Properties

Label 14.48.a.c
Level $14$
Weight $48$
Character orbit 14.a
Self dual yes
Analytic conductor $195.871$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [14,48,Mod(1,14)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 48, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("14.1"); S:= CuspForms(chi, 48); N := Newforms(S);
 
Level: \( N \) \(=\) \( 14 = 2 \cdot 7 \)
Weight: \( k \) \(=\) \( 48 \)
Character orbit: \([\chi]\) \(=\) 14.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,50331648] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(195.870727717\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2 x^{5} + \cdots - 16\!\cdots\!84 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{36}\cdot 3^{15}\cdot 5^{6}\cdot 7^{6} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 8388608 q^{2} + ( - \beta_1 + 15224700036) q^{3} + 70368744177664 q^{4} + ( - \beta_{2} - 14430 \beta_1 - 51\!\cdots\!50) q^{5} + ( - 8388608 \beta_1 + 12\!\cdots\!88) q^{6} - 27\!\cdots\!43 q^{7}+ \cdots + ( - 13\!\cdots\!80 \beta_{5} + \cdots - 37\!\cdots\!96) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 50331648 q^{2} + 91348200216 q^{3} + 422212465065984 q^{4} - 30\!\cdots\!00 q^{5} + 76\!\cdots\!28 q^{6} - 16\!\cdots\!58 q^{7} + 35\!\cdots\!72 q^{8} + 23\!\cdots\!02 q^{9} - 25\!\cdots\!00 q^{10}+ \cdots - 22\!\cdots\!76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2 x^{5} + \cdots - 16\!\cdots\!84 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 18\nu - 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 17\!\cdots\!57 \nu^{5} + \cdots + 10\!\cdots\!48 ) / 58\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 14\!\cdots\!41 \nu^{5} + \cdots + 77\!\cdots\!24 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 19\!\cdots\!01 \nu^{5} + \cdots - 43\!\cdots\!36 ) / 14\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 11\!\cdots\!31 \nu^{5} + \cdots + 72\!\cdots\!84 ) / 58\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 6 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - 44372\beta_{2} + 47374132105\beta _1 + 30292256447970046868844 ) / 324 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2424649383 \beta_{5} + 9339567283 \beta_{4} + 20557041921 \beta_{3} + \cdots + 15\!\cdots\!16 ) / 648 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 22\!\cdots\!05 \beta_{5} + \cdots + 21\!\cdots\!56 ) / 1296 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 76\!\cdots\!51 \beta_{5} + \cdots + 66\!\cdots\!16 ) / 648 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.59155e10
7.24694e9
6.87036e8
−1.69579e9
−9.28705e9
−1.28666e10
8.38861e6 −2.71254e11 7.03687e13 −7.17251e15 −2.27544e18 −2.73687e19 5.90296e20 4.69899e22 −6.01674e22
1.2 8.38861e6 −1.15220e11 7.03687e13 −3.66016e15 −9.66537e17 −2.73687e19 5.90296e20 −1.33131e22 −3.07037e22
1.3 8.38861e6 2.85805e9 7.03687e13 −4.96190e16 2.39750e16 −2.73687e19 5.90296e20 −2.65806e22 −4.16234e23
1.4 8.38861e6 4.57489e10 7.03687e13 4.17176e16 3.83770e17 −2.73687e19 5.90296e20 −2.44958e22 3.49953e23
1.5 8.38861e6 1.82392e11 7.03687e13 −1.56844e16 1.53001e18 −2.73687e19 5.90296e20 6.67788e21 −1.31570e23
1.6 8.38861e6 2.46824e11 7.03687e13 3.56349e15 2.07051e18 −2.73687e19 5.90296e20 3.43332e22 2.98927e22
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 14.48.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.48.a.c 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 91348200216 T_{3}^{5} + \cdots + 18\!\cdots\!00 \) acting on \(S_{48}^{\mathrm{new}}(\Gamma_0(14))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 8388608)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 30\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( (T + 27\!\cdots\!43)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 80\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 22\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 25\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 62\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 59\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 16\!\cdots\!64 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 17\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 33\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 14\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 85\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 10\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 57\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 79\!\cdots\!00 \) Copy content Toggle raw display
show more
show less