Properties

Label 2-14-1.1-c47-0-21
Degree $2$
Conductor $14$
Sign $-1$
Analytic cond. $195.870$
Root an. cond. $13.9953$
Motivic weight $47$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.38e6·2-s + 1.82e11·3-s + 7.03e13·4-s − 1.56e16·5-s + 1.53e18·6-s − 2.73e19·7-s + 5.90e20·8-s + 6.67e21·9-s − 1.31e23·10-s + 2.62e24·11-s + 1.28e25·12-s + 1.62e26·13-s − 2.29e26·14-s − 2.86e27·15-s + 4.95e27·16-s − 1.16e29·17-s + 5.60e28·18-s − 1.10e30·19-s − 1.10e30·20-s − 4.99e30·21-s + 2.20e31·22-s + 1.97e31·23-s + 1.07e32·24-s − 4.64e32·25-s + 1.36e33·26-s − 3.63e33·27-s − 1.92e33·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.11·3-s + 0.5·4-s − 0.588·5-s + 0.790·6-s − 0.377·7-s + 0.353·8-s + 0.251·9-s − 0.416·10-s + 0.884·11-s + 0.559·12-s + 1.07·13-s − 0.267·14-s − 0.658·15-s + 0.250·16-s − 1.41·17-s + 0.177·18-s − 0.983·19-s − 0.294·20-s − 0.422·21-s + 0.625·22-s + 0.197·23-s + 0.395·24-s − 0.653·25-s + 0.762·26-s − 0.837·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(48-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 14 ^{s/2} \, \Gamma_{\C}(s+47/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(14\)    =    \(2 \cdot 7\)
Sign: $-1$
Analytic conductor: \(195.870\)
Root analytic conductor: \(13.9953\)
Motivic weight: \(47\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 14,\ (\ :47/2),\ -1)\)

Particular Values

\(L(24)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{49}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8.38e6T \)
7 \( 1 + 2.73e19T \)
good3 \( 1 - 1.82e11T + 2.65e22T^{2} \)
5 \( 1 + 1.56e16T + 7.10e32T^{2} \)
11 \( 1 - 2.62e24T + 8.81e48T^{2} \)
13 \( 1 - 1.62e26T + 2.26e52T^{2} \)
17 \( 1 + 1.16e29T + 6.77e57T^{2} \)
19 \( 1 + 1.10e30T + 1.26e60T^{2} \)
23 \( 1 - 1.97e31T + 1.00e64T^{2} \)
29 \( 1 - 1.16e33T + 5.40e68T^{2} \)
31 \( 1 + 5.39e33T + 1.24e70T^{2} \)
37 \( 1 + 2.39e36T + 5.07e73T^{2} \)
41 \( 1 + 1.15e38T + 6.32e75T^{2} \)
43 \( 1 - 1.27e38T + 5.92e76T^{2} \)
47 \( 1 - 3.34e39T + 3.87e78T^{2} \)
53 \( 1 - 2.56e40T + 1.09e81T^{2} \)
59 \( 1 + 7.05e41T + 1.69e83T^{2} \)
61 \( 1 - 2.49e40T + 8.13e83T^{2} \)
67 \( 1 - 5.09e42T + 6.69e85T^{2} \)
71 \( 1 + 2.12e43T + 1.02e87T^{2} \)
73 \( 1 + 9.57e43T + 3.76e87T^{2} \)
79 \( 1 - 1.17e44T + 1.54e89T^{2} \)
83 \( 1 + 1.13e45T + 1.57e90T^{2} \)
89 \( 1 + 3.56e45T + 4.18e91T^{2} \)
97 \( 1 + 3.90e46T + 2.38e93T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.78275426179599226665133024015, −9.097043476596553292326737463706, −8.382489650775273389574330024701, −7.02909104437356320384664160938, −6.01794381502341210978440206965, −4.23819975897009603335295033011, −3.70710890964499521230627896492, −2.62815082126810079520483376114, −1.58422975732687941727031634677, 0, 1.58422975732687941727031634677, 2.62815082126810079520483376114, 3.70710890964499521230627896492, 4.23819975897009603335295033011, 6.01794381502341210978440206965, 7.02909104437356320384664160938, 8.382489650775273389574330024701, 9.097043476596553292326737463706, 10.78275426179599226665133024015

Graph of the $Z$-function along the critical line