756 0.822506i \(-0.307425\pi\)
0.568756 + 0.822506i \(0.307425\pi\)
\(42\) −2.82433e39 −0.480073
\(43\) −2.52413e39 −0.241065 −0.120532 0.992709i \(-0.538460\pi\)
−0.120532 + 0.992709i \(0.538460\pi\)
\(44\) −1.69513e40 −0.921751
\(45\) 7.91186e40 2.48069
\(46\) 2.12838e40 0.389478
\(47\) 4.46936e40 0.482889 0.241445 0.970415i \(-0.422379\pi\)
0.241445 + 0.970415i \(0.422379\pi\)
\(48\) 6.96180e40 0.449067
\(49\) 3.67034e40 0.142857
\(50\) 7.19043e40 0.170604
\(51\) −1.23871e42 −1.80926
\(52\) 9.51403e41 0.863540
\(53\) 9.39821e41 0.534917 0.267458 0.963569i \(-0.413816\pi\)
0.267458 + 0.963569i \(0.413816\pi\)
\(54\) 4.32714e42 1.55795
\(55\) −8.94258e42 −2.05389
\(56\) −9.04717e41 −0.133631
\(57\) 2.13768e43 2.04649
\(58\) −3.65674e42 −0.228617
\(59\) −2.95940e43 −1.21711 −0.608555 0.793512i \(-0.708250\pi\)
−0.608555 + 0.793512i \(0.708250\pi\)
\(60\) 3.67266e43 1.00063
\(61\) 2.01716e43 0.366573 0.183286 0.983060i \(-0.441326\pi\)
0.183286 + 0.983060i \(0.441326\pi\)
\(62\) 9.09842e43 1.11012
\(63\) −1.02078e44 −0.841569
\(64\) 2.23007e43 0.125000
\(65\) 5.01907e44 1.92418
\(66\) −8.87823e44 −2.34153
\(67\) 9.85080e44 1.79738 0.898688 0.438589i \(-0.144521\pi\)
0.898688 + 0.438589i \(0.144521\pi\)
\(68\) −3.96797e44 −0.503616
\(69\) 1.11474e45 0.989393
\(70\) −4.77278e44 −0.297762
\(71\) −2.67705e44 −0.117985 −0.0589926 0.998258i \(-0.518789\pi\)
−0.0589926 + 0.998258i \(0.518789\pi\)
\(72\) 2.51617e45 0.787216
\(73\) 4.56319e45 1.01826 0.509130 0.860690i \(-0.329967\pi\)
0.509130 + 0.860690i \(0.329967\pi\)
\(74\) −2.68128e45 −0.428711
\(75\) 3.76597e45 0.433387
\(76\) 6.84763e45 0.569649
\(77\) 1.15376e46 0.696778
\(78\) 4.98295e46 2.19366
\(79\) −2.38318e46 −0.767880 −0.383940 0.923358i \(-0.625433\pi\)
−0.383940 + 0.923358i \(0.625433\pi\)
\(80\) 1.17646e46 0.278531
\(81\) 9.91295e46 1.73109
\(82\) 6.22129e46 0.804342
\(83\) 1.73175e47 1.66369 0.831843 0.555010i \(-0.187286\pi\)
0.831843 + 0.555010i \(0.187286\pi\)
\(84\) −4.73844e46 −0.339463
\(85\) −2.09328e47 −1.12218
\(86\) −4.23478e46 −0.170459
\(87\) −1.91521e47 −0.580757
\(88\) −2.84396e47 −0.651776
\(89\) −8.41114e46 −0.146150 −0.0730752 0.997326i \(-0.523281\pi\)
−0.0730752 + 0.997326i \(0.523281\pi\)
\(90\) 1.32739e48 1.75411
\(91\) −6.47557e47 −0.652775
\(92\) 3.57083e47 0.275402
\(93\) 4.76528e48 2.82005
\(94\) 7.49834e47 0.341454
\(95\) 3.61243e48 1.26932
\(96\) 1.16800e48 0.317539
\(97\) −2.32920e48 −0.491246 −0.245623 0.969365i \(-0.578992\pi\)
−0.245623 + 0.969365i \(0.578992\pi\)
\(98\) 6.15780e47 0.101015
\(99\) −3.20882e49 −4.10471
\(100\) 1.20635e48 0.120635
\(101\) 5.54938e48 0.434881 0.217441 0.976074i \(-0.430229\pi\)
0.217441 + 0.976074i \(0.430229\pi\)
\(102\) −2.07821e49 −1.27934
\(103\) 1.81551e49 0.880007 0.440004 0.897996i \(-0.354977\pi\)
0.440004 + 0.897996i \(0.354977\pi\)
\(104\) 1.59619e49 0.610615
\(105\) −2.49973e49 −0.756407
\(106\) 1.57676e49 0.378243
\(107\) −7.46316e49 −1.42239 −0.711197 0.702993i \(-0.751847\pi\)
−0.711197 + 0.702993i \(0.751847\pi\)
\(108\) 7.25973e49 1.10164
\(109\) −6.75107e49 −0.817378 −0.408689 0.912674i \(-0.634014\pi\)
−0.408689 + 0.912674i \(0.634014\pi\)
\(110\) −1.50032e50 −1.45232
\(111\) −1.40431e50 −1.08906
\(112\) −1.51786e49 −0.0944911
\(113\) −2.65149e49 −0.132760 −0.0663802 0.997794i \(-0.521145\pi\)
−0.0663802 + 0.997794i \(0.521145\pi\)
\(114\) 3.58643e50 1.44708
\(115\) 1.88377e50 0.613664
\(116\) −6.13499e49 −0.161656
\(117\) 1.80097e51 3.84549
\(118\) −4.96505e50 −0.860626
\(119\) 2.70073e50 0.380698
\(120\) 6.16170e50 0.707554
\(121\) 2.55965e51 2.39850
\(122\) 3.38424e50 0.259206
\(123\) 3.25839e51 2.04328
\(124\) 1.52646e51 0.784973
\(125\) −2.00131e51 −0.845318
\(126\) −1.71259e51 −0.595079
\(127\) −9.81297e50 −0.280937 −0.140469 0.990085i \(-0.544861\pi\)
−0.140469 + 0.990085i \(0.544861\pi\)
\(128\) 3.74144e50 0.0883883
\(129\) −2.21796e51 −0.433018
\(130\) 8.42060e51 1.36060
\(131\) −1.03306e52 −1.38351 −0.691753 0.722135i \(-0.743161\pi\)
−0.691753 + 0.722135i \(0.743161\pi\)
\(132\) −1.48952e52 −1.65571
\(133\) −4.66073e51 −0.430614
\(134\) 1.65269e52 1.27094
\(135\) 3.82983e52 2.45472
\(136\) −6.65714e51 −0.356110
\(137\) −3.58479e52 −1.60254 −0.801271 0.598302i \(-0.795842\pi\)
−0.801271 + 0.598302i \(0.795842\pi\)
\(138\) 1.87022e52 0.699607
\(139\) −5.22292e51 −0.163701 −0.0818503 0.996645i \(-0.526083\pi\)
−0.0818503 + 0.996645i \(0.526083\pi\)
\(140\) −8.00739e51 −0.210550
\(141\) 3.92724e52 0.867400
\(142\) −4.49135e51 −0.0834281
\(143\) −2.03558e53 −3.18388
\(144\) 4.22143e52 0.556646
\(145\) −3.23647e52 −0.360210
\(146\) 7.65576e52 0.720018
\(147\) 3.22514e52 0.256610
\(148\) −4.49843e52 −0.303144
\(149\) −3.45088e53 −1.97182 −0.985908 0.167287i \(-0.946499\pi\)
−0.985908 + 0.167287i \(0.946499\pi\)
\(150\) 6.31825e52 0.306451
\(151\) 1.20342e52 0.0495999 0.0247999 0.999692i \(-0.492105\pi\)
0.0247999 + 0.999692i \(0.492105\pi\)
\(152\) 1.14884e53 0.402803
\(153\) −7.51119e53 −2.24269
\(154\) 1.93570e53 0.492697
\(155\) 8.05276e53 1.74911
\(156\) 8.36001e53 1.55115
\(157\) −9.62043e53 −1.52635 −0.763173 0.646194i \(-0.776360\pi\)
−0.763173 + 0.646194i \(0.776360\pi\)
\(158\) −3.99832e53 −0.542973
\(159\) 8.25824e53 0.960855
\(160\) 1.97378e53 0.196951
\(161\) −2.43043e53 −0.208185
\(162\) 1.66312e54 1.22407
\(163\) 1.67647e54 1.06120 0.530602 0.847621i \(-0.321966\pi\)
0.530602 + 0.847621i \(0.321966\pi\)
\(164\) 1.04376e54 0.568756
\(165\) −7.85787e54 −3.68934
\(166\) 2.90539e54 1.17640
\(167\) −3.60019e54 −1.25826 −0.629131 0.777299i \(-0.716589\pi\)
−0.629131 + 0.777299i \(0.716589\pi\)
\(168\) −7.94978e53 −0.240037
\(169\) 7.59460e54 1.98281
\(170\) −3.51193e54 −0.793502
\(171\) 1.29623e55 2.53674
\(172\) −7.10479e53 −0.120532
\(173\) −1.12706e54 −0.165889 −0.0829443 0.996554i \(-0.526432\pi\)
−0.0829443 + 0.996554i \(0.526432\pi\)
\(174\) −3.21319e54 −0.410657
\(175\) −8.21085e53 −0.0911918
\(176\) −4.77138e54 −0.460875
\(177\) −2.60044e55 −2.18626
\(178\) −1.41116e54 −0.103344
\(179\) −2.97063e55 −1.89648 −0.948242 0.317549i \(-0.897140\pi\)
−0.948242 + 0.317549i \(0.897140\pi\)
\(180\) 2.22699e55 1.24034
\(181\) 5.89718e54 0.286760 0.143380 0.989668i \(-0.454203\pi\)
0.143380 + 0.989668i \(0.454203\pi\)
\(182\) −1.08642e55 −0.461582
\(183\) 1.77249e55 0.658463
\(184\) 5.99086e54 0.194739
\(185\) −2.37312e55 −0.675480
\(186\) 7.99481e55 1.99407
\(187\) 8.48970e55 1.85683
\(188\) 1.25801e55 0.241445
\(189\) −4.94121e55 −0.832759
\(190\) 6.06065e55 0.897544
\(191\) −2.34850e55 −0.305825 −0.152913 0.988240i \(-0.548865\pi\)
−0.152913 + 0.988240i \(0.548865\pi\)
\(192\) 1.95957e55 0.224534
\(193\) 1.28892e54 0.0130038 0.00650191 0.999979i \(-0.497930\pi\)
0.00650191 + 0.999979i \(0.497930\pi\)
\(194\) −3.90774e55 −0.347363
\(195\) 4.41027e56 3.45635
\(196\) 1.03311e55 0.0714286
\(197\) 1.59694e55 0.0974690 0.0487345 0.998812i \(-0.484481\pi\)
0.0487345 + 0.998812i \(0.484481\pi\)
\(198\) −5.38350e56 −2.90247
\(199\) −2.79631e56 −1.33256 −0.666278 0.745703i \(-0.732114\pi\)
−0.666278 + 0.745703i \(0.732114\pi\)
\(200\) 2.02393e55 0.0853021
\(201\) 8.65593e56 3.22857
\(202\) 9.31031e55 0.307507
\(203\) 4.17568e55 0.122201
\(204\) −3.48666e56 −0.904630
\(205\) 5.50629e56 1.26733
\(206\) 3.04592e56 0.622259
\(207\) 6.75943e56 1.22641
\(208\) 2.67796e56 0.431770
\(209\) −1.46509e57 −2.10030
\(210\) −4.19386e56 −0.534861
\(211\) 3.99933e56 0.454012 0.227006 0.973893i \(-0.427106\pi\)
0.227006 + 0.973893i \(0.427106\pi\)
\(212\) 2.64536e56 0.267458
\(213\) −2.35233e56 −0.211933
\(214\) −1.25211e57 −1.00578
\(215\) −3.74809e56 −0.268576
\(216\) 1.21798e57 0.778975
\(217\) −1.03896e57 −0.593384
\(218\) −1.13264e57 −0.577974
\(219\) 4.00969e57 1.82907
\(220\) −2.51711e57 −1.02694
\(221\) −4.76489e57 −1.73957
\(222\) −2.35605e57 −0.770080
\(223\) 3.68622e57 1.07923 0.539613 0.841913i \(-0.318571\pi\)
0.539613 + 0.841913i \(0.318571\pi\)
\(224\) −2.54655e56 −0.0668153
\(225\) 2.28358e57 0.537209
\(226\) −4.44847e56 −0.0938758
\(227\) 8.20639e57 1.55424 0.777121 0.629351i \(-0.216679\pi\)
0.777121 + 0.629351i \(0.216679\pi\)
\(228\) 6.01704e57 1.02324
\(229\) 5.69926e57 0.870661 0.435330 0.900271i \(-0.356632\pi\)
0.435330 + 0.900271i \(0.356632\pi\)
\(230\) 3.16044e57 0.433926
\(231\) 1.01382e58 1.25160
\(232\) −1.02928e57 −0.114308
\(233\) 1.68298e58 1.68213 0.841064 0.540935i \(-0.181929\pi\)
0.841064 + 0.540935i \(0.181929\pi\)
\(234\) 3.02152e58 2.71917
\(235\) 6.63657e57 0.537998
\(236\) −8.32998e57 −0.608555
\(237\) −2.09411e58 −1.37932
\(238\) 4.53107e57 0.269194
\(239\) −8.18638e57 −0.438877 −0.219439 0.975626i \(-0.570423\pi\)
−0.219439 + 0.975626i \(0.570423\pi\)
\(240\) 1.03376e58 0.500316
\(241\) −1.30748e58 −0.571502 −0.285751 0.958304i \(-0.592243\pi\)
−0.285751 + 0.958304i \(0.592243\pi\)
\(242\) 4.29439e58 1.69599
\(243\) 2.53859e58 0.906230
\(244\) 5.67781e57 0.183286
\(245\) 5.45010e57 0.159160
\(246\) 5.46667e58 1.44482
\(247\) 8.22291e58 1.96766
\(248\) 2.56098e58 0.555060
\(249\) 1.52169e59 2.98843
\(250\) −3.35765e58 −0.597730
\(251\) −8.35144e58 −1.34820 −0.674102 0.738639i \(-0.735469\pi\)
−0.674102 + 0.738639i \(0.735469\pi\)
\(252\) −2.87325e58 −0.420785
\(253\) −7.64001e58 −1.01541
\(254\) −1.64634e58 −0.198653
\(255\) −1.83937e59 −2.01574
\(256\) 6.27710e57 0.0625000
\(257\) 8.79528e58 0.795954 0.397977 0.917395i \(-0.369712\pi\)
0.397977 + 0.917395i \(0.369712\pi\)
\(258\) −3.72112e58 −0.306190
\(259\) 3.06178e58 0.229156
\(260\) 1.41274e59 0.962091
\(261\) −1.16133e59 −0.719883
\(262\) −1.73320e59 −0.978286
\(263\) 1.55189e59 0.797896 0.398948 0.916974i \(-0.369375\pi\)
0.398948 + 0.916974i \(0.369375\pi\)
\(264\) −2.49900e59 −1.17077
\(265\) 1.39554e59 0.595963
\(266\) −7.81940e58 −0.304490
\(267\) −7.39090e58 −0.262525
\(268\) 2.77275e59 0.898688
\(269\) 4.07394e59 1.20527 0.602634 0.798018i \(-0.294118\pi\)
0.602634 + 0.798018i \(0.294118\pi\)
\(270\) 6.42538e59 1.73575
\(271\) 2.11738e59 0.522458 0.261229 0.965277i \(-0.415872\pi\)
0.261229 + 0.965277i \(0.415872\pi\)
\(272\) −1.11688e59 −0.251808
\(273\) −5.69010e59 −1.17256
\(274\) −6.01427e59 −1.13317
\(275\) −2.58107e59 −0.444783
\(276\) 3.13770e59 0.494697
\(277\) −4.00111e58 −0.0577333 −0.0288666 0.999583i \(-0.509190\pi\)
−0.0288666 + 0.999583i \(0.509190\pi\)
\(278\) −8.76260e58 −0.115754
\(279\) 2.88953e60 3.49562
\(280\) −1.34342e59 −0.148881
\(281\) 9.49520e59 0.964272 0.482136 0.876096i \(-0.339861\pi\)
0.482136 + 0.876096i \(0.339861\pi\)
\(282\) 6.58882e59 0.613344
\(283\) −1.07678e60 −0.919091 −0.459546 0.888154i \(-0.651988\pi\)
−0.459546 + 0.888154i \(0.651988\pi\)
\(284\) −7.53523e58 −0.0589926
\(285\) 3.17425e60 2.28004
\(286\) −3.41514e60 −2.25134
\(287\) −7.10417e59 −0.429939
\(288\) 7.08239e59 0.393608
\(289\) 2.84354e58 0.0145165
\(290\) −5.42990e59 −0.254707
\(291\) −2.04667e60 −0.882410
\(292\) 1.28442e60 0.509130
\(293\) −2.32741e60 −0.848432 −0.424216 0.905561i \(-0.639450\pi\)
−0.424216 + 0.905561i \(0.639450\pi\)
\(294\) 5.41088e59 0.181451
\(295\) −4.39443e60 −1.35601
\(296\) −7.54712e59 −0.214355
\(297\) −1.55326e61 −4.06174
\(298\) −5.78962e60 −1.39428
\(299\) 4.28800e60 0.951284
\(300\) 1.06003e60 0.216694
\(301\) 4.83575e59 0.0911140
\(302\) 2.01900e59 0.0350724
\(303\) 4.87626e60 0.781164
\(304\) 1.92744e60 0.284825
\(305\) 2.99529e60 0.408407
\(306\) −1.26017e61 −1.58582
\(307\) 3.40999e60 0.396152 0.198076 0.980187i \(-0.436531\pi\)
0.198076 + 0.980187i \(0.436531\pi\)
\(308\) 3.24756e60 0.348389
\(309\) 1.59529e61 1.58073
\(310\) 1.35103e61 1.23681
\(311\) −1.95360e61 −1.65274 −0.826372 0.563125i \(-0.809599\pi\)
−0.826372 + 0.563125i \(0.809599\pi\)
\(312\) 1.40258e61 1.09683
\(313\) −3.49728e60 −0.252868 −0.126434 0.991975i \(-0.540353\pi\)
−0.126434 + 0.991975i \(0.540353\pi\)
\(314\) −1.61404e61 −1.07929
\(315\) −1.51576e61 −0.937612
\(316\) −6.70806e60 −0.383940
\(317\) −8.62655e60 −0.456967 −0.228484 0.973548i \(-0.573377\pi\)
−0.228484 + 0.973548i \(0.573377\pi\)
\(318\) 1.38550e61 0.679427
\(319\) 1.31262e61 0.596028
\(320\) 3.31145e60 0.139265
\(321\) −6.55790e61 −2.55500
\(322\) −4.07758e60 −0.147209
\(323\) −3.42948e61 −1.14754
\(324\) 2.79025e61 0.865545
\(325\) 1.44864e61 0.416694
\(326\) 2.81265e61 0.750385
\(327\) −5.93218e61 −1.46823
\(328\) 1.75114e61 0.402171
\(329\) −8.56245e60 −0.182515
\(330\) −1.31833e62 −2.60875
\(331\) −6.95946e60 −0.127876 −0.0639381 0.997954i \(-0.520366\pi\)
−0.0639381 + 0.997954i \(0.520366\pi\)
\(332\) 4.87444e61 0.831843
\(333\) −8.51534e61 −1.34995
\(334\) −6.04011e61 −0.889726
\(335\) 1.46275e62 2.00250
\(336\) −1.33375e61 −0.169731
\(337\) 4.40427e61 0.521125 0.260562 0.965457i \(-0.416092\pi\)
0.260562 + 0.965457i \(0.416092\pi\)
\(338\) 1.27416e62 1.40206
\(339\) −2.32987e61 −0.238473
\(340\) −5.89205e61 −0.561090
\(341\) −3.26596e62 −2.89420
\(342\) 2.17471e62 1.79375
\(343\) −7.03168e60 −0.0539949
\(344\) −1.19199e61 −0.0852293
\(345\) 1.65527e62 1.10231
\(346\) −1.89089e61 −0.117301
\(347\) 1.52552e61 0.0881752 0.0440876 0.999028i \(-0.485962\pi\)
0.0440876 + 0.999028i \(0.485962\pi\)
\(348\) −5.39083e61 −0.290378
\(349\) −3.51966e61 −0.176717 −0.0883584 0.996089i \(-0.528162\pi\)
−0.0883584 + 0.996089i \(0.528162\pi\)
\(350\) −1.37755e61 −0.0644823
\(351\) 8.71777e62 3.80523
\(352\) −8.00505e61 −0.325888
\(353\) −2.56861e62 −0.975479 −0.487739 0.872989i \(-0.662178\pi\)
−0.487739 + 0.872989i \(0.662178\pi\)
\(354\) −4.36281e62 −1.54592
\(355\) −3.97517e61 −0.131450
\(356\) −2.36753e61 −0.0730752
\(357\) 2.37314e62 0.683836
\(358\) −4.98389e62 −1.34102
\(359\) 4.10043e61 0.103042 0.0515211 0.998672i \(-0.483593\pi\)
0.0515211 + 0.998672i \(0.483593\pi\)
\(360\) 3.73627e62 0.877056
\(361\) 1.35876e62 0.298000
\(362\) 9.89383e61 0.202770
\(363\) 2.24918e63 4.30835
\(364\) −1.82271e62 −0.326388
\(365\) 6.77590e62 1.13447
\(366\) 2.97374e62 0.465604
\(367\) −7.13449e62 −1.04483 −0.522414 0.852692i \(-0.674968\pi\)
−0.522414 + 0.852692i \(0.674968\pi\)
\(368\) 1.00510e62 0.137701
\(369\) 1.97579e63 2.53277
\(370\) −3.98144e62 −0.477637
\(371\) −1.80052e62 −0.202180
\(372\) 1.34131e63 1.41002
\(373\) −5.17459e62 −0.509342 −0.254671 0.967028i \(-0.581967\pi\)
−0.254671 + 0.967028i \(0.581967\pi\)
\(374\) 1.42434e63 1.31298
\(375\) −1.75856e63 −1.51842
\(376\) 2.11060e62 0.170727
\(377\) −7.36714e62 −0.558387
\(378\) −8.28998e62 −0.588850
\(379\) 1.21761e62 0.0810675 0.0405338 0.999178i \(-0.487094\pi\)
0.0405338 + 0.999178i \(0.487094\pi\)
\(380\) 1.01681e63 0.634659
\(381\) −8.62269e62 −0.504639
\(382\) −3.94013e62 −0.216251
\(383\) −3.37484e63 −1.73734 −0.868668 0.495395i \(-0.835023\pi\)
−0.868668 + 0.495395i \(0.835023\pi\)
\(384\) 3.28762e62 0.158769
\(385\) 1.71323e63 0.776297
\(386\) 2.16245e61 0.00919509
\(387\) −1.34491e63 −0.536751
\(388\) −6.55611e62 −0.245623
\(389\) 2.28444e63 0.803552 0.401776 0.915738i \(-0.368393\pi\)
0.401776 + 0.915738i \(0.368393\pi\)
\(390\) 7.39921e63 2.44401
\(391\) −1.78837e63 −0.554788
\(392\) 1.73327e62 0.0505076
\(393\) −9.07757e63 −2.48515
\(394\) 2.67922e62 0.0689210
\(395\) −3.53880e63 −0.855513
\(396\) −9.03201e63 −2.05236
\(397\) −4.31998e63 −0.922814 −0.461407 0.887188i \(-0.652655\pi\)
−0.461407 + 0.887188i \(0.652655\pi\)
\(398\) −4.69144e63 −0.942260
\(399\) −4.09540e63 −0.773499
\(400\) 3.39558e62 0.0603177
\(401\) −4.22696e63 −0.706302 −0.353151 0.935566i \(-0.614890\pi\)
−0.353151 + 0.935566i \(0.614890\pi\)
\(402\) 1.45222e64 2.28294
\(403\) 1.83304e64 2.71142
\(404\) 1.56201e63 0.217441
\(405\) 1.47198e64 1.92865
\(406\) 7.00562e62 0.0864090
\(407\) 9.62467e63 1.11769
\(408\) −5.84965e63 −0.639670
\(409\) −6.70319e63 −0.690336 −0.345168 0.938541i \(-0.612178\pi\)
−0.345168 + 0.938541i \(0.612178\pi\)
\(410\) 9.23802e63 0.896137
\(411\) −3.14996e64 −2.87860
\(412\) 5.11020e63 0.440004
\(413\) 5.66966e63 0.460024
\(414\) 1.13404e64 0.867204
\(415\) 2.57148e64 1.85355
\(416\) 4.49287e63 0.305308
\(417\) −4.58939e63 −0.294051
\(418\) −2.45802e64 −1.48514
\(419\) 1.30218e63 0.0742042 0.0371021 0.999311i \(-0.488187\pi\)
0.0371021 + 0.999311i \(0.488187\pi\)
\(420\) −7.03612e63 −0.378204
\(421\) −3.21233e64 −1.62895 −0.814477 0.580197i \(-0.802976\pi\)
−0.814477 + 0.580197i \(0.802976\pi\)
\(422\) 6.70976e63 0.321035
\(423\) 2.38136e64 1.07519
\(424\) 4.43818e63 0.189122
\(425\) −6.04175e63 −0.243016
\(426\) −3.94656e63 −0.149859
\(427\) −3.86450e63 −0.138551
\(428\) −2.10069e64 −0.711197
\(429\) −1.78867e65 −5.71910
\(430\) −6.28824e63 −0.189912
\(431\) 6.73645e64 1.92193 0.960965 0.276668i \(-0.0892304\pi\)
0.960965 + 0.276668i \(0.0892304\pi\)
\(432\) 2.04343e64 0.550819
\(433\) −4.95896e64 −1.26310 −0.631550 0.775335i \(-0.717581\pi\)
−0.631550 + 0.775335i \(0.717581\pi\)
\(434\) −1.74309e64 −0.419586
\(435\) −2.84390e64 −0.647035
\(436\) −1.90026e64 −0.408689
\(437\) 3.08624e64 0.627531
\(438\) 6.72714e64 1.29335
\(439\) 8.15696e64 1.48302 0.741511 0.670941i \(-0.234110\pi\)
0.741511 + 0.670941i \(0.234110\pi\)
\(440\) −4.22301e64 −0.726159
\(441\) 1.95563e64 0.318083
\(442\) −7.99416e64 −1.23006
\(443\) 8.94931e64 1.30286 0.651430 0.758708i \(-0.274169\pi\)
0.651430 + 0.758708i \(0.274169\pi\)
\(444\) −3.95279e64 −0.544529
\(445\) −1.24897e64 −0.162830
\(446\) 6.18445e64 0.763128
\(447\) −3.03230e65 −3.54191
\(448\) −4.27240e63 −0.0472456
\(449\) 3.18382e64 0.333359 0.166680 0.986011i \(-0.446695\pi\)
0.166680 + 0.986011i \(0.446695\pi\)
\(450\) 3.83120e64 0.379864
\(451\) −2.23319e65 −2.09701
\(452\) −7.46329e63 −0.0663802
\(453\) 1.05745e64 0.0890948
\(454\) 1.37680e65 1.09901
\(455\) −9.61559e64 −0.727272
\(456\) 1.00949e65 0.723542
\(457\) 4.35066e64 0.295535 0.147767 0.989022i \(-0.452791\pi\)
0.147767 + 0.989022i \(0.452791\pi\)
\(458\) 9.56177e64 0.615650
\(459\) −3.63587e65 −2.21921
\(460\) 5.30234e64 0.306832
\(461\) 6.71155e64 0.368256 0.184128 0.982902i \(-0.441054\pi\)
0.184128 + 0.982902i \(0.441054\pi\)
\(462\) 1.70090e65 0.885016
\(463\) 3.44809e65 1.70155 0.850774 0.525532i \(-0.176134\pi\)
0.850774 + 0.525532i \(0.176134\pi\)
\(464\) −1.72685e64 −0.0808282
\(465\) 7.07598e65 3.14188
\(466\) 2.82357e65 1.18944
\(467\) 4.90513e65 1.96059 0.980295 0.197539i \(-0.0632949\pi\)
0.980295 + 0.197539i \(0.0632949\pi\)
\(468\) 5.06927e65 1.92274
\(469\) −1.88723e65 −0.679344
\(470\) 1.11343e65 0.380422
\(471\) −8.45350e65 −2.74173
\(472\) −1.39754e65 −0.430313
\(473\) 1.52011e65 0.444404
\(474\) −3.51333e65 −0.975327
\(475\) 1.04264e65 0.274879
\(476\) 7.60188e64 0.190349
\(477\) 5.00755e65 1.19104
\(478\) −1.37345e65 −0.310333
\(479\) −2.67144e65 −0.573490 −0.286745 0.958007i \(-0.592573\pi\)
−0.286745 + 0.958007i \(0.592573\pi\)
\(480\) 1.73436e65 0.353777
\(481\) −5.40190e65 −1.04711
\(482\) −2.19359e65 −0.404113
\(483\) −2.13562e65 −0.373956
\(484\) 7.20478e65 1.19925
\(485\) −3.45863e65 −0.547308
\(486\) 4.25905e65 0.640802
\(487\) −9.82959e63 −0.0140629 −0.00703146 0.999975i \(-0.502238\pi\)
−0.00703146 + 0.999975i \(0.502238\pi\)
\(488\) 9.52578e64 0.129603
\(489\) 1.47312e66 1.90621
\(490\) 9.14375e64 0.112543
\(491\) −3.94672e65 −0.462103 −0.231052 0.972941i \(-0.574217\pi\)
−0.231052 + 0.972941i \(0.574217\pi\)
\(492\) 9.17154e65 1.02164
\(493\) 3.07257e65 0.325651
\(494\) 1.37958e66 1.39135
\(495\) −4.76478e66 −4.57315
\(496\) 4.29661e65 0.392487
\(497\) 5.12873e64 0.0445942
\(498\) 2.55298e66 2.11314
\(499\) 1.03176e66 0.813043 0.406522 0.913641i \(-0.366742\pi\)
0.406522 + 0.913641i \(0.366742\pi\)
\(500\) −5.63320e65 −0.422659
\(501\) −3.16350e66 −2.26018
\(502\) −1.40114e66 −0.953324
\(503\) −1.66612e66 −1.07967 −0.539835 0.841771i \(-0.681514\pi\)
−0.539835 + 0.841771i \(0.681514\pi\)
\(504\) −4.82051e65 −0.297540
\(505\) 8.24029e65 0.484511
\(506\) −1.28178e66 −0.718003
\(507\) 6.67340e66 3.56166
\(508\) −2.76211e65 −0.140469
\(509\) −2.29956e65 −0.111445 −0.0557223 0.998446i \(-0.517746\pi\)
−0.0557223 + 0.998446i \(0.517746\pi\)
\(510\) −3.08595e66 −1.42534
\(511\) −8.74222e65 −0.384866
\(512\) 1.05312e65 0.0441942
\(513\) 6.27453e66 2.51019
\(514\) 1.47560e66 0.562825
\(515\) 2.69586e66 0.980437
\(516\) −6.24300e65 −0.216509
\(517\) −2.69159e66 −0.890208
\(518\) 5.13682e65 0.162037
\(519\) −9.90349e65 −0.297981
\(520\) 2.37019e66 0.680301
\(521\) −4.06950e66 −1.11434 −0.557169 0.830399i \(-0.688113\pi\)
−0.557169 + 0.830399i \(0.688113\pi\)
\(522\) −1.94838e66 −0.509034
\(523\) 4.07456e66 1.01576 0.507878 0.861429i \(-0.330430\pi\)
0.507878 + 0.861429i \(0.330430\pi\)
\(524\) −2.90782e66 −0.691753
\(525\) −7.21490e65 −0.163805
\(526\) 2.60365e66 0.564197
\(527\) −7.64495e66 −1.58130
\(528\) −4.19263e66 −0.827856
\(529\) −3.69536e66 −0.696614
\(530\) 2.34133e66 0.421410
\(531\) −1.57683e67 −2.71000
\(532\) −1.31188e66 −0.215307
\(533\) 1.25339e67 1.96458
\(534\) −1.23999e66 −0.185634
\(535\) −1.10821e67 −1.58472
\(536\) 4.65191e66 0.635468
\(537\) −2.61030e67 −3.40660
\(538\) 6.83494e66 0.852254
\(539\) −2.21040e66 −0.263357
\(540\) 1.07800e67 1.22736
\(541\) −6.31905e66 −0.687573 −0.343787 0.939048i \(-0.611710\pi\)
−0.343787 + 0.939048i \(0.611710\pi\)
\(542\) 3.55238e66 0.369434
\(543\) 5.18187e66 0.515099
\(544\) −1.87382e66 −0.178055
\(545\) −1.00247e67 −0.910660
\(546\) −9.54641e66 −0.829125
\(547\) 1.78560e67 1.48284 0.741419 0.671042i \(-0.234153\pi\)
0.741419 + 0.671042i \(0.234153\pi\)
\(548\) −1.00903e67 −0.801271
\(549\) 1.07478e67 0.816204
\(550\) −4.33031e66 −0.314509
\(551\) −5.30242e66 −0.368350
\(552\) 5.26419e66 0.349803
\(553\) 4.56573e66 0.290232
\(554\) −6.71275e65 −0.0408236
\(555\) −2.08527e67 −1.21334
\(556\) −1.47012e66 −0.0818503
\(557\) −1.66297e67 −0.885998 −0.442999 0.896522i \(-0.646085\pi\)
−0.442999 + 0.896522i \(0.646085\pi\)
\(558\) 4.84782e67 2.47177
\(559\) −8.53171e66 −0.416339
\(560\) −2.25388e66 −0.105275
\(561\) 7.45993e67 3.33537
\(562\) 1.59303e67 0.681843
\(563\) −2.44536e67 −1.00204 −0.501021 0.865435i \(-0.667042\pi\)
−0.501021 + 0.865435i \(0.667042\pi\)
\(564\) 1.10542e67 0.433700
\(565\) −3.93721e66 −0.147911
\(566\) −1.80653e67 −0.649896
\(567\) −1.89913e67 −0.654291
\(568\) −1.26420e66 −0.0417141
\(569\) 1.62433e67 0.513363 0.256681 0.966496i \(-0.417371\pi\)
0.256681 + 0.966496i \(0.417371\pi\)
\(570\) 5.32551e67 1.61223
\(571\) 2.38124e67 0.690589 0.345294 0.938494i \(-0.387779\pi\)
0.345294 + 0.938494i \(0.387779\pi\)
\(572\) −5.72966e67 −1.59194
\(573\) −2.06364e67 −0.549345
\(574\) −1.19188e67 −0.304013
\(575\) 5.43706e66 0.132893
\(576\) 1.18823e67 0.278323
\(577\) 7.52269e67 1.68875 0.844376 0.535752i \(-0.179972\pi\)
0.844376 + 0.535752i \(0.179972\pi\)
\(578\) 4.77067e65 0.0102647
\(579\) 1.13258e66 0.0233584
\(580\) −9.10987e66 −0.180105
\(581\) −3.31771e67 −0.628814
\(582\) −3.43375e67 −0.623958
\(583\) −5.65991e67 −0.986120
\(584\) 2.15491e67 0.360009
\(585\) 2.67426e68 4.28435
\(586\) −3.90475e67 −0.599932
\(587\) −9.52731e67 −1.40390 −0.701951 0.712225i \(-0.747688\pi\)
−0.701951 + 0.712225i \(0.747688\pi\)
\(588\) 9.07795e66 0.128305
\(589\) 1.31931e68 1.78864
\(590\) −7.37263e67 −0.958844
\(591\) 1.40324e67 0.175081
\(592\) −1.26620e67 −0.151572
\(593\) −1.20734e68 −1.38673 −0.693364 0.720587i \(-0.743872\pi\)
−0.693364 + 0.720587i \(0.743872\pi\)
\(594\) −2.60594e68 −2.87208
\(595\) 4.01032e67 0.424144
\(596\) −9.71337e67 −0.985908
\(597\) −2.45713e68 −2.39363
\(598\) 7.19406e67 0.672659
\(599\) −2.27103e67 −0.203829 −0.101914 0.994793i \(-0.532497\pi\)
−0.101914 + 0.994793i \(0.532497\pi\)
\(600\) 1.77843e67 0.153226
\(601\) −3.29932e67 −0.272897 −0.136449 0.990647i \(-0.543569\pi\)
−0.136449 + 0.990647i \(0.543569\pi\)
\(602\) 8.11305e66 0.0644273
\(603\) 5.24870e68 4.00201
\(604\) 3.38732e66 0.0247999
\(605\) 3.80084e68 2.67222
\(606\) 8.18100e67 0.552366
\(607\) −2.23947e68 −1.45218 −0.726092 0.687597i \(-0.758665\pi\)
−0.726092 + 0.687597i \(0.758665\pi\)
\(608\) 3.23370e67 0.201401
\(609\) 3.66918e67 0.219505
\(610\) 5.02527e67 0.288787
\(611\) 1.51067e68 0.833989
\(612\) −2.11421e68 −1.12134
\(613\) −2.69905e67 −0.137540 −0.0687701 0.997633i \(-0.521907\pi\)
−0.0687701 + 0.997633i \(0.521907\pi\)
\(614\) 5.72101e67 0.280122
\(615\) 4.83839e68 2.27646
\(616\) 5.44850e67 0.246348
\(617\) 9.57979e66 0.0416265 0.0208132 0.999783i \(-0.493374\pi\)
0.0208132 + 0.999783i \(0.493374\pi\)
\(618\) 2.67646e68 1.11775
\(619\) 2.08962e68 0.838778 0.419389 0.907807i \(-0.362244\pi\)
0.419389 + 0.907807i \(0.362244\pi\)
\(620\) 2.26665e68 0.874557
\(621\) 3.27198e68 1.21357
\(622\) −3.27759e68 −1.16867
\(623\) 1.61142e67 0.0552397
\(624\) 2.35313e68 0.775576
\(625\) −3.73308e68 −1.18306
\(626\) −5.86746e67 −0.178805
\(627\) −1.28738e69 −3.77270
\(628\) −2.70791e68 −0.763173
\(629\) 2.25294e68 0.610673
\(630\) −2.54303e68 −0.662992
\(631\) −1.62391e68 −0.407233 −0.203616 0.979051i \(-0.565270\pi\)
−0.203616 + 0.979051i \(0.565270\pi\)
\(632\) −1.12543e68 −0.271487
\(633\) 3.51422e68 0.815527
\(634\) −1.44729e68 −0.323125
\(635\) −1.45713e68 −0.312999
\(636\) 2.32449e68 0.480427
\(637\) 1.24060e68 0.246726
\(638\) 2.20221e68 0.421455
\(639\) −1.42639e68 −0.262704
\(640\) 5.55569e67 0.0984755
\(641\) −2.37772e68 −0.405638 −0.202819 0.979216i \(-0.565010\pi\)
−0.202819 + 0.979216i \(0.565010\pi\)
\(642\) −1.10023e69 −1.80666
\(643\) −6.20399e68 −0.980624 −0.490312 0.871547i \(-0.663117\pi\)
−0.490312 + 0.871547i \(0.663117\pi\)
\(644\) −6.84104e67 −0.104092
\(645\) −3.29345e68 −0.482435
\(646\) −5.75372e68 −0.811432
\(647\) −2.24940e68 −0.305430 −0.152715 0.988270i \(-0.548802\pi\)
−0.152715 + 0.988270i \(0.548802\pi\)
\(648\) 4.68126e68 0.612033
\(649\) 1.78225e69 2.24374
\(650\) 2.43041e68 0.294647
\(651\) −9.12938e68 −1.06588
\(652\) 4.71884e68 0.530602
\(653\) 8.31591e67 0.0900611 0.0450305 0.998986i \(-0.485661\pi\)
0.0450305 + 0.998986i \(0.485661\pi\)
\(654\) −9.95255e68 −1.03820
\(655\) −1.53400e69 −1.54140
\(656\) 2.93792e68 0.284378
\(657\) 2.43136e69 2.26724
\(658\) −1.43654e68 −0.129058
\(659\) −9.28999e68 −0.804123 −0.402062 0.915613i \(-0.631706\pi\)
−0.402062 + 0.915613i \(0.631706\pi\)
\(660\) −2.21179e69 −1.84467
\(661\) −1.11441e69 −0.895594 −0.447797 0.894135i \(-0.647791\pi\)
−0.447797 + 0.894135i \(0.647791\pi\)
\(662\) −1.16760e68 −0.0904222
\(663\) −4.18692e69 −3.12474
\(664\) 8.17795e68 0.588202
\(665\) −6.92073e68 −0.479757
\(666\) −1.42864e69 −0.954560
\(667\) −2.76505e68 −0.178082
\(668\) −1.01336e69 −0.629131
\(669\) 3.23909e69 1.93858
\(670\) 2.45409e69 1.41598
\(671\) −1.21480e69 −0.675777
\(672\) −2.23766e68 −0.120018
\(673\) −4.46436e68 −0.230882 −0.115441 0.993314i \(-0.536828\pi\)
−0.115441 + 0.993314i \(0.536828\pi\)
\(674\) 7.38914e68 0.368491
\(675\) 1.10539e69 0.531586
\(676\) 2.13769e69 0.991404
\(677\) 1.70355e69 0.761963 0.380981 0.924583i \(-0.375586\pi\)
0.380981 + 0.924583i \(0.375586\pi\)
\(678\) −3.90888e68 −0.168626
\(679\) 4.46230e68 0.185673
\(680\) −9.88522e68 −0.396751
\(681\) 7.21098e69 2.79184
\(682\) −5.47937e69 −2.04651
\(683\) 1.09906e69 0.396017 0.198009 0.980200i \(-0.436553\pi\)
0.198009 + 0.980200i \(0.436553\pi\)
\(684\) 3.64856e69 1.26837
\(685\) −5.32306e69 −1.78543
\(686\) −1.17972e68 −0.0381802
\(687\) 5.00796e69 1.56394
\(688\) −1.99982e68 −0.0602662
\(689\) 3.17665e69 0.923845
\(690\) 2.77709e69 0.779448
\(691\) −1.22909e69 −0.332943 −0.166471 0.986046i \(-0.553237\pi\)
−0.166471 + 0.986046i \(0.553237\pi\)
\(692\) −3.17238e68 −0.0829443
\(693\) 6.14749e69 1.55143
\(694\) 2.55940e68 0.0623493
\(695\) −7.75553e68 −0.182383
\(696\) −9.04432e68 −0.205329
\(697\) −5.22743e69 −1.14574
\(698\) −5.90501e68 −0.124958
\(699\) 1.47884e70 3.02156
\(700\) −2.31115e68 −0.0455959
\(701\) −3.22908e69 −0.615160 −0.307580 0.951522i \(-0.599519\pi\)
−0.307580 + 0.951522i \(0.599519\pi\)
\(702\) 1.46260e70 2.69071
\(703\) −3.88796e69 −0.690743
\(704\) −1.34302e69 −0.230438
\(705\) 5.83157e69 0.966390
\(706\) −4.30941e69 −0.689767
\(707\) −1.06316e69 −0.164370
\(708\) −7.31958e69 −1.09313
\(709\) 1.26142e70 1.81981 0.909907 0.414811i \(-0.136152\pi\)
0.909907 + 0.414811i \(0.136152\pi\)
\(710\) −6.66922e68 −0.0929492
\(711\) −1.26981e70 −1.70975
\(712\) −3.97205e68 −0.0516720
\(713\) 6.87980e69 0.864734
\(714\) 3.98147e69 0.483545
\(715\) −3.02265e70 −3.54723
\(716\) −8.36158e69 −0.948242
\(717\) −7.19339e69 −0.788342
\(718\) 6.87937e68 0.0728618
\(719\) 1.73239e69 0.177333 0.0886663 0.996061i \(-0.471740\pi\)
0.0886663 + 0.996061i \(0.471740\pi\)
\(720\) 6.26842e69 0.620172
\(721\) −3.47817e69 −0.332612
\(722\) 2.27962e69 0.210718
\(723\) −1.14889e70 −1.02657
\(724\) 1.65991e69 0.143380
\(725\) −9.34133e68 −0.0780059
\(726\) 3.77349e70 3.04646
\(727\) −1.97332e70 −1.54030 −0.770149 0.637864i \(-0.779818\pi\)
−0.770149 + 0.637864i \(0.779818\pi\)
\(728\) −3.05800e69 −0.230791
\(729\) −1.41495e69 −0.103257
\(730\) 1.13681e70 0.802189
\(731\) 3.55827e69 0.242808
\(732\) 4.98911e69 0.329231
\(733\) 1.21811e70 0.777388 0.388694 0.921367i \(-0.372926\pi\)
0.388694 + 0.921367i \(0.372926\pi\)
\(734\) −1.19697e70 −0.738804
\(735\) 4.78902e69 0.285895
\(736\) 1.68628e69 0.0973694
\(737\) −5.93248e70 −3.31347
\(738\) 3.31483e70 1.79094
\(739\) 3.51127e69 0.183517 0.0917584 0.995781i \(-0.470751\pi\)
0.0917584 + 0.995781i \(0.470751\pi\)
\(740\) −6.67974e69 −0.337740
\(741\) 7.22550e70 3.53445
\(742\) −3.02077e69 −0.142963
\(743\) −7.65815e69 −0.350669 −0.175335 0.984509i \(-0.556101\pi\)
−0.175335 + 0.984509i \(0.556101\pi\)
\(744\) 2.25034e70 0.997037
\(745\) −5.12423e70 −2.19685
\(746\) −8.68151e69 −0.360159
\(747\) 9.22710e70 3.70434
\(748\) 2.38964e70 0.928417
\(749\) 1.42980e70 0.537615
\(750\) −2.95038e70 −1.07368
\(751\) 4.95699e69 0.174598 0.0872991 0.996182i \(-0.472176\pi\)
0.0872991 + 0.996182i \(0.472176\pi\)
\(752\) 3.54099e69 0.120722
\(753\) −7.33844e70 −2.42174
\(754\) −1.23600e70 −0.394840
\(755\) 1.78696e69 0.0552604
\(756\) −1.39083e70 −0.416380
\(757\) 1.83268e70 0.531176 0.265588 0.964087i \(-0.414434\pi\)
0.265588 + 0.964087i \(0.414434\pi\)
\(758\) 2.04281e69 0.0573234
\(759\) −6.71330e70 −1.82395
\(760\) 1.70592e70 0.448772
\(761\) −9.75764e69 −0.248554 −0.124277 0.992248i \(-0.539661\pi\)
−0.124277 + 0.992248i \(0.539661\pi\)
\(762\) −1.44665e70 −0.356834
\(763\) 1.29338e70 0.308940
\(764\) −6.61045e69 −0.152913
\(765\) −1.11534e71 −2.49863
\(766\) −5.66205e70 −1.22848
\(767\) −1.00030e71 −2.10205
\(768\) 5.51571e69 0.112267
\(769\) −6.10092e70 −1.20282 −0.601409 0.798941i \(-0.705394\pi\)
−0.601409 + 0.798941i \(0.705394\pi\)
\(770\) 2.87432e70 0.548925
\(771\) 7.72844e70 1.42975
\(772\) 3.62798e68 0.00650191
\(773\) 1.28339e70 0.222824 0.111412 0.993774i \(-0.464463\pi\)
0.111412 + 0.993774i \(0.464463\pi\)
\(774\) −2.25638e70 −0.379540
\(775\) 2.32424e70 0.378782
\(776\) −1.09993e70 −0.173682
\(777\) 2.69040e70 0.411625
\(778\) 3.83265e70 0.568197
\(779\) 9.02113e70 1.29597
\(780\) 1.24138e71 1.72817
\(781\) 1.61221e70 0.217506
\(782\) −3.00039e70 −0.392294
\(783\) −5.62153e70 −0.712347
\(784\) 2.90794e69 0.0357143
\(785\) −1.42854e71 −1.70054
\(786\) −1.52296e71 −1.75726
\(787\) 6.77177e70 0.757393 0.378697 0.925521i \(-0.376372\pi\)
0.378697 + 0.925521i \(0.376372\pi\)
\(788\) 4.49499e69 0.0487345
\(789\) 1.36365e71 1.43324
\(790\) −5.93712e70 −0.604939
\(791\) 5.07976e69 0.0501787
\(792\) −1.51532e71 −1.45123
\(793\) 6.81814e70 0.633100
\(794\) −7.24772e70 −0.652528
\(795\) 1.22627e71 1.07051
\(796\) −7.87092e70 −0.666278
\(797\) 5.69269e70 0.467292 0.233646 0.972322i \(-0.424934\pi\)
0.233646 + 0.972322i \(0.424934\pi\)
\(798\) −6.87093e70 −0.546947
\(799\) −6.30048e70 −0.486382
\(800\) 5.69684e69 0.0426510
\(801\) −4.48163e70 −0.325416
\(802\) −7.09165e70 −0.499431
\(803\) −2.74810e71 −1.87716
\(804\) 2.43643e71 1.61429
\(805\) −3.60895e70 −0.231943
\(806\) 3.07533e71 1.91727
\(807\) 3.57978e71 2.16499
\(808\) 2.62062e70 0.153754
\(809\) −2.16086e71 −1.22995 −0.614976 0.788546i \(-0.710834\pi\)
−0.614976 + 0.788546i \(0.710834\pi\)
\(810\) 2.46957e71 1.36376
\(811\) 1.44231e71 0.772763 0.386382 0.922339i \(-0.373725\pi\)
0.386382 + 0.922339i \(0.373725\pi\)
\(812\) 1.17535e70 0.0611004
\(813\) 1.86055e71 0.938475
\(814\) 1.61475e71 0.790329
\(815\) 2.48940e71 1.18231
\(816\) −9.81409e70 −0.452315
\(817\) −6.14061e70 −0.274645
\(818\) −1.12461e71 −0.488141
\(819\) −3.45031e71 −1.45346
\(820\) 1.54988e71 0.633664
\(821\) −2.10075e71 −0.833618 −0.416809 0.908994i \(-0.636852\pi\)
−0.416809 + 0.908994i \(0.636852\pi\)
\(822\) −5.28476e71 −2.03548
\(823\) 1.54652e71 0.578174 0.289087 0.957303i \(-0.406648\pi\)
0.289087 + 0.957303i \(0.406648\pi\)
\(824\) 8.57350e70 0.311130
\(825\) −2.26799e71 −0.798950
\(826\) 9.51211e70 0.325286
\(827\) 4.59916e71 1.52684 0.763420 0.645903i \(-0.223519\pi\)
0.763420 + 0.645903i \(0.223519\pi\)
\(828\) 1.90261e71 0.613206
\(829\) −4.77456e71 −1.49399 −0.746995 0.664830i \(-0.768504\pi\)
−0.746995 + 0.664830i \(0.768504\pi\)
\(830\) 4.31423e71 1.31066
\(831\) −3.51579e70 −0.103705
\(832\) 7.53779e70 0.215885
\(833\) −5.17409e70 −0.143890
\(834\) −7.69972e70 −0.207925
\(835\) −5.34593e71 −1.40186
\(836\) −4.12387e71 −1.05015
\(837\) 1.39871e72 3.45902
\(838\) 2.18470e70 0.0524703
\(839\) 1.78575e71 0.416535 0.208268 0.978072i \(-0.433217\pi\)
0.208268 + 0.978072i \(0.433217\pi\)
\(840\) −1.18047e71 −0.267430
\(841\) −4.06961e71 −0.895469
\(842\) −5.38939e71 −1.15184
\(843\) 8.34347e71 1.73209
\(844\) 1.12571e71 0.227006
\(845\) 1.12773e72 2.20909
\(846\) 3.99527e71 0.760277
\(847\) −4.90381e71 −0.906547
\(848\) 7.44603e70 0.133729
\(849\) −9.46168e71 −1.65094
\(850\) −1.01364e71 −0.171838
\(851\) −2.02745e71 −0.333946
\(852\) −6.62123e70 −0.105967
\(853\) −3.48092e71 −0.541307 −0.270653 0.962677i \(-0.587240\pi\)
−0.270653 + 0.962677i \(0.587240\pi\)
\(854\) −6.48356e70 −0.0979706
\(855\) 1.92477e72 2.82624
\(856\) −3.52438e71 −0.502892
\(857\) 2.33431e71 0.323690 0.161845 0.986816i \(-0.448256\pi\)
0.161845 + 0.986816i \(0.448256\pi\)
\(858\) −3.00090e72 −4.04401
\(859\) 1.17473e72 1.53854 0.769268 0.638927i \(-0.220621\pi\)
0.769268 + 0.638927i \(0.220621\pi\)
\(860\) −1.05499e71 −0.134288
\(861\) −6.24246e71 −0.772286
\(862\) 1.13019e72 1.35901
\(863\) 4.57072e71 0.534220 0.267110 0.963666i \(-0.413931\pi\)
0.267110 + 0.963666i \(0.413931\pi\)
\(864\) 3.42831e71 0.389488
\(865\) −1.67357e71 −0.184820
\(866\) −8.31976e71 −0.893146
\(867\) 2.49863e70 0.0260756
\(868\) −2.92442e71 −0.296692
\(869\) 1.43523e72 1.41559
\(870\) −4.77127e71 −0.457523
\(871\) 3.32963e72 3.10421
\(872\) −3.18810e71 −0.288987
\(873\) −1.24104e72 −1.09380
\(874\) 5.17786e71 0.443731
\(875\) 3.83414e71 0.319500
\(876\) 1.12863e72 0.914534
\(877\) 1.32418e72 1.04341 0.521707 0.853125i \(-0.325295\pi\)
0.521707 + 0.853125i \(0.325295\pi\)
\(878\) 1.36851e72 1.04865
\(879\) −2.04511e72 −1.52401
\(880\) −7.08504e71 −0.513472
\(881\) −1.02622e72 −0.723321 −0.361661 0.932310i \(-0.617790\pi\)
−0.361661 + 0.932310i \(0.617790\pi\)
\(882\) 3.28100e71 0.224919
\(883\) −1.13644e71 −0.0757719 −0.0378859 0.999282i \(-0.512062\pi\)
−0.0378859 + 0.999282i \(0.512062\pi\)
\(884\) −1.34120e72 −0.869786
\(885\) −3.86140e72 −2.43576
\(886\) 1.50144e72 0.921262
\(887\) 1.35670e72 0.809761 0.404880 0.914370i \(-0.367313\pi\)
0.404880 + 0.914370i \(0.367313\pi\)
\(888\) −6.63168e71 −0.385040
\(889\) 1.87998e71 0.106184
\(890\) −2.09543e71 −0.115138
\(891\) −5.96990e72 −3.19127
\(892\) 1.03758e72 0.539613
\(893\) 1.08729e72 0.550155
\(894\) −5.08736e72 −2.50451
\(895\) −4.41110e72 −2.11292
\(896\) −7.16790e70 −0.0334077
\(897\) 3.76788e72 1.70876
\(898\) 5.34156e71 0.235721
\(899\) −1.18201e72 −0.507584
\(900\) 6.42769e71 0.268605
\(901\) −1.32487e72 −0.538785
\(902\) −3.74666e72 −1.48281
\(903\) 4.24919e71 0.163665
\(904\) −1.25213e71 −0.0469379
\(905\) 8.75675e71 0.319487
\(906\) 1.77410e71 0.0629995
\(907\) −5.34597e72 −1.84777 −0.923885 0.382670i \(-0.875005\pi\)
−0.923885 + 0.382670i \(0.875005\pi\)
\(908\) 2.30989e72 0.777121
\(909\) 2.95682e72 0.968299
\(910\) −1.61323e72 −0.514259
\(911\) −2.87512e72 −0.892188 −0.446094 0.894986i \(-0.647185\pi\)
−0.446094 + 0.894986i \(0.647185\pi\)
\(912\) 1.69365e72 0.511622
\(913\) −1.04292e73 −3.06701
\(914\) 7.29920e71 0.208975
\(915\) 2.63197e72 0.733609
\(916\) 1.60420e72 0.435330
\(917\) 1.97916e72 0.522916
\(918\) −6.09999e72 −1.56922
\(919\) −2.11252e72 −0.529139 −0.264570 0.964367i \(-0.585230\pi\)
−0.264570 + 0.964367i \(0.585230\pi\)
\(920\) 8.89585e71 0.216963
\(921\) 2.99637e72 0.711596
\(922\) 1.12601e72 0.260397
\(923\) −9.04861e71 −0.203770
\(924\) 2.85364e72 0.625801
\(925\) −6.84946e71 −0.146280
\(926\) 5.78493e72 1.20318
\(927\) 9.67339e72 1.95941
\(928\) −2.89717e71 −0.0571542
\(929\) 4.07488e72 0.782942 0.391471 0.920191i \(-0.371966\pi\)
0.391471 + 0.920191i \(0.371966\pi\)
\(930\) 1.18715e73 2.22164
\(931\) 8.92908e71 0.162757
\(932\) 4.73717e72 0.841064
\(933\) −1.71663e73 −2.96877
\(934\) 8.22944e72 1.38635
\(935\) 1.26064e73 2.06874
\(936\) 8.50482e72 1.35959
\(937\) 4.93023e72 0.767798 0.383899 0.923375i \(-0.374581\pi\)
0.383899 + 0.923375i \(0.374581\pi\)
\(938\) −3.16624e72 −0.480369
\(939\) −3.07307e72 −0.454219
\(940\) 1.86803e72 0.268999
\(941\) 9.39863e72 1.31862 0.659309 0.751872i \(-0.270849\pi\)
0.659309 + 0.751872i \(0.270849\pi\)
\(942\) −1.41826e73 −1.93869
\(943\) 4.70425e72 0.626547
\(944\) −2.34468e72 −0.304277
\(945\) −7.33723e72 −0.927797
\(946\) 2.55032e72 0.314241
\(947\) −2.86857e72 −0.344422 −0.172211 0.985060i \(-0.555091\pi\)
−0.172211 + 0.985060i \(0.555091\pi\)
\(948\) −5.89440e72 −0.689660
\(949\) 1.54239e73 1.75862
\(950\) 1.74926e72 0.194369
\(951\) −7.58017e72 −0.820836
\(952\) 1.27538e72 0.134597
\(953\) 1.79241e71 0.0184357 0.00921786 0.999958i \(-0.497066\pi\)
0.00921786 + 0.999958i \(0.497066\pi\)
\(954\) 8.40128e72 0.842190
\(955\) −3.48730e72 −0.340727
\(956\) −2.30426e72 −0.219439
\(957\) 1.15340e73 1.07063
\(958\) −4.48194e72 −0.405519
\(959\) 6.86778e72 0.605704
\(960\) 2.90978e72 0.250158
\(961\) 1.74776e73 1.46473
\(962\) −9.06288e72 −0.740418
\(963\) −3.97652e73 −3.16708
\(964\) −3.68023e72 −0.285751
\(965\) 1.91392e71 0.0144879
\(966\) −3.58298e72 −0.264426
\(967\) 1.93065e72 0.138917 0.0694583 0.997585i \(-0.477873\pi\)
0.0694583 + 0.997585i \(0.477873\pi\)
\(968\) 1.20876e73 0.847997
\(969\) −3.01350e73 −2.06129
\(970\) −5.80262e72 −0.387005
\(971\) 2.49972e73 1.62563 0.812813 0.582525i \(-0.197935\pi\)
0.812813 + 0.582525i \(0.197935\pi\)
\(972\) 7.14549e72 0.453115
\(973\) 1.00061e72 0.0618730
\(974\) −1.64913e71 −0.00994399
\(975\) 1.27292e73 0.748495
\(976\) 1.59816e72 0.0916431
\(977\) −1.23644e73 −0.691440 −0.345720 0.938338i \(-0.612365\pi\)
−0.345720 + 0.938338i \(0.612365\pi\)
\(978\) 2.47148e73 1.34789
\(979\) 5.06547e72 0.269428
\(980\) 1.53407e72 0.0795802
\(981\) −3.59710e73 −1.81996
\(982\) −6.62149e72 −0.326756
\(983\) −1.04745e72 −0.0504164 −0.0252082 0.999682i \(-0.508025\pi\)
−0.0252082 + 0.999682i \(0.508025\pi\)
\(984\) 1.53873e73 0.722408
\(985\) 2.37130e72 0.108592
\(986\) 5.15492e72 0.230270
\(987\) −7.52386e72 −0.327846
\(988\) 2.31454e73 0.983830
\(989\) −3.20214e72 −0.132780
\(990\) −7.99398e73 −3.23371
\(991\) −2.02430e73 −0.798859 −0.399429 0.916764i \(-0.630792\pi\)
−0.399429 + 0.916764i \(0.630792\pi\)
\(992\) 7.20851e72 0.277530
\(993\) −6.11530e72 −0.229700
\(994\) 8.60458e71 0.0315329
\(995\) −4.15226e73 −1.48463
\(996\) 4.28318e73 1.49421
\(997\) 2.21559e73 0.754150 0.377075 0.926183i \(-0.376930\pi\)
0.377075 + 0.926183i \(0.376930\pi\)
\(998\) 1.73100e73 0.574908
\(999\) −4.12195e73 −1.33582
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.50.a.c.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.50.a.c.1.6 6 1.1 even 1 trivial