Properties

Label 2-14-1.1-c47-0-23
Degree $2$
Conductor $14$
Sign $-1$
Analytic cond. $195.870$
Root an. cond. $13.9953$
Motivic weight $47$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.38e6·2-s + 2.46e11·3-s + 7.03e13·4-s + 3.56e15·5-s + 2.07e18·6-s − 2.73e19·7-s + 5.90e20·8-s + 3.43e22·9-s + 2.98e22·10-s − 2.59e24·11-s + 1.73e25·12-s − 2.31e26·13-s − 2.29e26·14-s + 8.79e26·15-s + 4.95e27·16-s + 1.36e29·17-s + 2.88e29·18-s − 1.34e30·19-s + 2.50e29·20-s − 6.75e30·21-s − 2.17e31·22-s − 1.72e31·23-s + 1.45e32·24-s − 6.97e32·25-s − 1.94e33·26-s + 1.91e33·27-s − 1.92e33·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.51·3-s + 0.5·4-s + 0.133·5-s + 1.07·6-s − 0.377·7-s + 0.353·8-s + 1.29·9-s + 0.0945·10-s − 0.872·11-s + 0.756·12-s − 1.54·13-s − 0.267·14-s + 0.202·15-s + 0.250·16-s + 1.65·17-s + 0.913·18-s − 1.19·19-s + 0.0668·20-s − 0.572·21-s − 0.617·22-s − 0.172·23-s + 0.535·24-s − 0.982·25-s − 1.08·26-s + 0.440·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(48-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+47/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-1$
Analytic conductor: \(195.870\)
Root analytic conductor: \(13.9953\)
Motivic weight: \(47\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14,\ (\ :47/2),\ -1)\)

Particular Values

\(L(24)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{49}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8.38e6T \)
7 \( 1 + 2.73e19T \)
good3 \( 1 - 2.46e11T + 2.65e22T^{2} \)
5 \( 1 - 3.56e15T + 7.10e32T^{2} \)
11 \( 1 + 2.59e24T + 8.81e48T^{2} \)
13 \( 1 + 2.31e26T + 2.26e52T^{2} \)
17 \( 1 - 1.36e29T + 6.77e57T^{2} \)
19 \( 1 + 1.34e30T + 1.26e60T^{2} \)
23 \( 1 + 1.72e31T + 1.00e64T^{2} \)
29 \( 1 + 2.52e34T + 5.40e68T^{2} \)
31 \( 1 - 1.43e35T + 1.24e70T^{2} \)
37 \( 1 + 1.22e37T + 5.07e73T^{2} \)
41 \( 1 - 1.49e38T + 6.32e75T^{2} \)
43 \( 1 - 2.17e37T + 5.92e76T^{2} \)
47 \( 1 + 9.47e38T + 3.87e78T^{2} \)
53 \( 1 + 5.77e40T + 1.09e81T^{2} \)
59 \( 1 - 3.13e41T + 1.69e83T^{2} \)
61 \( 1 + 1.36e42T + 8.13e83T^{2} \)
67 \( 1 + 5.70e42T + 6.69e85T^{2} \)
71 \( 1 + 1.20e43T + 1.02e87T^{2} \)
73 \( 1 + 7.60e43T + 3.76e87T^{2} \)
79 \( 1 - 3.72e44T + 1.54e89T^{2} \)
83 \( 1 + 9.76e44T + 1.57e90T^{2} \)
89 \( 1 + 4.02e45T + 4.18e91T^{2} \)
97 \( 1 - 6.97e46T + 2.38e93T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.31701988441894031099031040046, −9.489724533113955042948875396016, −8.028354799576649938525964501524, −7.37416207623089966436695391818, −5.79790965367412125856357373842, −4.52917342742684372164491627024, −3.35654617831339734567811133071, −2.61869457682723187364684334328, −1.79545122999772378078175043180, 0, 1.79545122999772378078175043180, 2.61869457682723187364684334328, 3.35654617831339734567811133071, 4.52917342742684372164491627024, 5.79790965367412125856357373842, 7.37416207623089966436695391818, 8.028354799576649938525964501524, 9.489724533113955042948875396016, 10.31701988441894031099031040046

Graph of the $Z$-function along the critical line