Properties

Label 14.50.a.c.1.5
Level $14$
Weight $50$
Character 14.1
Self dual yes
Analytic conductor $212.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,50,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 50, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 50); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 50 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,100663296] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(212.892687139\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots + 43\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{12}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.52153e11\) of defining polynomial
Character \(\chi\) \(=\) 14.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.67772e7 q^{2} +4.04355e11 q^{3} +2.81475e14 q^{4} +2.21202e17 q^{5} +6.78395e18 q^{6} -1.91581e20 q^{7} +4.72237e21 q^{8} -7.57966e22 q^{9} +3.71115e24 q^{10} +5.62954e25 q^{11} +1.13816e26 q^{12} -1.96258e27 q^{13} -3.21420e27 q^{14} +8.94441e28 q^{15} +7.92282e28 q^{16} +2.82188e29 q^{17} -1.27166e30 q^{18} +4.97367e29 q^{19} +6.22628e31 q^{20} -7.74668e31 q^{21} +9.44480e32 q^{22} +3.40504e33 q^{23} +1.90951e33 q^{24} +3.11668e34 q^{25} -3.29266e34 q^{26} -1.27411e35 q^{27} -5.39253e34 q^{28} -1.03033e36 q^{29} +1.50062e36 q^{30} -1.55199e36 q^{31} +1.32923e36 q^{32} +2.27633e37 q^{33} +4.73434e36 q^{34} -4.23782e37 q^{35} -2.13348e37 q^{36} +2.95756e38 q^{37} +8.34443e36 q^{38} -7.93577e38 q^{39} +1.04460e39 q^{40} +3.46561e39 q^{41} -1.29968e39 q^{42} +1.20947e40 q^{43} +1.58457e40 q^{44} -1.67664e40 q^{45} +5.71271e40 q^{46} +1.51872e41 q^{47} +3.20363e40 q^{48} +3.67034e40 q^{49} +5.22892e41 q^{50} +1.14104e41 q^{51} -5.52416e41 q^{52} -1.44509e42 q^{53} -2.13759e42 q^{54} +1.24527e43 q^{55} -9.04717e41 q^{56} +2.01113e41 q^{57} -1.72861e43 q^{58} -4.08343e42 q^{59} +2.51763e43 q^{60} +5.03042e43 q^{61} -2.60381e43 q^{62} +1.45212e43 q^{63} +2.23007e43 q^{64} -4.34126e44 q^{65} +3.81905e44 q^{66} -4.20396e44 q^{67} +7.94290e43 q^{68} +1.37684e45 q^{69} -7.10988e44 q^{70} +1.58873e44 q^{71} -3.57939e44 q^{72} +5.96797e45 q^{73} +4.96196e45 q^{74} +1.26024e46 q^{75} +1.39996e44 q^{76} -1.07851e46 q^{77} -1.33140e46 q^{78} +4.05103e46 q^{79} +1.75254e46 q^{80} -3.33810e46 q^{81} +5.81433e46 q^{82} -1.14810e47 q^{83} -2.18050e46 q^{84} +6.24207e46 q^{85} +2.02916e47 q^{86} -4.16619e47 q^{87} +2.65847e47 q^{88} +2.24417e47 q^{89} -2.81293e47 q^{90} +3.75993e47 q^{91} +9.58434e47 q^{92} -6.27556e47 q^{93} +2.54800e48 q^{94} +1.10019e47 q^{95} +5.37480e47 q^{96} +2.25892e48 q^{97} +6.15780e47 q^{98} -4.26700e48 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 100663296 q^{2} + 600288540488 q^{3} + 16\!\cdots\!36 q^{4} + 23\!\cdots\!44 q^{5} + 10\!\cdots\!08 q^{6} - 11\!\cdots\!06 q^{7} + 28\!\cdots\!76 q^{8} + 24\!\cdots\!58 q^{9} + 39\!\cdots\!04 q^{10}+ \cdots - 23\!\cdots\!84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67772e7 0.707107
\(3\) 4.04355e11 0.826593 0.413297 0.910596i \(-0.364377\pi\)
0.413297 + 0.910596i \(0.364377\pi\)
\(4\) 2.81475e14 0.500000
\(5\) 2.21202e17 1.65968 0.829839 0.558002i \(-0.188432\pi\)
0.829839 + 0.558002i \(0.188432\pi\)
\(6\) 6.78395e18 0.584490
\(7\) −1.91581e20 −0.377964
\(8\) 4.72237e21 0.353553
\(9\) −7.57966e22 −0.316744
\(10\) 3.71115e24 1.17357
\(11\) 5.62954e25 1.72326 0.861632 0.507533i \(-0.169443\pi\)
0.861632 + 0.507533i \(0.169443\pi\)
\(12\) 1.13816e26 0.413297
\(13\) −1.96258e27 −1.00280 −0.501400 0.865215i \(-0.667182\pi\)
−0.501400 + 0.865215i \(0.667182\pi\)
\(14\) −3.21420e27 −0.267261
\(15\) 8.94441e28 1.37188
\(16\) 7.92282e28 0.250000
\(17\) 2.82188e29 0.201623 0.100812 0.994906i \(-0.467856\pi\)
0.100812 + 0.994906i \(0.467856\pi\)
\(18\) −1.27166e30 −0.223972
\(19\) 4.97367e29 0.0232924 0.0116462 0.999932i \(-0.496293\pi\)
0.0116462 + 0.999932i \(0.496293\pi\)
\(20\) 6.22628e31 0.829839
\(21\) −7.74668e31 −0.312423
\(22\) 9.44480e32 1.21853
\(23\) 3.40504e33 1.47839 0.739197 0.673489i \(-0.235205\pi\)
0.739197 + 0.673489i \(0.235205\pi\)
\(24\) 1.90951e33 0.292245
\(25\) 3.11668e34 1.75453
\(26\) −3.29266e34 −0.709087
\(27\) −1.27411e35 −1.08841
\(28\) −5.39253e34 −0.188982
\(29\) −1.03033e36 −1.52836 −0.764179 0.645004i \(-0.776856\pi\)
−0.764179 + 0.645004i \(0.776856\pi\)
\(30\) 1.50062e36 0.970065
\(31\) −1.55199e36 −0.449291 −0.224646 0.974441i \(-0.572122\pi\)
−0.224646 + 0.974441i \(0.572122\pi\)
\(32\) 1.32923e36 0.176777
\(33\) 2.27633e37 1.42444
\(34\) 4.73434e36 0.142569
\(35\) −4.23782e37 −0.627300
\(36\) −2.13348e37 −0.158372
\(37\) 2.95756e38 1.12199 0.560997 0.827818i \(-0.310418\pi\)
0.560997 + 0.827818i \(0.310418\pi\)
\(38\) 8.34443e36 0.0164702
\(39\) −7.93577e38 −0.828908
\(40\) 1.04460e39 0.586785
\(41\) 3.46561e39 1.06310 0.531552 0.847026i \(-0.321609\pi\)
0.531552 + 0.847026i \(0.321609\pi\)
\(42\) −1.29968e39 −0.220916
\(43\) 1.20947e40 1.15510 0.577550 0.816355i \(-0.304009\pi\)
0.577550 + 0.816355i \(0.304009\pi\)
\(44\) 1.58457e40 0.861632
\(45\) −1.67664e40 −0.525693
\(46\) 5.71271e40 1.04538
\(47\) 1.51872e41 1.64090 0.820449 0.571720i \(-0.193724\pi\)
0.820449 + 0.571720i \(0.193724\pi\)
\(48\) 3.20363e40 0.206648
\(49\) 3.67034e40 0.142857
\(50\) 5.22892e41 1.24064
\(51\) 1.14104e41 0.166660
\(52\) −5.52416e41 −0.501400
\(53\) −1.44509e42 −0.822502 −0.411251 0.911522i \(-0.634908\pi\)
−0.411251 + 0.911522i \(0.634908\pi\)
\(54\) −2.13759e42 −0.769623
\(55\) 1.24527e43 2.86007
\(56\) −9.04717e41 −0.133631
\(57\) 2.01113e41 0.0192533
\(58\) −1.72861e43 −1.08071
\(59\) −4.08343e42 −0.167939 −0.0839695 0.996468i \(-0.526760\pi\)
−0.0839695 + 0.996468i \(0.526760\pi\)
\(60\) 2.51763e43 0.685940
\(61\) 5.03042e43 0.914163 0.457081 0.889425i \(-0.348895\pi\)
0.457081 + 0.889425i \(0.348895\pi\)
\(62\) −2.60381e43 −0.317697
\(63\) 1.45212e43 0.119718
\(64\) 2.23007e43 0.125000
\(65\) −4.34126e44 −1.66433
\(66\) 3.81905e44 1.00723
\(67\) −4.20396e44 −0.767054 −0.383527 0.923530i \(-0.625291\pi\)
−0.383527 + 0.923530i \(0.625291\pi\)
\(68\) 7.94290e43 0.100812
\(69\) 1.37684e45 1.22203
\(70\) −7.10988e44 −0.443568
\(71\) 1.58873e44 0.0700198 0.0350099 0.999387i \(-0.488854\pi\)
0.0350099 + 0.999387i \(0.488854\pi\)
\(72\) −3.57939e44 −0.111986
\(73\) 5.96797e45 1.33173 0.665866 0.746071i \(-0.268062\pi\)
0.665866 + 0.746071i \(0.268062\pi\)
\(74\) 4.96196e45 0.793370
\(75\) 1.26024e46 1.45029
\(76\) 1.39996e44 0.0116462
\(77\) −1.07851e46 −0.651333
\(78\) −1.33140e46 −0.586126
\(79\) 4.05103e46 1.30527 0.652637 0.757670i \(-0.273663\pi\)
0.652637 + 0.757670i \(0.273663\pi\)
\(80\) 1.75254e46 0.414920
\(81\) −3.33810e46 −0.582930
\(82\) 5.81433e46 0.751728
\(83\) −1.14810e47 −1.10298 −0.551489 0.834182i \(-0.685940\pi\)
−0.551489 + 0.834182i \(0.685940\pi\)
\(84\) −2.18050e46 −0.156211
\(85\) 6.24207e46 0.334630
\(86\) 2.02916e47 0.816779
\(87\) −4.16619e47 −1.26333
\(88\) 2.65847e47 0.609266
\(89\) 2.24417e47 0.389942 0.194971 0.980809i \(-0.437539\pi\)
0.194971 + 0.980809i \(0.437539\pi\)
\(90\) −2.81293e47 −0.371721
\(91\) 3.75993e47 0.379023
\(92\) 9.58434e47 0.739197
\(93\) −6.27556e47 −0.371381
\(94\) 2.54800e48 1.16029
\(95\) 1.10019e47 0.0386579
\(96\) 5.37480e47 0.146122
\(97\) 2.25892e48 0.476423 0.238211 0.971213i \(-0.423439\pi\)
0.238211 + 0.971213i \(0.423439\pi\)
\(98\) 6.15780e47 0.101015
\(99\) −4.26700e48 −0.545833
\(100\) 8.77267e48 0.877267
\(101\) 1.31891e49 1.03358 0.516788 0.856114i \(-0.327128\pi\)
0.516788 + 0.856114i \(0.327128\pi\)
\(102\) 1.91435e48 0.117847
\(103\) −3.95803e49 −1.91852 −0.959261 0.282522i \(-0.908829\pi\)
−0.959261 + 0.282522i \(0.908829\pi\)
\(104\) −9.26801e48 −0.354543
\(105\) −1.71358e49 −0.518522
\(106\) −2.42446e49 −0.581597
\(107\) −4.93899e49 −0.941317 −0.470659 0.882315i \(-0.655984\pi\)
−0.470659 + 0.882315i \(0.655984\pi\)
\(108\) −3.58629e49 −0.544206
\(109\) −1.44996e50 −1.75553 −0.877765 0.479092i \(-0.840966\pi\)
−0.877765 + 0.479092i \(0.840966\pi\)
\(110\) 2.08921e50 2.02237
\(111\) 1.19590e50 0.927433
\(112\) −1.51786e49 −0.0944911
\(113\) 1.27983e50 0.640810 0.320405 0.947281i \(-0.396181\pi\)
0.320405 + 0.947281i \(0.396181\pi\)
\(114\) 3.37411e48 0.0136142
\(115\) 7.53202e50 2.45366
\(116\) −2.90012e50 −0.764179
\(117\) 1.48757e50 0.317631
\(118\) −6.85087e49 −0.118751
\(119\) −5.40620e49 −0.0762064
\(120\) 4.22388e50 0.485033
\(121\) 2.10198e51 1.96964
\(122\) 8.43965e50 0.646411
\(123\) 1.40134e51 0.878754
\(124\) −4.36847e50 −0.224646
\(125\) 2.96482e51 1.25228
\(126\) 2.43625e50 0.0846533
\(127\) −1.82857e51 −0.523505 −0.261753 0.965135i \(-0.584300\pi\)
−0.261753 + 0.965135i \(0.584300\pi\)
\(128\) 3.74144e50 0.0883883
\(129\) 4.89057e51 0.954798
\(130\) −7.28343e51 −1.17686
\(131\) −1.28682e52 −1.72334 −0.861670 0.507469i \(-0.830581\pi\)
−0.861670 + 0.507469i \(0.830581\pi\)
\(132\) 6.40730e51 0.712219
\(133\) −9.52862e49 −0.00880369
\(134\) −7.05307e51 −0.542389
\(135\) −2.81835e52 −1.80641
\(136\) 1.33260e51 0.0712846
\(137\) 3.79116e52 1.69480 0.847399 0.530956i \(-0.178167\pi\)
0.847399 + 0.530956i \(0.178167\pi\)
\(138\) 2.30996e52 0.864106
\(139\) 3.99595e52 1.25244 0.626220 0.779646i \(-0.284601\pi\)
0.626220 + 0.779646i \(0.284601\pi\)
\(140\) −1.19284e52 −0.313650
\(141\) 6.14103e52 1.35635
\(142\) 2.66545e51 0.0495115
\(143\) −1.10484e53 −1.72809
\(144\) −6.00522e51 −0.0791859
\(145\) −2.27911e53 −2.53658
\(146\) 1.00126e53 0.941677
\(147\) 1.48412e52 0.118085
\(148\) 8.32478e52 0.560997
\(149\) −1.38308e53 −0.790287 −0.395143 0.918619i \(-0.629305\pi\)
−0.395143 + 0.918619i \(0.629305\pi\)
\(150\) 2.11434e53 1.02551
\(151\) −2.78255e53 −1.14685 −0.573426 0.819258i \(-0.694386\pi\)
−0.573426 + 0.819258i \(0.694386\pi\)
\(152\) 2.34875e51 0.00823510
\(153\) −2.13889e52 −0.0638629
\(154\) −1.80945e53 −0.460562
\(155\) −3.43304e53 −0.745679
\(156\) −2.23372e53 −0.414454
\(157\) 3.98818e53 0.632751 0.316376 0.948634i \(-0.397534\pi\)
0.316376 + 0.948634i \(0.397534\pi\)
\(158\) 6.79650e53 0.922969
\(159\) −5.84330e53 −0.679874
\(160\) 2.94028e53 0.293393
\(161\) −6.52342e53 −0.558781
\(162\) −5.60040e53 −0.412193
\(163\) −1.71077e54 −1.08292 −0.541459 0.840727i \(-0.682128\pi\)
−0.541459 + 0.840727i \(0.682128\pi\)
\(164\) 9.75483e53 0.531552
\(165\) 5.03529e54 2.36411
\(166\) −1.92620e54 −0.779924
\(167\) 1.85130e54 0.647028 0.323514 0.946223i \(-0.395136\pi\)
0.323514 + 0.946223i \(0.395136\pi\)
\(168\) −3.65827e53 −0.110458
\(169\) 2.14827e52 0.00560874
\(170\) 1.04725e54 0.236619
\(171\) −3.76987e52 −0.00737771
\(172\) 3.40437e54 0.577550
\(173\) 7.36516e53 0.108406 0.0542029 0.998530i \(-0.482738\pi\)
0.0542029 + 0.998530i \(0.482738\pi\)
\(174\) −6.98970e54 −0.893310
\(175\) −5.97097e54 −0.663152
\(176\) 4.46018e54 0.430816
\(177\) −1.65116e54 −0.138817
\(178\) 3.76509e54 0.275731
\(179\) −1.45263e55 −0.927376 −0.463688 0.885998i \(-0.653474\pi\)
−0.463688 + 0.885998i \(0.653474\pi\)
\(180\) −4.71931e54 −0.262846
\(181\) −2.68101e55 −1.30368 −0.651842 0.758354i \(-0.726004\pi\)
−0.651842 + 0.758354i \(0.726004\pi\)
\(182\) 6.30811e54 0.268010
\(183\) 2.03407e55 0.755640
\(184\) 1.60798e55 0.522691
\(185\) 6.54218e55 1.86215
\(186\) −1.05286e55 −0.262606
\(187\) 1.58859e55 0.347450
\(188\) 4.27483e55 0.820449
\(189\) 2.44095e55 0.411381
\(190\) 1.84581e54 0.0273352
\(191\) 4.89183e55 0.637022 0.318511 0.947919i \(-0.396817\pi\)
0.318511 + 0.947919i \(0.396817\pi\)
\(192\) 9.01741e54 0.103324
\(193\) 2.39777e55 0.241910 0.120955 0.992658i \(-0.461404\pi\)
0.120955 + 0.992658i \(0.461404\pi\)
\(194\) 3.78983e55 0.336882
\(195\) −1.75541e56 −1.37572
\(196\) 1.03311e55 0.0714286
\(197\) 1.92776e56 1.17660 0.588301 0.808642i \(-0.299797\pi\)
0.588301 + 0.808642i \(0.299797\pi\)
\(198\) −7.15883e55 −0.385962
\(199\) 1.75771e55 0.0837618 0.0418809 0.999123i \(-0.486665\pi\)
0.0418809 + 0.999123i \(0.486665\pi\)
\(200\) 1.47181e56 0.620322
\(201\) −1.69989e56 −0.634041
\(202\) 2.21277e56 0.730848
\(203\) 1.97392e56 0.577665
\(204\) 3.21175e55 0.0833302
\(205\) 7.66601e56 1.76441
\(206\) −6.64047e56 −1.35660
\(207\) −2.58090e56 −0.468272
\(208\) −1.55491e56 −0.250700
\(209\) 2.79995e55 0.0401389
\(210\) −2.87491e56 −0.366650
\(211\) −2.76088e55 −0.0313421 −0.0156710 0.999877i \(-0.504988\pi\)
−0.0156710 + 0.999877i \(0.504988\pi\)
\(212\) −4.06757e56 −0.411251
\(213\) 6.42411e55 0.0578779
\(214\) −8.28626e56 −0.665612
\(215\) 2.67538e57 1.91709
\(216\) −6.01679e56 −0.384812
\(217\) 2.97333e56 0.169816
\(218\) −2.43264e57 −1.24135
\(219\) 2.41318e57 1.10080
\(220\) 3.50511e57 1.43003
\(221\) −5.53816e56 −0.202188
\(222\) 2.00639e57 0.655794
\(223\) 1.22320e56 0.0358120 0.0179060 0.999840i \(-0.494300\pi\)
0.0179060 + 0.999840i \(0.494300\pi\)
\(224\) −2.54655e56 −0.0668153
\(225\) −2.36234e57 −0.555738
\(226\) 2.14719e57 0.453121
\(227\) 9.96756e56 0.188780 0.0943899 0.995535i \(-0.469910\pi\)
0.0943899 + 0.995535i \(0.469910\pi\)
\(228\) 5.66082e55 0.00962666
\(229\) 7.75813e56 0.118519 0.0592595 0.998243i \(-0.481126\pi\)
0.0592595 + 0.998243i \(0.481126\pi\)
\(230\) 1.26366e58 1.73500
\(231\) −4.36102e57 −0.538387
\(232\) −4.86559e57 −0.540356
\(233\) 2.81706e57 0.281563 0.140781 0.990041i \(-0.455039\pi\)
0.140781 + 0.990041i \(0.455039\pi\)
\(234\) 2.49572e57 0.224599
\(235\) 3.35945e58 2.72336
\(236\) −1.14938e57 −0.0839695
\(237\) 1.63805e58 1.07893
\(238\) −9.07010e56 −0.0538861
\(239\) 1.18544e58 0.635520 0.317760 0.948171i \(-0.397069\pi\)
0.317760 + 0.948171i \(0.397069\pi\)
\(240\) 7.08649e57 0.342970
\(241\) 1.60775e58 0.702752 0.351376 0.936234i \(-0.385714\pi\)
0.351376 + 0.936234i \(0.385714\pi\)
\(242\) 3.52653e58 1.39275
\(243\) 1.69915e58 0.606566
\(244\) 1.41594e58 0.457081
\(245\) 8.11886e57 0.237097
\(246\) 2.35105e58 0.621373
\(247\) −9.76121e56 −0.0233576
\(248\) −7.32908e57 −0.158848
\(249\) −4.64240e58 −0.911715
\(250\) 4.97414e58 0.885499
\(251\) −3.02944e58 −0.489053 −0.244526 0.969643i \(-0.578632\pi\)
−0.244526 + 0.969643i \(0.578632\pi\)
\(252\) 4.08735e57 0.0598589
\(253\) 1.91688e59 2.54766
\(254\) −3.06783e58 −0.370174
\(255\) 2.52401e58 0.276603
\(256\) 6.27710e57 0.0625000
\(257\) −4.22546e58 −0.382395 −0.191197 0.981552i \(-0.561237\pi\)
−0.191197 + 0.981552i \(0.561237\pi\)
\(258\) 8.20501e58 0.675144
\(259\) −5.66612e58 −0.424074
\(260\) −1.22196e59 −0.832163
\(261\) 7.80954e58 0.484098
\(262\) −2.15893e59 −1.21859
\(263\) 1.95052e59 1.00285 0.501423 0.865202i \(-0.332810\pi\)
0.501423 + 0.865202i \(0.332810\pi\)
\(264\) 1.07497e59 0.503615
\(265\) −3.19657e59 −1.36509
\(266\) −1.59864e57 −0.00622515
\(267\) 9.07440e58 0.322323
\(268\) −1.18331e59 −0.383527
\(269\) 1.83448e59 0.542728 0.271364 0.962477i \(-0.412525\pi\)
0.271364 + 0.962477i \(0.412525\pi\)
\(270\) −4.72840e59 −1.27733
\(271\) −5.98119e59 −1.47584 −0.737921 0.674887i \(-0.764192\pi\)
−0.737921 + 0.674887i \(0.764192\pi\)
\(272\) 2.23573e58 0.0504058
\(273\) 1.52035e59 0.313298
\(274\) 6.36051e59 1.19840
\(275\) 1.75455e60 3.02353
\(276\) 3.87547e59 0.611015
\(277\) 8.36571e59 1.20711 0.603557 0.797320i \(-0.293750\pi\)
0.603557 + 0.797320i \(0.293750\pi\)
\(278\) 6.70409e59 0.885609
\(279\) 1.17636e59 0.142310
\(280\) −2.00125e59 −0.221784
\(281\) −1.00107e60 −1.01662 −0.508311 0.861174i \(-0.669730\pi\)
−0.508311 + 0.861174i \(0.669730\pi\)
\(282\) 1.03029e60 0.959087
\(283\) −8.95120e59 −0.764036 −0.382018 0.924155i \(-0.624771\pi\)
−0.382018 + 0.924155i \(0.624771\pi\)
\(284\) 4.47188e58 0.0350099
\(285\) 4.44866e58 0.0319543
\(286\) −1.85361e60 −1.22194
\(287\) −6.63946e59 −0.401815
\(288\) −1.00751e59 −0.0559929
\(289\) −1.87920e60 −0.959348
\(290\) −3.82371e60 −1.79364
\(291\) 9.13403e59 0.393808
\(292\) 1.67984e60 0.665866
\(293\) 2.02943e60 0.739805 0.369902 0.929071i \(-0.379391\pi\)
0.369902 + 0.929071i \(0.379391\pi\)
\(294\) 2.48994e59 0.0834985
\(295\) −9.03264e59 −0.278725
\(296\) 1.39667e60 0.396685
\(297\) −7.17262e60 −1.87562
\(298\) −2.32043e60 −0.558817
\(299\) −6.68265e60 −1.48253
\(300\) 3.54727e60 0.725143
\(301\) −2.31713e60 −0.436587
\(302\) −4.66834e60 −0.810946
\(303\) 5.33308e60 0.854346
\(304\) 3.94055e58 0.00582309
\(305\) 1.11274e61 1.51722
\(306\) −3.58846e59 −0.0451579
\(307\) 1.11873e61 1.29968 0.649840 0.760071i \(-0.274836\pi\)
0.649840 + 0.760071i \(0.274836\pi\)
\(308\) −3.03575e60 −0.325666
\(309\) −1.60045e61 −1.58584
\(310\) −5.75968e60 −0.527275
\(311\) 1.01512e61 0.858789 0.429395 0.903117i \(-0.358727\pi\)
0.429395 + 0.903117i \(0.358727\pi\)
\(312\) −3.74756e60 −0.293063
\(313\) −2.14333e61 −1.54972 −0.774859 0.632135i \(-0.782179\pi\)
−0.774859 + 0.632135i \(0.782179\pi\)
\(314\) 6.69105e60 0.447423
\(315\) 3.21212e60 0.198693
\(316\) 1.14026e61 0.652637
\(317\) 1.80985e61 0.958720 0.479360 0.877618i \(-0.340869\pi\)
0.479360 + 0.877618i \(0.340869\pi\)
\(318\) −9.80343e60 −0.480744
\(319\) −5.80028e61 −2.63377
\(320\) 4.93297e60 0.207460
\(321\) −1.99711e61 −0.778086
\(322\) −1.09445e61 −0.395118
\(323\) 1.40351e59 0.00469629
\(324\) −9.39591e60 −0.291465
\(325\) −6.11672e61 −1.75945
\(326\) −2.87020e61 −0.765738
\(327\) −5.86300e61 −1.45111
\(328\) 1.63659e61 0.375864
\(329\) −2.90959e61 −0.620201
\(330\) 8.44781e61 1.67168
\(331\) 1.03361e62 1.89919 0.949596 0.313475i \(-0.101493\pi\)
0.949596 + 0.313475i \(0.101493\pi\)
\(332\) −3.23162e61 −0.551489
\(333\) −2.24173e61 −0.355385
\(334\) 3.10597e61 0.457518
\(335\) −9.29924e61 −1.27306
\(336\) −6.13755e60 −0.0781057
\(337\) −4.47543e61 −0.529545 −0.264772 0.964311i \(-0.585297\pi\)
−0.264772 + 0.964311i \(0.585297\pi\)
\(338\) 3.60421e59 0.00396598
\(339\) 5.17504e61 0.529689
\(340\) 1.75699e61 0.167315
\(341\) −8.73700e61 −0.774248
\(342\) −6.32480e59 −0.00521683
\(343\) −7.03168e60 −0.0539949
\(344\) 5.71158e61 0.408389
\(345\) 3.04561e62 2.02818
\(346\) 1.23567e61 0.0766545
\(347\) 1.64103e61 0.0948517 0.0474259 0.998875i \(-0.484898\pi\)
0.0474259 + 0.998875i \(0.484898\pi\)
\(348\) −1.17268e62 −0.631665
\(349\) 3.38513e62 1.69962 0.849810 0.527089i \(-0.176717\pi\)
0.849810 + 0.527089i \(0.176717\pi\)
\(350\) −1.00176e62 −0.468919
\(351\) 2.50053e62 1.09146
\(352\) 7.48294e61 0.304633
\(353\) −3.26938e62 −1.24161 −0.620806 0.783964i \(-0.713194\pi\)
−0.620806 + 0.783964i \(0.713194\pi\)
\(354\) −2.77018e61 −0.0981586
\(355\) 3.51431e61 0.116210
\(356\) 6.31677e61 0.194971
\(357\) −2.18602e61 −0.0629917
\(358\) −2.43711e62 −0.655754
\(359\) 6.21356e62 1.56144 0.780722 0.624879i \(-0.214852\pi\)
0.780722 + 0.624879i \(0.214852\pi\)
\(360\) −7.91769e61 −0.185861
\(361\) −4.55712e62 −0.999457
\(362\) −4.49798e62 −0.921844
\(363\) 8.49945e62 1.62809
\(364\) 1.05833e62 0.189511
\(365\) 1.32013e63 2.21025
\(366\) 3.41261e62 0.534319
\(367\) −3.24990e61 −0.0475939 −0.0237970 0.999717i \(-0.507576\pi\)
−0.0237970 + 0.999717i \(0.507576\pi\)
\(368\) 2.69775e62 0.369599
\(369\) −2.62681e62 −0.336731
\(370\) 1.09759e63 1.31674
\(371\) 2.76853e62 0.310876
\(372\) −1.76641e62 −0.185691
\(373\) −7.60603e62 −0.748672 −0.374336 0.927293i \(-0.622129\pi\)
−0.374336 + 0.927293i \(0.622129\pi\)
\(374\) 2.66521e62 0.245684
\(375\) 1.19884e63 1.03513
\(376\) 7.17197e62 0.580145
\(377\) 2.02210e63 1.53264
\(378\) 4.09523e62 0.290890
\(379\) −2.77522e63 −1.84772 −0.923862 0.382725i \(-0.874986\pi\)
−0.923862 + 0.382725i \(0.874986\pi\)
\(380\) 3.09675e61 0.0193289
\(381\) −7.39392e62 −0.432726
\(382\) 8.20714e62 0.450442
\(383\) 7.91849e62 0.407636 0.203818 0.979009i \(-0.434665\pi\)
0.203818 + 0.979009i \(0.434665\pi\)
\(384\) 1.51287e62 0.0730612
\(385\) −2.38569e63 −1.08100
\(386\) 4.02279e62 0.171056
\(387\) −9.16740e62 −0.365871
\(388\) 6.35828e62 0.238211
\(389\) −5.03940e63 −1.77261 −0.886305 0.463102i \(-0.846736\pi\)
−0.886305 + 0.463102i \(0.846736\pi\)
\(390\) −2.94509e63 −0.972782
\(391\) 9.60863e62 0.298079
\(392\) 1.73327e62 0.0505076
\(393\) −5.20332e63 −1.42450
\(394\) 3.23424e63 0.831983
\(395\) 8.96097e63 2.16634
\(396\) −1.20105e63 −0.272917
\(397\) −6.85734e63 −1.46483 −0.732417 0.680856i \(-0.761608\pi\)
−0.732417 + 0.680856i \(0.761608\pi\)
\(398\) 2.94894e62 0.0592285
\(399\) −3.85294e61 −0.00727707
\(400\) 2.46929e63 0.438634
\(401\) −4.02197e63 −0.672050 −0.336025 0.941853i \(-0.609083\pi\)
−0.336025 + 0.941853i \(0.609083\pi\)
\(402\) −2.85194e63 −0.448335
\(403\) 3.04590e63 0.450550
\(404\) 3.71241e63 0.516788
\(405\) −7.38394e63 −0.967476
\(406\) 3.31169e63 0.408471
\(407\) 1.66497e64 1.93349
\(408\) 5.38842e62 0.0589234
\(409\) −7.84713e63 −0.808146 −0.404073 0.914727i \(-0.632406\pi\)
−0.404073 + 0.914727i \(0.632406\pi\)
\(410\) 1.28614e64 1.24763
\(411\) 1.53297e64 1.40091
\(412\) −1.11409e64 −0.959261
\(413\) 7.82309e62 0.0634749
\(414\) −4.33004e63 −0.331118
\(415\) −2.53963e64 −1.83059
\(416\) −2.60871e63 −0.177272
\(417\) 1.61578e64 1.03526
\(418\) 4.69753e62 0.0283825
\(419\) −1.01718e64 −0.579637 −0.289818 0.957082i \(-0.593595\pi\)
−0.289818 + 0.957082i \(0.593595\pi\)
\(420\) −4.82330e63 −0.259261
\(421\) 2.80793e63 0.142389 0.0711944 0.997462i \(-0.477319\pi\)
0.0711944 + 0.997462i \(0.477319\pi\)
\(422\) −4.63199e62 −0.0221622
\(423\) −1.15114e64 −0.519744
\(424\) −6.82426e63 −0.290798
\(425\) 8.79491e63 0.353755
\(426\) 1.07779e63 0.0409258
\(427\) −9.63734e63 −0.345521
\(428\) −1.39020e64 −0.470659
\(429\) −4.46747e64 −1.42843
\(430\) 4.48855e64 1.35559
\(431\) −2.19225e64 −0.625456 −0.312728 0.949843i \(-0.601243\pi\)
−0.312728 + 0.949843i \(0.601243\pi\)
\(432\) −1.00945e64 −0.272103
\(433\) −4.35722e64 −1.10983 −0.554915 0.831907i \(-0.687249\pi\)
−0.554915 + 0.831907i \(0.687249\pi\)
\(434\) 4.98841e63 0.120078
\(435\) −9.21569e64 −2.09672
\(436\) −4.08129e64 −0.877765
\(437\) 1.69356e63 0.0344353
\(438\) 4.04864e64 0.778384
\(439\) −7.10673e63 −0.129208 −0.0646040 0.997911i \(-0.520578\pi\)
−0.0646040 + 0.997911i \(0.520578\pi\)
\(440\) 5.88060e64 1.01119
\(441\) −2.78199e63 −0.0452491
\(442\) −9.29150e63 −0.142968
\(443\) −7.01150e64 −1.02075 −0.510375 0.859952i \(-0.670493\pi\)
−0.510375 + 0.859952i \(0.670493\pi\)
\(444\) 3.36616e64 0.463717
\(445\) 4.96414e64 0.647179
\(446\) 2.05219e63 0.0253229
\(447\) −5.59256e64 −0.653246
\(448\) −4.27240e63 −0.0472456
\(449\) −7.22798e64 −0.756801 −0.378401 0.925642i \(-0.623526\pi\)
−0.378401 + 0.925642i \(0.623526\pi\)
\(450\) −3.96334e64 −0.392966
\(451\) 1.95098e65 1.83201
\(452\) 3.60239e64 0.320405
\(453\) −1.12514e65 −0.947980
\(454\) 1.67228e64 0.133487
\(455\) 8.31704e64 0.629056
\(456\) 9.49728e62 0.00680708
\(457\) −1.87095e65 −1.27091 −0.635456 0.772137i \(-0.719188\pi\)
−0.635456 + 0.772137i \(0.719188\pi\)
\(458\) 1.30160e64 0.0838056
\(459\) −3.59538e64 −0.219449
\(460\) 2.12008e65 1.22683
\(461\) 2.44591e65 1.34205 0.671024 0.741435i \(-0.265855\pi\)
0.671024 + 0.741435i \(0.265855\pi\)
\(462\) −7.31658e64 −0.380697
\(463\) −1.93583e65 −0.955283 −0.477642 0.878555i \(-0.658508\pi\)
−0.477642 + 0.878555i \(0.658508\pi\)
\(464\) −8.16311e64 −0.382090
\(465\) −1.38817e65 −0.616374
\(466\) 4.72623e64 0.199095
\(467\) 3.35588e64 0.134135 0.0670677 0.997748i \(-0.478636\pi\)
0.0670677 + 0.997748i \(0.478636\pi\)
\(468\) 4.18713e64 0.158815
\(469\) 8.05399e64 0.289919
\(470\) 5.63622e65 1.92571
\(471\) 1.61264e65 0.523028
\(472\) −1.92835e64 −0.0593754
\(473\) 6.80878e65 1.99054
\(474\) 2.74820e65 0.762919
\(475\) 1.55013e64 0.0408673
\(476\) −1.52171e64 −0.0381032
\(477\) 1.09533e65 0.260522
\(478\) 1.98883e65 0.449381
\(479\) 9.46852e63 0.0203265 0.0101632 0.999948i \(-0.496765\pi\)
0.0101632 + 0.999948i \(0.496765\pi\)
\(480\) 1.18892e65 0.242516
\(481\) −5.80443e65 −1.12514
\(482\) 2.69737e65 0.496921
\(483\) −2.63778e65 −0.461884
\(484\) 5.91654e65 0.984820
\(485\) 4.99677e65 0.790709
\(486\) 2.85070e65 0.428907
\(487\) −1.08068e66 −1.54610 −0.773049 0.634347i \(-0.781269\pi\)
−0.773049 + 0.634347i \(0.781269\pi\)
\(488\) 2.37555e65 0.323205
\(489\) −6.91758e65 −0.895132
\(490\) 1.36212e65 0.167653
\(491\) 1.51931e66 1.77890 0.889448 0.457036i \(-0.151089\pi\)
0.889448 + 0.457036i \(0.151089\pi\)
\(492\) 3.94441e65 0.439377
\(493\) −2.90747e65 −0.308153
\(494\) −1.63766e64 −0.0165163
\(495\) −9.43868e65 −0.905908
\(496\) −1.22962e65 −0.112323
\(497\) −3.04371e64 −0.0264650
\(498\) −7.78866e65 −0.644680
\(499\) −6.07377e65 −0.478624 −0.239312 0.970943i \(-0.576922\pi\)
−0.239312 + 0.970943i \(0.576922\pi\)
\(500\) 8.34523e65 0.626142
\(501\) 7.48582e65 0.534829
\(502\) −5.08255e65 −0.345813
\(503\) −2.81314e66 −1.82295 −0.911477 0.411350i \(-0.865057\pi\)
−0.911477 + 0.411350i \(0.865057\pi\)
\(504\) 6.85744e64 0.0423267
\(505\) 2.91746e66 1.71540
\(506\) 3.21599e66 1.80147
\(507\) 8.68665e63 0.00463615
\(508\) −5.14697e65 −0.261753
\(509\) −2.59182e66 −1.25609 −0.628043 0.778179i \(-0.716144\pi\)
−0.628043 + 0.778179i \(0.716144\pi\)
\(510\) 4.23459e65 0.195588
\(511\) −1.14335e66 −0.503347
\(512\) 1.05312e65 0.0441942
\(513\) −6.33698e64 −0.0253517
\(514\) −7.08914e65 −0.270394
\(515\) −8.75524e66 −3.18413
\(516\) 1.37657e66 0.477399
\(517\) 8.54971e66 2.82770
\(518\) −9.50618e65 −0.299866
\(519\) 2.97814e65 0.0896076
\(520\) −2.05010e66 −0.588428
\(521\) 1.69545e66 0.464261 0.232130 0.972685i \(-0.425430\pi\)
0.232130 + 0.972685i \(0.425430\pi\)
\(522\) 1.31022e66 0.342309
\(523\) −2.92996e66 −0.730416 −0.365208 0.930926i \(-0.619002\pi\)
−0.365208 + 0.930926i \(0.619002\pi\)
\(524\) −3.62208e66 −0.861670
\(525\) −2.41439e66 −0.548157
\(526\) 3.27243e66 0.709120
\(527\) −4.37954e65 −0.0905876
\(528\) 1.80349e66 0.356110
\(529\) 6.28956e66 1.18565
\(530\) −5.36296e66 −0.965264
\(531\) 3.09510e65 0.0531936
\(532\) −2.68207e64 −0.00440185
\(533\) −6.80153e66 −1.06608
\(534\) 1.52243e66 0.227917
\(535\) −1.09252e67 −1.56228
\(536\) −1.98526e66 −0.271194
\(537\) −5.87378e66 −0.766563
\(538\) 3.07775e66 0.383767
\(539\) 2.06623e66 0.246181
\(540\) −7.93294e66 −0.903207
\(541\) −4.00248e66 −0.435508 −0.217754 0.976004i \(-0.569873\pi\)
−0.217754 + 0.976004i \(0.569873\pi\)
\(542\) −1.00348e67 −1.04358
\(543\) −1.08408e67 −1.07762
\(544\) 3.75093e65 0.0356423
\(545\) −3.20735e67 −2.91362
\(546\) 2.55072e66 0.221535
\(547\) 2.06656e67 1.71616 0.858080 0.513517i \(-0.171658\pi\)
0.858080 + 0.513517i \(0.171658\pi\)
\(548\) 1.06712e67 0.847399
\(549\) −3.81289e66 −0.289555
\(550\) 2.94364e67 2.13796
\(551\) −5.12452e65 −0.0355991
\(552\) 6.50196e66 0.432053
\(553\) −7.76102e66 −0.493347
\(554\) 1.40353e67 0.853558
\(555\) 2.64536e67 1.53924
\(556\) 1.12476e67 0.626220
\(557\) −6.27794e66 −0.334476 −0.167238 0.985917i \(-0.553485\pi\)
−0.167238 + 0.985917i \(0.553485\pi\)
\(558\) 1.97360e66 0.100629
\(559\) −2.37369e67 −1.15833
\(560\) −3.35754e66 −0.156825
\(561\) 6.42354e66 0.287200
\(562\) −1.67952e67 −0.718860
\(563\) 4.79486e66 0.196481 0.0982404 0.995163i \(-0.468679\pi\)
0.0982404 + 0.995163i \(0.468679\pi\)
\(564\) 1.72855e67 0.678177
\(565\) 2.83100e67 1.06354
\(566\) −1.50176e67 −0.540255
\(567\) 6.39517e66 0.220327
\(568\) 7.50257e65 0.0247557
\(569\) −3.67096e67 −1.16019 −0.580095 0.814549i \(-0.696985\pi\)
−0.580095 + 0.814549i \(0.696985\pi\)
\(570\) 7.46361e65 0.0225951
\(571\) −5.53197e66 −0.160433 −0.0802167 0.996777i \(-0.525561\pi\)
−0.0802167 + 0.996777i \(0.525561\pi\)
\(572\) −3.10985e67 −0.864045
\(573\) 1.97804e67 0.526558
\(574\) −1.11392e67 −0.284126
\(575\) 1.06124e68 2.59389
\(576\) −1.69032e66 −0.0395930
\(577\) 6.73056e67 1.51093 0.755464 0.655190i \(-0.227411\pi\)
0.755464 + 0.655190i \(0.227411\pi\)
\(578\) −3.15278e67 −0.678362
\(579\) 9.69550e66 0.199961
\(580\) −6.41513e67 −1.26829
\(581\) 2.19955e67 0.416887
\(582\) 1.53244e67 0.278464
\(583\) −8.13520e67 −1.41739
\(584\) 2.81830e67 0.470838
\(585\) 3.29053e67 0.527165
\(586\) 3.40482e67 0.523121
\(587\) −8.12357e67 −1.19705 −0.598527 0.801103i \(-0.704247\pi\)
−0.598527 + 0.801103i \(0.704247\pi\)
\(588\) 4.17742e66 0.0590424
\(589\) −7.71910e65 −0.0104651
\(590\) −1.51543e67 −0.197088
\(591\) 7.79497e67 0.972571
\(592\) 2.34322e67 0.280499
\(593\) −1.37601e68 −1.58045 −0.790225 0.612817i \(-0.790036\pi\)
−0.790225 + 0.612817i \(0.790036\pi\)
\(594\) −1.20337e68 −1.32626
\(595\) −1.19586e67 −0.126478
\(596\) −3.89303e67 −0.395143
\(597\) 7.10737e66 0.0692369
\(598\) −1.12116e68 −1.04831
\(599\) 1.22268e68 1.09738 0.548688 0.836027i \(-0.315128\pi\)
0.548688 + 0.836027i \(0.315128\pi\)
\(600\) 5.95133e67 0.512754
\(601\) 1.72865e68 1.42982 0.714910 0.699216i \(-0.246468\pi\)
0.714910 + 0.699216i \(0.246468\pi\)
\(602\) −3.88749e67 −0.308713
\(603\) 3.18646e67 0.242959
\(604\) −7.83217e67 −0.573426
\(605\) 4.64962e68 3.26897
\(606\) 8.94743e67 0.604114
\(607\) 2.45667e68 1.59303 0.796514 0.604620i \(-0.206675\pi\)
0.796514 + 0.604620i \(0.206675\pi\)
\(608\) 6.61114e65 0.00411755
\(609\) 7.98163e67 0.477494
\(610\) 1.86687e68 1.07283
\(611\) −2.98061e68 −1.64549
\(612\) −6.02044e66 −0.0319315
\(613\) −1.05071e67 −0.0535427 −0.0267713 0.999642i \(-0.508523\pi\)
−0.0267713 + 0.999642i \(0.508523\pi\)
\(614\) 1.87692e68 0.919013
\(615\) 3.09979e68 1.45845
\(616\) −5.09314e67 −0.230281
\(617\) 2.63133e67 0.114337 0.0571687 0.998365i \(-0.481793\pi\)
0.0571687 + 0.998365i \(0.481793\pi\)
\(618\) −2.68510e68 −1.12136
\(619\) −9.19896e67 −0.369248 −0.184624 0.982809i \(-0.559107\pi\)
−0.184624 + 0.982809i \(0.559107\pi\)
\(620\) −9.66315e67 −0.372840
\(621\) −4.33838e68 −1.60910
\(622\) 1.70308e68 0.607256
\(623\) −4.29940e67 −0.147384
\(624\) −6.28737e67 −0.207227
\(625\) 1.02191e68 0.323856
\(626\) −3.59591e68 −1.09582
\(627\) 1.13217e67 0.0331786
\(628\) 1.12257e68 0.316376
\(629\) 8.34588e67 0.226220
\(630\) 5.38904e67 0.140497
\(631\) −1.36432e68 −0.342135 −0.171068 0.985259i \(-0.554722\pi\)
−0.171068 + 0.985259i \(0.554722\pi\)
\(632\) 1.91305e68 0.461484
\(633\) −1.11638e67 −0.0259071
\(634\) 3.03643e68 0.677917
\(635\) −4.04484e68 −0.868850
\(636\) −1.64474e68 −0.339937
\(637\) −7.20332e67 −0.143257
\(638\) −9.73125e68 −1.86235
\(639\) −1.20420e67 −0.0221783
\(640\) 8.27615e67 0.146696
\(641\) −5.70938e68 −0.974019 −0.487010 0.873397i \(-0.661912\pi\)
−0.487010 + 0.873397i \(0.661912\pi\)
\(642\) −3.35059e68 −0.550190
\(643\) −2.67877e68 −0.423415 −0.211707 0.977333i \(-0.567902\pi\)
−0.211707 + 0.977333i \(0.567902\pi\)
\(644\) −1.83618e68 −0.279390
\(645\) 1.08180e69 1.58466
\(646\) 2.35470e66 0.00332078
\(647\) 9.40638e68 1.27723 0.638613 0.769528i \(-0.279508\pi\)
0.638613 + 0.769528i \(0.279508\pi\)
\(648\) −1.57637e68 −0.206097
\(649\) −2.29878e68 −0.289403
\(650\) −1.02622e69 −1.24412
\(651\) 1.20228e68 0.140369
\(652\) −4.81539e68 −0.541459
\(653\) 1.67210e69 1.81087 0.905437 0.424481i \(-0.139543\pi\)
0.905437 + 0.424481i \(0.139543\pi\)
\(654\) −9.83648e68 −1.02609
\(655\) −2.84647e69 −2.86019
\(656\) 2.74574e68 0.265776
\(657\) −4.52352e68 −0.421818
\(658\) −4.88148e68 −0.438548
\(659\) 3.62381e68 0.313670 0.156835 0.987625i \(-0.449871\pi\)
0.156835 + 0.987625i \(0.449871\pi\)
\(660\) 1.41731e69 1.18206
\(661\) −1.40562e69 −1.12962 −0.564811 0.825220i \(-0.691051\pi\)
−0.564811 + 0.825220i \(0.691051\pi\)
\(662\) 1.73410e69 1.34293
\(663\) −2.23938e68 −0.167127
\(664\) −5.42176e68 −0.389962
\(665\) −2.10775e67 −0.0146113
\(666\) −3.76099e68 −0.251295
\(667\) −3.50831e69 −2.25952
\(668\) 5.21095e68 0.323514
\(669\) 4.94607e67 0.0296020
\(670\) −1.56015e69 −0.900191
\(671\) 2.83189e69 1.57534
\(672\) −1.02971e68 −0.0552291
\(673\) 2.27495e69 1.17653 0.588264 0.808669i \(-0.299811\pi\)
0.588264 + 0.808669i \(0.299811\pi\)
\(674\) −7.50853e68 −0.374445
\(675\) −3.97098e69 −1.90966
\(676\) 6.04685e66 0.00280437
\(677\) −3.97025e68 −0.177581 −0.0887904 0.996050i \(-0.528300\pi\)
−0.0887904 + 0.996050i \(0.528300\pi\)
\(678\) 8.68228e68 0.374547
\(679\) −4.32766e68 −0.180071
\(680\) 2.94773e68 0.118310
\(681\) 4.03043e68 0.156044
\(682\) −1.46583e69 −0.547476
\(683\) −1.53957e69 −0.554743 −0.277372 0.960763i \(-0.589463\pi\)
−0.277372 + 0.960763i \(0.589463\pi\)
\(684\) −1.06112e67 −0.00368886
\(685\) 8.38612e69 2.81282
\(686\) −1.17972e68 −0.0381802
\(687\) 3.13704e68 0.0979670
\(688\) 9.58244e68 0.288775
\(689\) 2.83611e69 0.824805
\(690\) 5.10968e69 1.43414
\(691\) 2.33614e68 0.0632829 0.0316414 0.999499i \(-0.489927\pi\)
0.0316414 + 0.999499i \(0.489927\pi\)
\(692\) 2.07311e68 0.0542029
\(693\) 8.17476e68 0.206306
\(694\) 2.75320e68 0.0670703
\(695\) 8.83912e69 2.07865
\(696\) −1.96743e69 −0.446655
\(697\) 9.77956e68 0.214346
\(698\) 5.67930e69 1.20181
\(699\) 1.13909e69 0.232738
\(700\) −1.68068e69 −0.331576
\(701\) −1.68766e69 −0.321509 −0.160754 0.986994i \(-0.551393\pi\)
−0.160754 + 0.986994i \(0.551393\pi\)
\(702\) 4.19519e69 0.771778
\(703\) 1.47099e68 0.0261339
\(704\) 1.25543e69 0.215408
\(705\) 1.35841e70 2.25111
\(706\) −5.48512e69 −0.877952
\(707\) −2.52679e69 −0.390655
\(708\) −4.64759e68 −0.0694086
\(709\) −8.24952e69 −1.19013 −0.595067 0.803676i \(-0.702875\pi\)
−0.595067 + 0.803676i \(0.702875\pi\)
\(710\) 5.89603e68 0.0821731
\(711\) −3.07054e69 −0.413438
\(712\) 1.05978e69 0.137865
\(713\) −5.28460e69 −0.664230
\(714\) −3.66754e68 −0.0445419
\(715\) −2.44393e70 −2.86807
\(716\) −4.08879e69 −0.463688
\(717\) 4.79337e69 0.525317
\(718\) 1.04246e70 1.10411
\(719\) −4.85357e69 −0.496825 −0.248413 0.968654i \(-0.579909\pi\)
−0.248413 + 0.968654i \(0.579909\pi\)
\(720\) −1.32837e69 −0.131423
\(721\) 7.58284e69 0.725133
\(722\) −7.64558e69 −0.706723
\(723\) 6.50103e69 0.580890
\(724\) −7.54636e69 −0.651842
\(725\) −3.21121e70 −2.68156
\(726\) 1.42597e70 1.15123
\(727\) 1.47435e70 1.15082 0.575410 0.817865i \(-0.304842\pi\)
0.575410 + 0.817865i \(0.304842\pi\)
\(728\) 1.77558e69 0.134005
\(729\) 1.48586e70 1.08431
\(730\) 2.21481e70 1.56288
\(731\) 3.41300e69 0.232895
\(732\) 5.72541e69 0.377820
\(733\) 1.10214e70 0.703379 0.351689 0.936117i \(-0.385607\pi\)
0.351689 + 0.936117i \(0.385607\pi\)
\(734\) −5.45243e68 −0.0336540
\(735\) 3.28290e69 0.195983
\(736\) 4.52608e69 0.261346
\(737\) −2.36663e70 −1.32184
\(738\) −4.40706e69 −0.238105
\(739\) −1.56036e70 −0.815525 −0.407762 0.913088i \(-0.633691\pi\)
−0.407762 + 0.913088i \(0.633691\pi\)
\(740\) 1.84146e70 0.931075
\(741\) −3.94699e68 −0.0193072
\(742\) 4.64482e69 0.219823
\(743\) 7.97622e69 0.365234 0.182617 0.983184i \(-0.441543\pi\)
0.182617 + 0.983184i \(0.441543\pi\)
\(744\) −2.96355e69 −0.131303
\(745\) −3.05941e70 −1.31162
\(746\) −1.27608e70 −0.529391
\(747\) 8.70222e69 0.349362
\(748\) 4.47148e69 0.173725
\(749\) 9.46219e69 0.355784
\(750\) 2.01132e70 0.731947
\(751\) −4.56512e70 −1.60796 −0.803978 0.594659i \(-0.797287\pi\)
−0.803978 + 0.594659i \(0.797287\pi\)
\(752\) 1.20326e70 0.410224
\(753\) −1.22497e70 −0.404248
\(754\) 3.39252e70 1.08374
\(755\) −6.15505e70 −1.90341
\(756\) 6.87065e69 0.205690
\(757\) −2.50927e70 −0.727276 −0.363638 0.931540i \(-0.618465\pi\)
−0.363638 + 0.931540i \(0.618465\pi\)
\(758\) −4.65605e70 −1.30654
\(759\) 7.75100e70 2.10588
\(760\) 5.19548e68 0.0136676
\(761\) −8.03268e69 −0.204615 −0.102307 0.994753i \(-0.532623\pi\)
−0.102307 + 0.994753i \(0.532623\pi\)
\(762\) −1.24049e70 −0.305983
\(763\) 2.77786e70 0.663528
\(764\) 1.37693e70 0.318511
\(765\) −4.73127e69 −0.105992
\(766\) 1.32850e70 0.288242
\(767\) 8.01405e69 0.168409
\(768\) 2.53818e69 0.0516621
\(769\) −4.78343e70 −0.943070 −0.471535 0.881847i \(-0.656300\pi\)
−0.471535 + 0.881847i \(0.656300\pi\)
\(770\) −4.00253e70 −0.764385
\(771\) −1.70858e70 −0.316085
\(772\) 6.74912e69 0.120955
\(773\) −1.04179e71 −1.80876 −0.904380 0.426728i \(-0.859666\pi\)
−0.904380 + 0.426728i \(0.859666\pi\)
\(774\) −1.53803e70 −0.258710
\(775\) −4.83706e70 −0.788297
\(776\) 1.06674e70 0.168441
\(777\) −2.29112e70 −0.350537
\(778\) −8.45470e70 −1.25342
\(779\) 1.72368e69 0.0247622
\(780\) −4.94104e70 −0.687861
\(781\) 8.94382e69 0.120663
\(782\) 1.61206e70 0.210773
\(783\) 1.31275e71 1.66348
\(784\) 2.90794e69 0.0357143
\(785\) 8.82193e70 1.05016
\(786\) −8.72972e70 −1.00727
\(787\) 8.21032e70 0.918289 0.459144 0.888362i \(-0.348156\pi\)
0.459144 + 0.888362i \(0.348156\pi\)
\(788\) 5.42615e70 0.588301
\(789\) 7.88702e70 0.828946
\(790\) 1.50340e71 1.53183
\(791\) −2.45191e70 −0.242203
\(792\) −2.01503e70 −0.192981
\(793\) −9.87259e70 −0.916723
\(794\) −1.15047e71 −1.03579
\(795\) −1.29255e71 −1.12837
\(796\) 4.94750e69 0.0418809
\(797\) 2.08175e69 0.0170883 0.00854417 0.999963i \(-0.497280\pi\)
0.00854417 + 0.999963i \(0.497280\pi\)
\(798\) −6.46416e68 −0.00514567
\(799\) 4.28566e70 0.330843
\(800\) 4.14278e70 0.310161
\(801\) −1.70100e70 −0.123512
\(802\) −6.74775e70 −0.475211
\(803\) 3.35969e71 2.29493
\(804\) −4.78477e70 −0.317021
\(805\) −1.44299e71 −0.927396
\(806\) 5.11018e70 0.318587
\(807\) 7.41781e70 0.448615
\(808\) 6.22838e70 0.365424
\(809\) 1.91632e69 0.0109076 0.00545380 0.999985i \(-0.498264\pi\)
0.00545380 + 0.999985i \(0.498264\pi\)
\(810\) −1.23882e71 −0.684109
\(811\) −9.80519e70 −0.525346 −0.262673 0.964885i \(-0.584604\pi\)
−0.262673 + 0.964885i \(0.584604\pi\)
\(812\) 5.55609e70 0.288833
\(813\) −2.41852e71 −1.21992
\(814\) 2.79335e71 1.36719
\(815\) −3.78426e71 −1.79730
\(816\) 9.04027e69 0.0416651
\(817\) 6.01553e69 0.0269050
\(818\) −1.31653e71 −0.571446
\(819\) −2.84990e70 −0.120053
\(820\) 2.15779e71 0.882205
\(821\) 7.67512e70 0.304564 0.152282 0.988337i \(-0.451338\pi\)
0.152282 + 0.988337i \(0.451338\pi\)
\(822\) 2.57190e71 0.990592
\(823\) −8.64979e70 −0.323378 −0.161689 0.986842i \(-0.551694\pi\)
−0.161689 + 0.986842i \(0.551694\pi\)
\(824\) −1.86912e71 −0.678300
\(825\) 7.09459e71 2.49923
\(826\) 1.31250e70 0.0448836
\(827\) 4.98625e71 1.65535 0.827674 0.561210i \(-0.189664\pi\)
0.827674 + 0.561210i \(0.189664\pi\)
\(828\) −7.26460e70 −0.234136
\(829\) −2.09310e71 −0.654942 −0.327471 0.944861i \(-0.606196\pi\)
−0.327471 + 0.944861i \(0.606196\pi\)
\(830\) −4.26078e71 −1.29442
\(831\) 3.38271e71 0.997792
\(832\) −4.37669e70 −0.125350
\(833\) 1.03573e70 0.0288033
\(834\) 2.71083e71 0.732038
\(835\) 4.09511e71 1.07386
\(836\) 7.88115e69 0.0200695
\(837\) 1.97740e71 0.489014
\(838\) −1.70655e71 −0.409865
\(839\) 2.45639e70 0.0572967 0.0286484 0.999590i \(-0.490880\pi\)
0.0286484 + 0.999590i \(0.490880\pi\)
\(840\) −8.09216e70 −0.183325
\(841\) 6.07113e71 1.33588
\(842\) 4.71093e70 0.100684
\(843\) −4.04787e71 −0.840332
\(844\) −7.77119e69 −0.0156710
\(845\) 4.75203e69 0.00930871
\(846\) −1.93129e71 −0.367514
\(847\) −4.02700e71 −0.744454
\(848\) −1.14492e71 −0.205625
\(849\) −3.61946e71 −0.631547
\(850\) 1.47554e71 0.250143
\(851\) 1.00706e72 1.65875
\(852\) 1.80823e70 0.0289389
\(853\) −2.38410e71 −0.370743 −0.185372 0.982668i \(-0.559349\pi\)
−0.185372 + 0.982668i \(0.559349\pi\)
\(854\) −1.61688e71 −0.244320
\(855\) −8.33903e69 −0.0122446
\(856\) −2.33237e71 −0.332806
\(857\) 8.17297e71 1.13331 0.566656 0.823954i \(-0.308237\pi\)
0.566656 + 0.823954i \(0.308237\pi\)
\(858\) −7.49517e71 −1.01005
\(859\) 1.07270e72 1.40491 0.702454 0.711730i \(-0.252088\pi\)
0.702454 + 0.711730i \(0.252088\pi\)
\(860\) 7.53053e71 0.958547
\(861\) −2.68470e71 −0.332138
\(862\) −3.67798e71 −0.442264
\(863\) −1.77461e71 −0.207415 −0.103707 0.994608i \(-0.533071\pi\)
−0.103707 + 0.994608i \(0.533071\pi\)
\(864\) −1.69358e71 −0.192406
\(865\) 1.62919e71 0.179919
\(866\) −7.31020e71 −0.784768
\(867\) −7.59864e71 −0.792991
\(868\) 8.36917e70 0.0849081
\(869\) 2.28054e72 2.24933
\(870\) −1.54614e72 −1.48261
\(871\) 8.25059e71 0.769202
\(872\) −6.84726e71 −0.620673
\(873\) −1.71218e71 −0.150904
\(874\) 2.84131e70 0.0243494
\(875\) −5.68004e71 −0.473319
\(876\) 6.79249e71 0.550400
\(877\) −6.23171e71 −0.491040 −0.245520 0.969392i \(-0.578959\pi\)
−0.245520 + 0.969392i \(0.578959\pi\)
\(878\) −1.19231e71 −0.0913638
\(879\) 8.20609e71 0.611518
\(880\) 9.86601e71 0.715016
\(881\) −9.84259e70 −0.0693744 −0.0346872 0.999398i \(-0.511043\pi\)
−0.0346872 + 0.999398i \(0.511043\pi\)
\(882\) −4.66740e70 −0.0319960
\(883\) −1.57148e72 −1.04779 −0.523893 0.851784i \(-0.675521\pi\)
−0.523893 + 0.851784i \(0.675521\pi\)
\(884\) −1.55885e71 −0.101094
\(885\) −3.65239e71 −0.230392
\(886\) −1.17633e72 −0.721779
\(887\) −3.00798e71 −0.179534 −0.0897670 0.995963i \(-0.528612\pi\)
−0.0897670 + 0.995963i \(0.528612\pi\)
\(888\) 5.64749e71 0.327897
\(889\) 3.50320e71 0.197866
\(890\) 8.32845e71 0.457624
\(891\) −1.87919e72 −1.00454
\(892\) 3.44301e70 0.0179060
\(893\) 7.55363e70 0.0382204
\(894\) −9.38276e71 −0.461914
\(895\) −3.21325e72 −1.53915
\(896\) −7.16790e70 −0.0334077
\(897\) −2.70216e72 −1.22545
\(898\) −1.21265e72 −0.535139
\(899\) 1.59906e72 0.686678
\(900\) −6.64938e71 −0.277869
\(901\) −4.07788e71 −0.165836
\(902\) 3.27320e72 1.29543
\(903\) −9.36941e71 −0.360880
\(904\) 6.04381e71 0.226561
\(905\) −5.93044e72 −2.16370
\(906\) −1.88766e72 −0.670323
\(907\) −4.79903e72 −1.65873 −0.829364 0.558709i \(-0.811297\pi\)
−0.829364 + 0.558709i \(0.811297\pi\)
\(908\) 2.80562e71 0.0943899
\(909\) −9.99690e71 −0.327378
\(910\) 1.39537e72 0.444810
\(911\) 9.93139e71 0.308184 0.154092 0.988057i \(-0.450755\pi\)
0.154092 + 0.988057i \(0.450755\pi\)
\(912\) 1.59338e70 0.00481333
\(913\) −6.46328e72 −1.90072
\(914\) −3.13894e72 −0.898671
\(915\) 4.49942e72 1.25412
\(916\) 2.18372e71 0.0592595
\(917\) 2.46531e72 0.651361
\(918\) −6.03204e71 −0.155174
\(919\) −2.23015e72 −0.558604 −0.279302 0.960203i \(-0.590103\pi\)
−0.279302 + 0.960203i \(0.590103\pi\)
\(920\) 3.55690e72 0.867500
\(921\) 4.52365e72 1.07431
\(922\) 4.10356e72 0.948972
\(923\) −3.11801e71 −0.0702159
\(924\) −1.22752e72 −0.269194
\(925\) 9.21775e72 1.96858
\(926\) −3.24778e72 −0.675487
\(927\) 3.00005e72 0.607680
\(928\) −1.36954e72 −0.270178
\(929\) 9.18253e72 1.76432 0.882160 0.470950i \(-0.156089\pi\)
0.882160 + 0.470950i \(0.156089\pi\)
\(930\) −2.32896e72 −0.435842
\(931\) 1.82550e70 0.00332748
\(932\) 7.92931e71 0.140781
\(933\) 4.10467e72 0.709869
\(934\) 5.63024e71 0.0948480
\(935\) 3.51399e72 0.576656
\(936\) 7.02483e71 0.112299
\(937\) −1.09047e73 −1.69823 −0.849113 0.528211i \(-0.822863\pi\)
−0.849113 + 0.528211i \(0.822863\pi\)
\(938\) 1.35124e72 0.205004
\(939\) −8.66665e72 −1.28099
\(940\) 9.45601e72 1.36168
\(941\) −3.21159e72 −0.450582 −0.225291 0.974292i \(-0.572333\pi\)
−0.225291 + 0.974292i \(0.572333\pi\)
\(942\) 2.70556e72 0.369837
\(943\) 1.18005e73 1.57169
\(944\) −3.23523e71 −0.0419847
\(945\) 5.39942e72 0.682760
\(946\) 1.14232e73 1.40753
\(947\) 1.28424e73 1.54196 0.770979 0.636860i \(-0.219767\pi\)
0.770979 + 0.636860i \(0.219767\pi\)
\(948\) 4.61071e72 0.539466
\(949\) −1.17126e73 −1.33546
\(950\) 2.60069e71 0.0288975
\(951\) 7.31823e72 0.792471
\(952\) −2.55301e71 −0.0269430
\(953\) −6.15950e72 −0.633533 −0.316767 0.948504i \(-0.602597\pi\)
−0.316767 + 0.948504i \(0.602597\pi\)
\(954\) 1.83766e72 0.184217
\(955\) 1.08208e73 1.05725
\(956\) 3.33670e72 0.317760
\(957\) −2.34537e73 −2.17705
\(958\) 1.58855e71 0.0143730
\(959\) −7.26315e72 −0.640574
\(960\) 1.99467e72 0.171485
\(961\) −9.52359e72 −0.798137
\(962\) −9.73822e72 −0.795592
\(963\) 3.74359e72 0.298156
\(964\) 4.52543e72 0.351376
\(965\) 5.30392e72 0.401493
\(966\) −4.42545e72 −0.326601
\(967\) −1.55997e73 −1.12245 −0.561226 0.827663i \(-0.689670\pi\)
−0.561226 + 0.827663i \(0.689670\pi\)
\(968\) 9.92631e72 0.696373
\(969\) 5.67517e70 0.00388192
\(970\) 8.38319e72 0.559116
\(971\) 4.27353e72 0.277917 0.138959 0.990298i \(-0.455624\pi\)
0.138959 + 0.990298i \(0.455624\pi\)
\(972\) 4.78268e72 0.303283
\(973\) −7.65548e72 −0.473378
\(974\) −1.81308e73 −1.09326
\(975\) −2.47333e73 −1.45435
\(976\) 3.98551e72 0.228541
\(977\) 8.21910e71 0.0459629 0.0229814 0.999736i \(-0.492684\pi\)
0.0229814 + 0.999736i \(0.492684\pi\)
\(978\) −1.16058e73 −0.632954
\(979\) 1.26336e73 0.671973
\(980\) 2.28526e72 0.118548
\(981\) 1.09902e73 0.556053
\(982\) 2.54898e73 1.25787
\(983\) −2.13732e73 −1.02874 −0.514372 0.857567i \(-0.671975\pi\)
−0.514372 + 0.857567i \(0.671975\pi\)
\(984\) 6.61763e72 0.310686
\(985\) 4.26423e73 1.95278
\(986\) −4.87793e72 −0.217897
\(987\) −1.17651e73 −0.512654
\(988\) −2.74754e71 −0.0116788
\(989\) 4.11831e73 1.70769
\(990\) −1.58355e73 −0.640574
\(991\) −5.50676e72 −0.217316 −0.108658 0.994079i \(-0.534655\pi\)
−0.108658 + 0.994079i \(0.534655\pi\)
\(992\) −2.06295e72 −0.0794242
\(993\) 4.17943e73 1.56986
\(994\) −5.10650e71 −0.0187136
\(995\) 3.88808e72 0.139018
\(996\) −1.30672e73 −0.455857
\(997\) −4.60641e73 −1.56794 −0.783972 0.620796i \(-0.786810\pi\)
−0.783972 + 0.620796i \(0.786810\pi\)
\(998\) −1.01901e73 −0.338439
\(999\) −3.76824e73 −1.22119
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 14.50.a.c.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.50.a.c.1.5 6 1.1 even 1 trivial