Properties

Label 1350.2.j.c.1099.1
Level $1350$
Weight $2$
Character 1350.1099
Analytic conductor $10.780$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,2,Mod(199,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,0,0,6,0,0,-8,0,-2,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7798042729\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1099.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1099
Dual form 1350.2.j.c.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(3.46410 + 2.00000i) q^{7} -1.00000i q^{8} +(1.50000 - 2.59808i) q^{11} +(3.46410 - 2.00000i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} -3.00000i q^{17} -5.00000 q^{19} +(-2.59808 + 1.50000i) q^{22} +(5.19615 - 3.00000i) q^{23} -4.00000 q^{26} +4.00000i q^{28} +(-3.00000 + 5.19615i) q^{29} +(-1.00000 - 1.73205i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.50000 + 2.59808i) q^{34} -4.00000i q^{37} +(4.33013 + 2.50000i) q^{38} +(-1.50000 - 2.59808i) q^{41} +(9.52628 + 5.50000i) q^{43} +3.00000 q^{44} -6.00000 q^{46} +(4.50000 + 7.79423i) q^{49} +(3.46410 + 2.00000i) q^{52} +6.00000i q^{53} +(2.00000 - 3.46410i) q^{56} +(5.19615 - 3.00000i) q^{58} +(1.50000 + 2.59808i) q^{59} +(5.00000 - 8.66025i) q^{61} +2.00000i q^{62} -1.00000 q^{64} +(4.33013 - 2.50000i) q^{67} +(2.59808 - 1.50000i) q^{68} -6.00000 q^{71} +7.00000i q^{73} +(-2.00000 + 3.46410i) q^{74} +(-2.50000 - 4.33013i) q^{76} +(10.3923 - 6.00000i) q^{77} +(7.00000 - 12.1244i) q^{79} +3.00000i q^{82} +(-10.3923 - 6.00000i) q^{83} +(-5.50000 - 9.52628i) q^{86} +(-2.59808 - 1.50000i) q^{88} +6.00000 q^{89} +16.0000 q^{91} +(5.19615 + 3.00000i) q^{92} +(-9.52628 - 5.50000i) q^{97} -9.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 6 q^{11} - 8 q^{14} - 2 q^{16} - 20 q^{19} - 16 q^{26} - 12 q^{29} - 4 q^{31} - 6 q^{34} - 6 q^{41} + 12 q^{44} - 24 q^{46} + 18 q^{49} + 8 q^{56} + 6 q^{59} + 20 q^{61} - 4 q^{64} - 24 q^{71}+ \cdots + 64 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 0 0
\(7\) 3.46410 + 2.00000i 1.30931 + 0.755929i 0.981981 0.188982i \(-0.0605189\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) 3.46410 2.00000i 0.960769 0.554700i 0.0643593 0.997927i \(-0.479500\pi\)
0.896410 + 0.443227i \(0.146166\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.59808 + 1.50000i −0.553912 + 0.319801i
\(23\) 5.19615 3.00000i 1.08347 0.625543i 0.151642 0.988436i \(-0.451544\pi\)
0.931831 + 0.362892i \(0.118211\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 4.00000i 0.755929i
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 4.33013 + 2.50000i 0.702439 + 0.405554i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i \(-0.241934\pi\)
−0.959058 + 0.283211i \(0.908600\pi\)
\(42\) 0 0
\(43\) 9.52628 + 5.50000i 1.45274 + 0.838742i 0.998636 0.0522047i \(-0.0166248\pi\)
0.454108 + 0.890947i \(0.349958\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) 0 0
\(49\) 4.50000 + 7.79423i 0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.46410 + 2.00000i 0.480384 + 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.00000 3.46410i 0.267261 0.462910i
\(57\) 0 0
\(58\) 5.19615 3.00000i 0.682288 0.393919i
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 5.00000 8.66025i 0.640184 1.10883i −0.345207 0.938527i \(-0.612191\pi\)
0.985391 0.170305i \(-0.0544754\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.33013 2.50000i 0.529009 0.305424i −0.211604 0.977356i \(-0.567869\pi\)
0.740613 + 0.671932i \(0.234535\pi\)
\(68\) 2.59808 1.50000i 0.315063 0.181902i
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 7.00000i 0.819288i 0.912245 + 0.409644i \(0.134347\pi\)
−0.912245 + 0.409644i \(0.865653\pi\)
\(74\) −2.00000 + 3.46410i −0.232495 + 0.402694i
\(75\) 0 0
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) 10.3923 6.00000i 1.18431 0.683763i
\(78\) 0 0
\(79\) 7.00000 12.1244i 0.787562 1.36410i −0.139895 0.990166i \(-0.544677\pi\)
0.927457 0.373930i \(-0.121990\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 3.00000i 0.331295i
\(83\) −10.3923 6.00000i −1.14070 0.658586i −0.194099 0.980982i \(-0.562178\pi\)
−0.946605 + 0.322396i \(0.895512\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.50000 9.52628i −0.593080 1.02725i
\(87\) 0 0
\(88\) −2.59808 1.50000i −0.276956 0.159901i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) 5.19615 + 3.00000i 0.541736 + 0.312772i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.52628 5.50000i −0.967247 0.558440i −0.0688512 0.997627i \(-0.521933\pi\)
−0.898396 + 0.439187i \(0.855267\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 + 10.3923i −0.597022 + 1.03407i 0.396236 + 0.918149i \(0.370316\pi\)
−0.993258 + 0.115924i \(0.963017\pi\)
\(102\) 0 0
\(103\) 3.46410 2.00000i 0.341328 0.197066i −0.319531 0.947576i \(-0.603525\pi\)
0.660859 + 0.750510i \(0.270192\pi\)
\(104\) −2.00000 3.46410i −0.196116 0.339683i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 9.00000i 0.870063i 0.900415 + 0.435031i \(0.143263\pi\)
−0.900415 + 0.435031i \(0.856737\pi\)
\(108\) 0 0
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −3.46410 + 2.00000i −0.327327 + 0.188982i
\(113\) 15.5885 9.00000i 1.46644 0.846649i 0.467143 0.884182i \(-0.345283\pi\)
0.999295 + 0.0375328i \(0.0119499\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 0 0
\(118\) 3.00000i 0.276172i
\(119\) 6.00000 10.3923i 0.550019 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) −8.66025 + 5.00000i −0.784063 + 0.452679i
\(123\) 0 0
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) 0 0
\(126\) 0 0
\(127\) 2.00000i 0.177471i 0.996055 + 0.0887357i \(0.0282826\pi\)
−0.996055 + 0.0887357i \(0.971717\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) −17.3205 10.0000i −1.50188 0.867110i
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −7.79423 4.50000i −0.665906 0.384461i 0.128618 0.991694i \(-0.458946\pi\)
−0.794524 + 0.607233i \(0.792279\pi\)
\(138\) 0 0
\(139\) −0.500000 0.866025i −0.0424094 0.0734553i 0.844042 0.536278i \(-0.180170\pi\)
−0.886451 + 0.462822i \(0.846837\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 5.19615 + 3.00000i 0.436051 + 0.251754i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 3.50000 6.06218i 0.289662 0.501709i
\(147\) 0 0
\(148\) 3.46410 2.00000i 0.284747 0.164399i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 5.00000i 0.405554i
\(153\) 0 0
\(154\) −12.0000 −0.966988
\(155\) 0 0
\(156\) 0 0
\(157\) 6.92820 4.00000i 0.552931 0.319235i −0.197372 0.980329i \(-0.563241\pi\)
0.750303 + 0.661094i \(0.229907\pi\)
\(158\) −12.1244 + 7.00000i −0.964562 + 0.556890i
\(159\) 0 0
\(160\) 0 0
\(161\) 24.0000 1.89146
\(162\) 0 0
\(163\) 16.0000i 1.25322i 0.779334 + 0.626608i \(0.215557\pi\)
−0.779334 + 0.626608i \(0.784443\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 15.5885 9.00000i 1.20627 0.696441i 0.244328 0.969693i \(-0.421432\pi\)
0.961943 + 0.273252i \(0.0880992\pi\)
\(168\) 0 0
\(169\) 1.50000 2.59808i 0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 11.0000i 0.838742i
\(173\) 15.5885 + 9.00000i 1.18517 + 0.684257i 0.957205 0.289412i \(-0.0934598\pi\)
0.227964 + 0.973670i \(0.426793\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 0 0
\(178\) −5.19615 3.00000i −0.389468 0.224860i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) −13.8564 8.00000i −1.02711 0.592999i
\(183\) 0 0
\(184\) −3.00000 5.19615i −0.221163 0.383065i
\(185\) 0 0
\(186\) 0 0
\(187\) −7.79423 4.50000i −0.569970 0.329073i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) 11.2583 6.50000i 0.810392 0.467880i −0.0366998 0.999326i \(-0.511685\pi\)
0.847092 + 0.531446i \(0.178351\pi\)
\(194\) 5.50000 + 9.52628i 0.394877 + 0.683947i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.3923 6.00000i 0.731200 0.422159i
\(203\) −20.7846 + 12.0000i −1.45879 + 0.842235i
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 4.00000i 0.277350i
\(209\) −7.50000 + 12.9904i −0.518786 + 0.898563i
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) −5.19615 + 3.00000i −0.356873 + 0.206041i
\(213\) 0 0
\(214\) 4.50000 7.79423i 0.307614 0.532803i
\(215\) 0 0
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) −3.46410 2.00000i −0.234619 0.135457i
\(219\) 0 0
\(220\) 0 0
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 0 0
\(223\) −19.0526 11.0000i −1.27585 0.736614i −0.299770 0.954011i \(-0.596910\pi\)
−0.976083 + 0.217397i \(0.930243\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) −2.59808 1.50000i −0.172440 0.0995585i 0.411296 0.911502i \(-0.365076\pi\)
−0.583736 + 0.811943i \(0.698410\pi\)
\(228\) 0 0
\(229\) 10.0000 + 17.3205i 0.660819 + 1.14457i 0.980401 + 0.197013i \(0.0631241\pi\)
−0.319582 + 0.947559i \(0.603543\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.19615 + 3.00000i 0.341144 + 0.196960i
\(233\) 21.0000i 1.37576i 0.725826 + 0.687878i \(0.241458\pi\)
−0.725826 + 0.687878i \(0.758542\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.50000 + 2.59808i −0.0976417 + 0.169120i
\(237\) 0 0
\(238\) −10.3923 + 6.00000i −0.673633 + 0.388922i
\(239\) −3.00000 5.19615i −0.194054 0.336111i 0.752536 0.658551i \(-0.228830\pi\)
−0.946590 + 0.322440i \(0.895497\pi\)
\(240\) 0 0
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −17.3205 + 10.0000i −1.10208 + 0.636285i
\(248\) −1.73205 + 1.00000i −0.109985 + 0.0635001i
\(249\) 0 0
\(250\) 0 0
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) 0 0
\(253\) 18.0000i 1.13165i
\(254\) 1.00000 1.73205i 0.0627456 0.108679i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −7.79423 + 4.50000i −0.486191 + 0.280702i −0.722993 0.690856i \(-0.757234\pi\)
0.236802 + 0.971558i \(0.423901\pi\)
\(258\) 0 0
\(259\) 8.00000 13.8564i 0.497096 0.860995i
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) −20.7846 12.0000i −1.28163 0.739952i −0.304487 0.952517i \(-0.598485\pi\)
−0.977147 + 0.212565i \(0.931818\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 10.0000 + 17.3205i 0.613139 + 1.06199i
\(267\) 0 0
\(268\) 4.33013 + 2.50000i 0.264505 + 0.152712i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 2.59808 + 1.50000i 0.157532 + 0.0909509i
\(273\) 0 0
\(274\) 4.50000 + 7.79423i 0.271855 + 0.470867i
\(275\) 0 0
\(276\) 0 0
\(277\) 19.0526 + 11.0000i 1.14476 + 0.660926i 0.947604 0.319447i \(-0.103497\pi\)
0.197153 + 0.980373i \(0.436830\pi\)
\(278\) 1.00000i 0.0599760i
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 + 5.19615i −0.178965 + 0.309976i −0.941526 0.336939i \(-0.890608\pi\)
0.762561 + 0.646916i \(0.223942\pi\)
\(282\) 0 0
\(283\) −17.3205 + 10.0000i −1.02960 + 0.594438i −0.916869 0.399188i \(-0.869292\pi\)
−0.112728 + 0.993626i \(0.535959\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) 12.0000i 0.708338i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) −6.06218 + 3.50000i −0.354762 + 0.204822i
\(293\) −15.5885 + 9.00000i −0.910687 + 0.525786i −0.880652 0.473763i \(-0.842895\pi\)
−0.0300351 + 0.999549i \(0.509562\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 −0.232495
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) 22.0000 + 38.1051i 1.26806 + 2.19634i
\(302\) −8.66025 + 5.00000i −0.498342 + 0.287718i
\(303\) 0 0
\(304\) 2.50000 4.33013i 0.143385 0.248350i
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000i 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) 10.3923 + 6.00000i 0.592157 + 0.341882i
\(309\) 0 0
\(310\) 0 0
\(311\) −3.00000 5.19615i −0.170114 0.294647i 0.768345 0.640036i \(-0.221080\pi\)
−0.938460 + 0.345389i \(0.887747\pi\)
\(312\) 0 0
\(313\) −0.866025 0.500000i −0.0489506 0.0282617i 0.475325 0.879810i \(-0.342331\pi\)
−0.524276 + 0.851549i \(0.675664\pi\)
\(314\) −8.00000 −0.451466
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 20.7846 + 12.0000i 1.16738 + 0.673987i 0.953062 0.302777i \(-0.0979136\pi\)
0.214318 + 0.976764i \(0.431247\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) 0 0
\(322\) −20.7846 12.0000i −1.15828 0.668734i
\(323\) 15.0000i 0.834622i
\(324\) 0 0
\(325\) 0 0
\(326\) 8.00000 13.8564i 0.443079 0.767435i
\(327\) 0 0
\(328\) −2.59808 + 1.50000i −0.143455 + 0.0828236i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 0 0
\(334\) −18.0000 −0.984916
\(335\) 0 0
\(336\) 0 0
\(337\) −26.8468 + 15.5000i −1.46244 + 0.844339i −0.999124 0.0418554i \(-0.986673\pi\)
−0.463314 + 0.886194i \(0.653340\pi\)
\(338\) −2.59808 + 1.50000i −0.141317 + 0.0815892i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 5.50000 9.52628i 0.296540 0.513623i
\(345\) 0 0
\(346\) −9.00000 15.5885i −0.483843 0.838041i
\(347\) −18.1865 + 10.5000i −0.976304 + 0.563670i −0.901152 0.433503i \(-0.857278\pi\)
−0.0751519 + 0.997172i \(0.523944\pi\)
\(348\) 0 0
\(349\) −8.00000 + 13.8564i −0.428230 + 0.741716i −0.996716 0.0809766i \(-0.974196\pi\)
0.568486 + 0.822693i \(0.307529\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.00000i 0.159901i
\(353\) −7.79423 4.50000i −0.414845 0.239511i 0.278024 0.960574i \(-0.410320\pi\)
−0.692869 + 0.721063i \(0.743654\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.00000 + 5.19615i 0.159000 + 0.275396i
\(357\) 0 0
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 13.8564 + 8.00000i 0.728277 + 0.420471i
\(363\) 0 0
\(364\) 8.00000 + 13.8564i 0.419314 + 0.726273i
\(365\) 0 0
\(366\) 0 0
\(367\) −6.92820 4.00000i −0.361649 0.208798i 0.308155 0.951336i \(-0.400289\pi\)
−0.669804 + 0.742538i \(0.733622\pi\)
\(368\) 6.00000i 0.312772i
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 + 20.7846i −0.623009 + 1.07908i
\(372\) 0 0
\(373\) 8.66025 5.00000i 0.448411 0.258890i −0.258748 0.965945i \(-0.583310\pi\)
0.707159 + 0.707055i \(0.249977\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000i 1.23606i
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.3923 6.00000i 0.531022 0.306586i −0.210411 0.977613i \(-0.567480\pi\)
0.741433 + 0.671027i \(0.234147\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −13.0000 −0.661683
\(387\) 0 0
\(388\) 11.0000i 0.558440i
\(389\) −18.0000 + 31.1769i −0.912636 + 1.58073i −0.102311 + 0.994753i \(0.532624\pi\)
−0.810326 + 0.585980i \(0.800710\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) 7.79423 4.50000i 0.393668 0.227284i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 17.3205 + 10.0000i 0.868199 + 0.501255i
\(399\) 0 0
\(400\) 0 0
\(401\) 16.5000 + 28.5788i 0.823971 + 1.42716i 0.902703 + 0.430263i \(0.141579\pi\)
−0.0787327 + 0.996896i \(0.525087\pi\)
\(402\) 0 0
\(403\) −6.92820 4.00000i −0.345118 0.199254i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) −10.3923 6.00000i −0.515127 0.297409i
\(408\) 0 0
\(409\) −15.5000 26.8468i −0.766426 1.32749i −0.939490 0.342578i \(-0.888700\pi\)
0.173064 0.984911i \(-0.444633\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 3.46410 + 2.00000i 0.170664 + 0.0985329i
\(413\) 12.0000i 0.590481i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) 0 0
\(418\) 12.9904 7.50000i 0.635380 0.366837i
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −1.00000 + 1.73205i −0.0487370 + 0.0844150i −0.889365 0.457198i \(-0.848853\pi\)
0.840628 + 0.541613i \(0.182186\pi\)
\(422\) 4.00000i 0.194717i
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 34.6410 20.0000i 1.67640 0.967868i
\(428\) −7.79423 + 4.50000i −0.376748 + 0.217516i
\(429\) 0 0
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 0 0
\(433\) 13.0000i 0.624740i 0.949960 + 0.312370i \(0.101123\pi\)
−0.949960 + 0.312370i \(0.898877\pi\)
\(434\) −4.00000 + 6.92820i −0.192006 + 0.332564i
\(435\) 0 0
\(436\) 2.00000 + 3.46410i 0.0957826 + 0.165900i
\(437\) −25.9808 + 15.0000i −1.24283 + 0.717547i
\(438\) 0 0
\(439\) −5.00000 + 8.66025i −0.238637 + 0.413331i −0.960323 0.278889i \(-0.910034\pi\)
0.721686 + 0.692220i \(0.243367\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) −2.59808 1.50000i −0.123438 0.0712672i 0.437009 0.899457i \(-0.356038\pi\)
−0.560448 + 0.828190i \(0.689371\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 11.0000 + 19.0526i 0.520865 + 0.902165i
\(447\) 0 0
\(448\) −3.46410 2.00000i −0.163663 0.0944911i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) 15.5885 + 9.00000i 0.733219 + 0.423324i
\(453\) 0 0
\(454\) 1.50000 + 2.59808i 0.0703985 + 0.121934i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.866025 + 0.500000i 0.0405110 + 0.0233890i 0.520119 0.854094i \(-0.325888\pi\)
−0.479608 + 0.877483i \(0.659221\pi\)
\(458\) 20.0000i 0.934539i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 0 0
\(463\) −17.3205 + 10.0000i −0.804952 + 0.464739i −0.845200 0.534450i \(-0.820519\pi\)
0.0402476 + 0.999190i \(0.487185\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) 10.5000 18.1865i 0.486403 0.842475i
\(467\) 21.0000i 0.971764i −0.874024 0.485882i \(-0.838498\pi\)
0.874024 0.485882i \(-0.161502\pi\)
\(468\) 0 0
\(469\) 20.0000 0.923514
\(470\) 0 0
\(471\) 0 0
\(472\) 2.59808 1.50000i 0.119586 0.0690431i
\(473\) 28.5788 16.5000i 1.31406 0.758671i
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 0 0
\(478\) 6.00000i 0.274434i
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 0 0
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) 14.7224 8.50000i 0.670588 0.387164i
\(483\) 0 0
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 0 0
\(486\) 0 0
\(487\) 2.00000i 0.0906287i 0.998973 + 0.0453143i \(0.0144289\pi\)
−0.998973 + 0.0453143i \(0.985571\pi\)
\(488\) −8.66025 5.00000i −0.392031 0.226339i
\(489\) 0 0
\(490\) 0 0
\(491\) −16.5000 28.5788i −0.744635 1.28974i −0.950365 0.311136i \(-0.899290\pi\)
0.205731 0.978609i \(-0.434043\pi\)
\(492\) 0 0
\(493\) 15.5885 + 9.00000i 0.702069 + 0.405340i
\(494\) 20.0000 0.899843
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −20.7846 12.0000i −0.932317 0.538274i
\(498\) 0 0
\(499\) −15.5000 26.8468i −0.693875 1.20183i −0.970558 0.240866i \(-0.922569\pi\)
0.276683 0.960961i \(-0.410765\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −18.1865 10.5000i −0.811705 0.468638i
\(503\) 6.00000i 0.267527i 0.991013 + 0.133763i \(0.0427062\pi\)
−0.991013 + 0.133763i \(0.957294\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −9.00000 + 15.5885i −0.400099 + 0.692991i
\(507\) 0 0
\(508\) −1.73205 + 1.00000i −0.0768473 + 0.0443678i
\(509\) 6.00000 + 10.3923i 0.265945 + 0.460631i 0.967811 0.251679i \(-0.0809826\pi\)
−0.701866 + 0.712309i \(0.747649\pi\)
\(510\) 0 0
\(511\) −14.0000 + 24.2487i −0.619324 + 1.07270i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 9.00000 0.396973
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −13.8564 + 8.00000i −0.608816 + 0.351500i
\(519\) 0 0
\(520\) 0 0
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) −5.19615 + 3.00000i −0.226348 + 0.130682i
\(528\) 0 0
\(529\) 6.50000 11.2583i 0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) 20.0000i 0.867110i
\(533\) −10.3923 6.00000i −0.450141 0.259889i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.50000 4.33013i −0.107984 0.187033i
\(537\) 0 0
\(538\) −5.19615 3.00000i −0.224022 0.129339i
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 13.8564 + 8.00000i 0.595184 + 0.343629i
\(543\) 0 0
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) 0 0
\(546\) 0 0
\(547\) 0.866025 + 0.500000i 0.0370286 + 0.0213785i 0.518400 0.855138i \(-0.326528\pi\)
−0.481371 + 0.876517i \(0.659861\pi\)
\(548\) 9.00000i 0.384461i
\(549\) 0 0
\(550\) 0 0
\(551\) 15.0000 25.9808i 0.639021 1.10682i
\(552\) 0 0
\(553\) 48.4974 28.0000i 2.06232 1.19068i
\(554\) −11.0000 19.0526i −0.467345 0.809466i
\(555\) 0 0
\(556\) 0.500000 0.866025i 0.0212047 0.0367277i
\(557\) 12.0000i 0.508456i 0.967144 + 0.254228i \(0.0818214\pi\)
−0.967144 + 0.254228i \(0.918179\pi\)
\(558\) 0 0
\(559\) 44.0000 1.86100
\(560\) 0 0
\(561\) 0 0
\(562\) 5.19615 3.00000i 0.219186 0.126547i
\(563\) −2.59808 + 1.50000i −0.109496 + 0.0632175i −0.553748 0.832684i \(-0.686803\pi\)
0.444252 + 0.895902i \(0.353470\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 19.5000 33.7750i 0.817483 1.41592i −0.0900490 0.995937i \(-0.528702\pi\)
0.907532 0.419984i \(-0.137964\pi\)
\(570\) 0 0
\(571\) −14.5000 25.1147i −0.606806 1.05102i −0.991763 0.128085i \(-0.959117\pi\)
0.384957 0.922934i \(-0.374216\pi\)
\(572\) 10.3923 6.00000i 0.434524 0.250873i
\(573\) 0 0
\(574\) −6.00000 + 10.3923i −0.250435 + 0.433766i
\(575\) 0 0
\(576\) 0 0
\(577\) 7.00000i 0.291414i −0.989328 0.145707i \(-0.953454\pi\)
0.989328 0.145707i \(-0.0465456\pi\)
\(578\) −6.92820 4.00000i −0.288175 0.166378i
\(579\) 0 0
\(580\) 0 0
\(581\) −24.0000 41.5692i −0.995688 1.72458i
\(582\) 0 0
\(583\) 15.5885 + 9.00000i 0.645608 + 0.372742i
\(584\) 7.00000 0.289662
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 33.7750 + 19.5000i 1.39404 + 0.804851i 0.993760 0.111540i \(-0.0355784\pi\)
0.400283 + 0.916392i \(0.368912\pi\)
\(588\) 0 0
\(589\) 5.00000 + 8.66025i 0.206021 + 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) 3.46410 + 2.00000i 0.142374 + 0.0821995i
\(593\) 18.0000i 0.739171i −0.929197 0.369586i \(-0.879500\pi\)
0.929197 0.369586i \(-0.120500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −20.7846 + 12.0000i −0.849946 + 0.490716i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 12.5000 21.6506i 0.509886 0.883148i −0.490049 0.871695i \(-0.663021\pi\)
0.999934 0.0114528i \(-0.00364562\pi\)
\(602\) 44.0000i 1.79331i
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) 6.92820 4.00000i 0.281207 0.162355i −0.352763 0.935713i \(-0.614758\pi\)
0.633970 + 0.773358i \(0.281424\pi\)
\(608\) −4.33013 + 2.50000i −0.175610 + 0.101388i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 2.00000i 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 0 0
\(616\) −6.00000 10.3923i −0.241747 0.418718i
\(617\) 33.7750 19.5000i 1.35973 0.785040i 0.370143 0.928975i \(-0.379309\pi\)
0.989587 + 0.143934i \(0.0459755\pi\)
\(618\) 0 0
\(619\) −9.50000 + 16.4545i −0.381837 + 0.661361i −0.991325 0.131434i \(-0.958042\pi\)
0.609488 + 0.792796i \(0.291375\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) 20.7846 + 12.0000i 0.832718 + 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0.500000 + 0.866025i 0.0199840 + 0.0346133i
\(627\) 0 0
\(628\) 6.92820 + 4.00000i 0.276465 + 0.159617i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −12.1244 7.00000i −0.482281 0.278445i
\(633\) 0 0
\(634\) −12.0000 20.7846i −0.476581 0.825462i
\(635\) 0 0
\(636\) 0 0
\(637\) 31.1769 + 18.0000i 1.23527 + 0.713186i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) 0 0
\(641\) 4.50000 7.79423i 0.177739 0.307854i −0.763367 0.645966i \(-0.776455\pi\)
0.941106 + 0.338112i \(0.109788\pi\)
\(642\) 0 0
\(643\) −19.9186 + 11.5000i −0.785512 + 0.453516i −0.838380 0.545086i \(-0.816497\pi\)
0.0528680 + 0.998602i \(0.483164\pi\)
\(644\) 12.0000 + 20.7846i 0.472866 + 0.819028i
\(645\) 0 0
\(646\) 7.50000 12.9904i 0.295084 0.511100i
\(647\) 6.00000i 0.235884i −0.993020 0.117942i \(-0.962370\pi\)
0.993020 0.117942i \(-0.0376297\pi\)
\(648\) 0 0
\(649\) 9.00000 0.353281
\(650\) 0 0
\(651\) 0 0
\(652\) −13.8564 + 8.00000i −0.542659 + 0.313304i
\(653\) 36.3731 21.0000i 1.42339 0.821794i 0.426801 0.904345i \(-0.359640\pi\)
0.996587 + 0.0825519i \(0.0263070\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.00000 0.117130
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) −16.0000 27.7128i −0.622328 1.07790i −0.989051 0.147573i \(-0.952854\pi\)
0.366723 0.930330i \(-0.380480\pi\)
\(662\) −3.46410 + 2.00000i −0.134636 + 0.0777322i
\(663\) 0 0
\(664\) −6.00000 + 10.3923i −0.232845 + 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 15.5885 + 9.00000i 0.603136 + 0.348220i
\(669\) 0 0
\(670\) 0 0
\(671\) −15.0000 25.9808i −0.579069 1.00298i
\(672\) 0 0
\(673\) 12.1244 + 7.00000i 0.467360 + 0.269830i 0.715134 0.698988i \(-0.246366\pi\)
−0.247774 + 0.968818i \(0.579699\pi\)
\(674\) 31.0000 1.19408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −31.1769 18.0000i −1.19823 0.691796i −0.238067 0.971249i \(-0.576514\pi\)
−0.960159 + 0.279453i \(0.909847\pi\)
\(678\) 0 0
\(679\) −22.0000 38.1051i −0.844283 1.46234i
\(680\) 0 0
\(681\) 0 0
\(682\) 5.19615 + 3.00000i 0.198971 + 0.114876i
\(683\) 21.0000i 0.803543i −0.915740 0.401771i \(-0.868395\pi\)
0.915740 0.401771i \(-0.131605\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 4.00000 6.92820i 0.152721 0.264520i
\(687\) 0 0
\(688\) −9.52628 + 5.50000i −0.363186 + 0.209686i
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) 21.0000 0.797149
\(695\) 0 0
\(696\) 0 0
\(697\) −7.79423 + 4.50000i −0.295227 + 0.170450i
\(698\) 13.8564 8.00000i 0.524473 0.302804i
\(699\) 0 0
\(700\) 0 0
\(701\) −42.0000 −1.58632 −0.793159 0.609015i \(-0.791565\pi\)
−0.793159 + 0.609015i \(0.791565\pi\)
\(702\) 0 0
\(703\) 20.0000i 0.754314i
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) 4.50000 + 7.79423i 0.169360 + 0.293340i
\(707\) −41.5692 + 24.0000i −1.56337 + 0.902613i
\(708\) 0 0
\(709\) −17.0000 + 29.4449i −0.638448 + 1.10583i 0.347325 + 0.937745i \(0.387090\pi\)
−0.985773 + 0.168080i \(0.946243\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000i 0.224860i
\(713\) −10.3923 6.00000i −0.389195 0.224702i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 20.7846 + 12.0000i 0.775675 + 0.447836i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −5.19615 3.00000i −0.193381 0.111648i
\(723\) 0 0
\(724\) −8.00000 13.8564i −0.297318 0.514969i
\(725\) 0 0
\(726\) 0 0
\(727\) 24.2487 + 14.0000i 0.899335 + 0.519231i 0.876984 0.480519i \(-0.159552\pi\)
0.0223506 + 0.999750i \(0.492885\pi\)
\(728\) 16.0000i 0.592999i
\(729\) 0 0
\(730\) 0 0
\(731\) 16.5000 28.5788i 0.610275 1.05703i
\(732\) 0 0
\(733\) −27.7128 + 16.0000i −1.02360 + 0.590973i −0.915144 0.403128i \(-0.867923\pi\)
−0.108453 + 0.994102i \(0.534590\pi\)
\(734\) 4.00000 + 6.92820i 0.147643 + 0.255725i
\(735\) 0 0
\(736\) 3.00000 5.19615i 0.110581 0.191533i
\(737\) 15.0000i 0.552532i
\(738\) 0 0
\(739\) −29.0000 −1.06678 −0.533391 0.845869i \(-0.679083\pi\)
−0.533391 + 0.845869i \(0.679083\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 20.7846 12.0000i 0.763027 0.440534i
\(743\) −5.19615 + 3.00000i −0.190628 + 0.110059i −0.592277 0.805735i \(-0.701771\pi\)
0.401648 + 0.915794i \(0.368437\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 9.00000i 0.329073i
\(749\) −18.0000 + 31.1769i −0.657706 + 1.13918i
\(750\) 0 0
\(751\) 14.0000 + 24.2487i 0.510867 + 0.884848i 0.999921 + 0.0125942i \(0.00400897\pi\)
−0.489053 + 0.872254i \(0.662658\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 12.0000 20.7846i 0.437014 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 25.1147 + 14.5000i 0.912208 + 0.526664i
\(759\) 0 0
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 13.8564 + 8.00000i 0.501636 + 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 10.3923 + 6.00000i 0.375244 + 0.216647i
\(768\) 0 0
\(769\) 25.0000 + 43.3013i 0.901523 + 1.56148i 0.825518 + 0.564376i \(0.190883\pi\)
0.0760054 + 0.997107i \(0.475783\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11.2583 + 6.50000i 0.405196 + 0.233940i
\(773\) 30.0000i 1.07903i −0.841978 0.539513i \(-0.818609\pi\)
0.841978 0.539513i \(-0.181391\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −5.50000 + 9.52628i −0.197438 + 0.341974i
\(777\) 0 0
\(778\) 31.1769 18.0000i 1.11775 0.645331i
\(779\) 7.50000 + 12.9904i 0.268715 + 0.465429i
\(780\) 0 0
\(781\) −9.00000 + 15.5885i −0.322045 + 0.557799i
\(782\) 18.0000i 0.643679i
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 0 0
\(787\) −3.46410 + 2.00000i −0.123482 + 0.0712923i −0.560469 0.828176i \(-0.689379\pi\)
0.436987 + 0.899468i \(0.356046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 72.0000 2.56003
\(792\) 0 0
\(793\) 40.0000i 1.42044i
\(794\) 4.00000 6.92820i 0.141955 0.245873i
\(795\) 0 0
\(796\) −10.0000 17.3205i −0.354441 0.613909i
\(797\) 41.5692 24.0000i 1.47246 0.850124i 0.472937 0.881096i \(-0.343194\pi\)
0.999520 + 0.0309726i \(0.00986046\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 33.0000i 1.16527i
\(803\) 18.1865 + 10.5000i 0.641789 + 0.370537i
\(804\) 0 0
\(805\) 0 0
\(806\) 4.00000 + 6.92820i 0.140894 + 0.244036i
\(807\) 0 0
\(808\) 10.3923 + 6.00000i 0.365600 + 0.211079i
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) −20.7846 12.0000i −0.729397 0.421117i
\(813\) 0 0
\(814\) 6.00000 + 10.3923i 0.210300 + 0.364250i
\(815\) 0 0
\(816\) 0 0
\(817\) −47.6314 27.5000i −1.66641 0.962103i
\(818\) 31.0000i 1.08389i
\(819\) 0 0
\(820\) 0 0
\(821\) −24.0000 + 41.5692i −0.837606 + 1.45078i 0.0542853 + 0.998525i \(0.482712\pi\)
−0.891891 + 0.452250i \(0.850621\pi\)
\(822\) 0 0
\(823\) 3.46410 2.00000i 0.120751 0.0697156i −0.438408 0.898776i \(-0.644457\pi\)
0.559159 + 0.829060i \(0.311124\pi\)
\(824\) −2.00000 3.46410i −0.0696733 0.120678i
\(825\) 0 0
\(826\) 6.00000 10.3923i 0.208767 0.361595i
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 0 0
\(829\) −44.0000 −1.52818 −0.764092 0.645108i \(-0.776812\pi\)
−0.764092 + 0.645108i \(0.776812\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3.46410 + 2.00000i −0.120096 + 0.0693375i
\(833\) 23.3827 13.5000i 0.810162 0.467747i
\(834\) 0 0
\(835\) 0 0
\(836\) −15.0000 −0.518786
\(837\) 0 0
\(838\) 0 0
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) 1.73205 1.00000i 0.0596904 0.0344623i
\(843\) 0 0
\(844\) −2.00000 + 3.46410i −0.0688428 + 0.119239i
\(845\) 0 0
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) −5.19615 3.00000i −0.178437 0.103020i
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0000 20.7846i −0.411355 0.712487i
\(852\) 0 0
\(853\) 38.1051 + 22.0000i 1.30469 + 0.753266i 0.981205 0.192966i \(-0.0618108\pi\)
0.323489 + 0.946232i \(0.395144\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) −15.5885 9.00000i −0.532492 0.307434i 0.209539 0.977800i \(-0.432804\pi\)
−0.742030 + 0.670366i \(0.766137\pi\)
\(858\) 0 0
\(859\) −9.50000 16.4545i −0.324136 0.561420i 0.657201 0.753715i \(-0.271740\pi\)
−0.981337 + 0.192295i \(0.938407\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 20.7846 + 12.0000i 0.707927 + 0.408722i
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.50000 11.2583i 0.220879 0.382574i
\(867\) 0 0
\(868\) 6.92820 4.00000i 0.235159 0.135769i
\(869\) −21.0000 36.3731i −0.712376 1.23387i
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) 4.00000i 0.135457i
\(873\) 0 0
\(874\) 30.0000 1.01477
\(875\) 0 0
\(876\) 0 0
\(877\) 1.73205 1.00000i 0.0584872 0.0337676i −0.470471 0.882415i \(-0.655916\pi\)
0.528958 + 0.848648i \(0.322583\pi\)
\(878\) 8.66025 5.00000i 0.292269 0.168742i
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 41.0000i 1.37976i −0.723924 0.689880i \(-0.757663\pi\)
0.723924 0.689880i \(-0.242337\pi\)
\(884\) 6.00000 10.3923i 0.201802 0.349531i
\(885\) 0 0
\(886\) 1.50000 + 2.59808i 0.0503935 + 0.0872841i
\(887\) 36.3731 21.0000i 1.22129 0.705111i 0.256096 0.966651i \(-0.417564\pi\)
0.965193 + 0.261540i \(0.0842305\pi\)
\(888\) 0 0
\(889\) −4.00000 + 6.92820i −0.134156 + 0.232364i
\(890\) 0 0
\(891\) 0 0
\(892\) 22.0000i 0.736614i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 2.00000 + 3.46410i 0.0668153 + 0.115728i
\(897\) 0 0
\(898\) 12.9904 + 7.50000i 0.433495 + 0.250278i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 7.79423 + 4.50000i 0.259519 + 0.149834i
\(903\) 0 0
\(904\) −9.00000 15.5885i −0.299336 0.518464i
\(905\) 0 0
\(906\) 0 0
\(907\) −4.33013 2.50000i −0.143780 0.0830111i 0.426385 0.904542i \(-0.359787\pi\)
−0.570164 + 0.821531i \(0.693120\pi\)
\(908\) 3.00000i 0.0995585i
\(909\) 0 0
\(910\) 0 0
\(911\) −15.0000 + 25.9808i −0.496972 + 0.860781i −0.999994 0.00349271i \(-0.998888\pi\)
0.503022 + 0.864274i \(0.332222\pi\)
\(912\) 0 0
\(913\) −31.1769 + 18.0000i −1.03181 + 0.595713i
\(914\) −0.500000 0.866025i −0.0165385 0.0286456i
\(915\) 0 0
\(916\) −10.0000 + 17.3205i −0.330409 + 0.572286i
\(917\) 48.0000i 1.58510i
\(918\) 0 0
\(919\) 34.0000 1.12156 0.560778 0.827966i \(-0.310502\pi\)
0.560778 + 0.827966i \(0.310502\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.7846 + 12.0000i −0.684134 + 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 20.0000 0.657241
\(927\) 0 0
\(928\) 6.00000i 0.196960i
\(929\) −15.0000 + 25.9808i −0.492134 + 0.852401i −0.999959 0.00905914i \(-0.997116\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(930\) 0 0
\(931\) −22.5000 38.9711i −0.737408 1.27723i
\(932\) −18.1865 + 10.5000i −0.595720 + 0.343939i
\(933\) 0 0
\(934\) −10.5000 + 18.1865i −0.343570 + 0.595082i
\(935\) 0 0
\(936\) 0 0
\(937\) 10.0000i 0.326686i −0.986569 0.163343i \(-0.947772\pi\)
0.986569 0.163343i \(-0.0522277\pi\)
\(938\) −17.3205 10.0000i −0.565535 0.326512i
\(939\) 0 0
\(940\) 0 0
\(941\) 12.0000 + 20.7846i 0.391189 + 0.677559i 0.992607 0.121376i \(-0.0387306\pi\)
−0.601418 + 0.798935i \(0.705397\pi\)
\(942\) 0 0
\(943\) −15.5885 9.00000i −0.507630 0.293080i
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) −33.0000 −1.07292
\(947\) 23.3827 + 13.5000i 0.759835 + 0.438691i 0.829237 0.558898i \(-0.188776\pi\)
−0.0694014 + 0.997589i \(0.522109\pi\)
\(948\) 0 0
\(949\) 14.0000 + 24.2487i 0.454459 + 0.787146i
\(950\) 0 0
\(951\) 0 0
\(952\) −10.3923 6.00000i −0.336817 0.194461i
\(953\) 51.0000i 1.65205i 0.563632 + 0.826026i \(0.309404\pi\)
−0.563632 + 0.826026i \(0.690596\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.00000 5.19615i 0.0970269 0.168056i
\(957\) 0 0
\(958\) −5.19615 + 3.00000i −0.167880 + 0.0969256i
\(959\) −18.0000 31.1769i −0.581250 1.00676i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 16.0000i 0.515861i
\(963\) 0 0
\(964\) −17.0000 −0.547533
\(965\) 0 0
\(966\) 0 0
\(967\) −19.0526 + 11.0000i −0.612689 + 0.353736i −0.774017 0.633165i \(-0.781756\pi\)
0.161328 + 0.986901i \(0.448422\pi\)
\(968\) 1.73205 1.00000i 0.0556702 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) −60.0000 −1.92549 −0.962746 0.270408i \(-0.912841\pi\)
−0.962746 + 0.270408i \(0.912841\pi\)
\(972\) 0 0
\(973\) 4.00000i 0.128234i
\(974\) 1.00000 1.73205i 0.0320421 0.0554985i
\(975\) 0 0
\(976\) 5.00000 + 8.66025i 0.160046 + 0.277208i
\(977\) 7.79423 4.50000i 0.249359 0.143968i −0.370111 0.928987i \(-0.620681\pi\)
0.619471 + 0.785020i \(0.287347\pi\)
\(978\) 0 0
\(979\) 9.00000 15.5885i 0.287641 0.498209i
\(980\) 0 0
\(981\) 0 0
\(982\) 33.0000i 1.05307i
\(983\) −31.1769 18.0000i −0.994389 0.574111i −0.0878058 0.996138i \(-0.527985\pi\)
−0.906583 + 0.422027i \(0.861319\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −9.00000 15.5885i −0.286618 0.496438i
\(987\) 0 0
\(988\) −17.3205 10.0000i −0.551039 0.318142i
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −1.73205 1.00000i −0.0549927 0.0317500i
\(993\) 0 0
\(994\) 12.0000 + 20.7846i 0.380617 + 0.659248i
\(995\) 0 0
\(996\) 0 0
\(997\) −22.5167 13.0000i −0.713110 0.411714i 0.0991016 0.995077i \(-0.468403\pi\)
−0.812211 + 0.583363i \(0.801736\pi\)
\(998\) 31.0000i 0.981288i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.2.j.c.1099.1 4
3.2 odd 2 450.2.j.a.349.2 4
5.2 odd 4 1350.2.e.g.451.1 2
5.3 odd 4 270.2.e.a.181.1 2
5.4 even 2 inner 1350.2.j.c.1099.2 4
9.2 odd 6 4050.2.c.p.649.1 2
9.4 even 3 inner 1350.2.j.c.199.2 4
9.5 odd 6 450.2.j.a.49.1 4
9.7 even 3 4050.2.c.d.649.2 2
15.2 even 4 450.2.e.d.151.1 2
15.8 even 4 90.2.e.b.61.1 yes 2
15.14 odd 2 450.2.j.a.349.1 4
20.3 even 4 2160.2.q.d.721.1 2
45.2 even 12 4050.2.a.bi.1.1 1
45.4 even 6 inner 1350.2.j.c.199.1 4
45.7 odd 12 4050.2.a.q.1.1 1
45.13 odd 12 270.2.e.a.91.1 2
45.14 odd 6 450.2.j.a.49.2 4
45.22 odd 12 1350.2.e.g.901.1 2
45.23 even 12 90.2.e.b.31.1 2
45.29 odd 6 4050.2.c.p.649.2 2
45.32 even 12 450.2.e.d.301.1 2
45.34 even 6 4050.2.c.d.649.1 2
45.38 even 12 810.2.a.a.1.1 1
45.43 odd 12 810.2.a.e.1.1 1
60.23 odd 4 720.2.q.c.241.1 2
180.23 odd 12 720.2.q.c.481.1 2
180.43 even 12 6480.2.a.l.1.1 1
180.83 odd 12 6480.2.a.z.1.1 1
180.103 even 12 2160.2.q.d.1441.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.b.31.1 2 45.23 even 12
90.2.e.b.61.1 yes 2 15.8 even 4
270.2.e.a.91.1 2 45.13 odd 12
270.2.e.a.181.1 2 5.3 odd 4
450.2.e.d.151.1 2 15.2 even 4
450.2.e.d.301.1 2 45.32 even 12
450.2.j.a.49.1 4 9.5 odd 6
450.2.j.a.49.2 4 45.14 odd 6
450.2.j.a.349.1 4 15.14 odd 2
450.2.j.a.349.2 4 3.2 odd 2
720.2.q.c.241.1 2 60.23 odd 4
720.2.q.c.481.1 2 180.23 odd 12
810.2.a.a.1.1 1 45.38 even 12
810.2.a.e.1.1 1 45.43 odd 12
1350.2.e.g.451.1 2 5.2 odd 4
1350.2.e.g.901.1 2 45.22 odd 12
1350.2.j.c.199.1 4 45.4 even 6 inner
1350.2.j.c.199.2 4 9.4 even 3 inner
1350.2.j.c.1099.1 4 1.1 even 1 trivial
1350.2.j.c.1099.2 4 5.4 even 2 inner
2160.2.q.d.721.1 2 20.3 even 4
2160.2.q.d.1441.1 2 180.103 even 12
4050.2.a.q.1.1 1 45.7 odd 12
4050.2.a.bi.1.1 1 45.2 even 12
4050.2.c.d.649.1 2 45.34 even 6
4050.2.c.d.649.2 2 9.7 even 3
4050.2.c.p.649.1 2 9.2 odd 6
4050.2.c.p.649.2 2 45.29 odd 6
6480.2.a.l.1.1 1 180.43 even 12
6480.2.a.z.1.1 1 180.83 odd 12