Properties

Label 90.2.e.b.31.1
Level $90$
Weight $2$
Character 90.31
Analytic conductor $0.719$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,2,Mod(31,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 90 = 2 \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 90.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.718653618192\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 31.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 90.31
Dual form 90.2.e.b.61.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-1.50000 - 0.866025i) q^{6} +(2.00000 + 3.46410i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} -1.00000 q^{10} +(-1.50000 - 2.59808i) q^{11} -1.73205i q^{12} +(2.00000 - 3.46410i) q^{13} +(-2.00000 + 3.46410i) q^{14} -1.73205i q^{15} +(-0.500000 - 0.866025i) q^{16} +3.00000 q^{17} +3.00000 q^{18} +5.00000 q^{19} +(-0.500000 - 0.866025i) q^{20} +(-6.00000 - 3.46410i) q^{21} +(1.50000 - 2.59808i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(1.50000 - 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +4.00000 q^{26} +5.19615i q^{27} -4.00000 q^{28} +(-3.00000 - 5.19615i) q^{29} +(1.50000 - 0.866025i) q^{30} +(-1.00000 + 1.73205i) q^{31} +(0.500000 - 0.866025i) q^{32} +(4.50000 + 2.59808i) q^{33} +(1.50000 + 2.59808i) q^{34} -4.00000 q^{35} +(1.50000 + 2.59808i) q^{36} -4.00000 q^{37} +(2.50000 + 4.33013i) q^{38} +6.92820i q^{39} +(0.500000 - 0.866025i) q^{40} +(1.50000 - 2.59808i) q^{41} -6.92820i q^{42} +(-5.50000 - 9.52628i) q^{43} +3.00000 q^{44} +(1.50000 + 2.59808i) q^{45} -6.00000 q^{46} +(1.50000 + 0.866025i) q^{48} +(-4.50000 + 7.79423i) q^{49} +(0.500000 - 0.866025i) q^{50} +(-4.50000 + 2.59808i) q^{51} +(2.00000 + 3.46410i) q^{52} +6.00000 q^{53} +(-4.50000 + 2.59808i) q^{54} +3.00000 q^{55} +(-2.00000 - 3.46410i) q^{56} +(-7.50000 + 4.33013i) q^{57} +(3.00000 - 5.19615i) q^{58} +(1.50000 - 2.59808i) q^{59} +(1.50000 + 0.866025i) q^{60} +(5.00000 + 8.66025i) q^{61} -2.00000 q^{62} +12.0000 q^{63} +1.00000 q^{64} +(2.00000 + 3.46410i) q^{65} +5.19615i q^{66} +(-2.50000 + 4.33013i) q^{67} +(-1.50000 + 2.59808i) q^{68} -10.3923i q^{69} +(-2.00000 - 3.46410i) q^{70} +6.00000 q^{71} +(-1.50000 + 2.59808i) q^{72} -7.00000 q^{73} +(-2.00000 - 3.46410i) q^{74} +(1.50000 + 0.866025i) q^{75} +(-2.50000 + 4.33013i) q^{76} +(6.00000 - 10.3923i) q^{77} +(-6.00000 + 3.46410i) q^{78} +(-7.00000 - 12.1244i) q^{79} +1.00000 q^{80} +(-4.50000 - 7.79423i) q^{81} +3.00000 q^{82} +(-6.00000 - 10.3923i) q^{83} +(6.00000 - 3.46410i) q^{84} +(-1.50000 + 2.59808i) q^{85} +(5.50000 - 9.52628i) q^{86} +(9.00000 + 5.19615i) q^{87} +(1.50000 + 2.59808i) q^{88} +6.00000 q^{89} +(-1.50000 + 2.59808i) q^{90} +16.0000 q^{91} +(-3.00000 - 5.19615i) q^{92} -3.46410i q^{93} +(-2.50000 + 4.33013i) q^{95} +1.73205i q^{96} +(-5.50000 - 9.52628i) q^{97} -9.00000 q^{98} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} - q^{5} - 3 q^{6} + 4 q^{7} - 2 q^{8} + 3 q^{9} - 2 q^{10} - 3 q^{11} + 4 q^{13} - 4 q^{14} - q^{16} + 6 q^{17} + 6 q^{18} + 10 q^{19} - q^{20} - 12 q^{21} + 3 q^{22}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/90\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(37\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) 2.00000 + 3.46410i 0.755929 + 1.30931i 0.944911 + 0.327327i \(0.106148\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) −1.00000 −0.316228
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) −2.00000 + 3.46410i −0.534522 + 0.925820i
\(15\) 1.73205i 0.447214i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 3.00000 0.707107
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −6.00000 3.46410i −1.30931 0.755929i
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 4.00000 0.784465
\(27\) 5.19615i 1.00000i
\(28\) −4.00000 −0.755929
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 1.50000 0.866025i 0.273861 0.158114i
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 1.50000 + 2.59808i 0.257248 + 0.445566i
\(35\) −4.00000 −0.676123
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 2.50000 + 4.33013i 0.405554 + 0.702439i
\(39\) 6.92820i 1.10940i
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) 1.50000 2.59808i 0.234261 0.405751i −0.724797 0.688963i \(-0.758066\pi\)
0.959058 + 0.283211i \(0.0913998\pi\)
\(42\) 6.92820i 1.06904i
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 3.00000 0.452267
\(45\) 1.50000 + 2.59808i 0.223607 + 0.387298i
\(46\) −6.00000 −0.884652
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 1.50000 + 0.866025i 0.216506 + 0.125000i
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −4.50000 + 2.59808i −0.630126 + 0.363803i
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −4.50000 + 2.59808i −0.612372 + 0.353553i
\(55\) 3.00000 0.404520
\(56\) −2.00000 3.46410i −0.267261 0.462910i
\(57\) −7.50000 + 4.33013i −0.993399 + 0.573539i
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) 1.50000 + 0.866025i 0.193649 + 0.111803i
\(61\) 5.00000 + 8.66025i 0.640184 + 1.10883i 0.985391 + 0.170305i \(0.0544754\pi\)
−0.345207 + 0.938527i \(0.612191\pi\)
\(62\) −2.00000 −0.254000
\(63\) 12.0000 1.51186
\(64\) 1.00000 0.125000
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 5.19615i 0.639602i
\(67\) −2.50000 + 4.33013i −0.305424 + 0.529009i −0.977356 0.211604i \(-0.932131\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) 10.3923i 1.25109i
\(70\) −2.00000 3.46410i −0.239046 0.414039i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) −2.00000 3.46410i −0.232495 0.402694i
\(75\) 1.50000 + 0.866025i 0.173205 + 0.100000i
\(76\) −2.50000 + 4.33013i −0.286770 + 0.496700i
\(77\) 6.00000 10.3923i 0.683763 1.18431i
\(78\) −6.00000 + 3.46410i −0.679366 + 0.392232i
\(79\) −7.00000 12.1244i −0.787562 1.36410i −0.927457 0.373930i \(-0.878010\pi\)
0.139895 0.990166i \(-0.455323\pi\)
\(80\) 1.00000 0.111803
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 3.00000 0.331295
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 6.00000 3.46410i 0.654654 0.377964i
\(85\) −1.50000 + 2.59808i −0.162698 + 0.281801i
\(86\) 5.50000 9.52628i 0.593080 1.02725i
\(87\) 9.00000 + 5.19615i 0.964901 + 0.557086i
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) −1.50000 + 2.59808i −0.158114 + 0.273861i
\(91\) 16.0000 1.67726
\(92\) −3.00000 5.19615i −0.312772 0.541736i
\(93\) 3.46410i 0.359211i
\(94\) 0 0
\(95\) −2.50000 + 4.33013i −0.256495 + 0.444262i
\(96\) 1.73205i 0.176777i
\(97\) −5.50000 9.52628i −0.558440 0.967247i −0.997627 0.0688512i \(-0.978067\pi\)
0.439187 0.898396i \(-0.355267\pi\)
\(98\) −9.00000 −0.909137
\(99\) −9.00000 −0.904534
\(100\) 1.00000 0.100000
\(101\) 6.00000 + 10.3923i 0.597022 + 1.03407i 0.993258 + 0.115924i \(0.0369830\pi\)
−0.396236 + 0.918149i \(0.629684\pi\)
\(102\) −4.50000 2.59808i −0.445566 0.257248i
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 6.00000 3.46410i 0.585540 0.338062i
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 1.50000 + 2.59808i 0.143019 + 0.247717i
\(111\) 6.00000 3.46410i 0.569495 0.328798i
\(112\) 2.00000 3.46410i 0.188982 0.327327i
\(113\) −9.00000 + 15.5885i −0.846649 + 1.46644i 0.0375328 + 0.999295i \(0.488050\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) −7.50000 4.33013i −0.702439 0.405554i
\(115\) −3.00000 5.19615i −0.279751 0.484544i
\(116\) 6.00000 0.557086
\(117\) −6.00000 10.3923i −0.554700 0.960769i
\(118\) 3.00000 0.276172
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 1.73205i 0.158114i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −5.00000 + 8.66025i −0.452679 + 0.784063i
\(123\) 5.19615i 0.468521i
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) 1.00000 0.0894427
\(126\) 6.00000 + 10.3923i 0.534522 + 0.925820i
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 16.5000 + 9.52628i 1.45274 + 0.838742i
\(130\) −2.00000 + 3.46410i −0.175412 + 0.303822i
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) −4.50000 + 2.59808i −0.391675 + 0.226134i
\(133\) 10.0000 + 17.3205i 0.867110 + 1.50188i
\(134\) −5.00000 −0.431934
\(135\) −4.50000 2.59808i −0.387298 0.223607i
\(136\) −3.00000 −0.257248
\(137\) 4.50000 + 7.79423i 0.384461 + 0.665906i 0.991694 0.128618i \(-0.0410540\pi\)
−0.607233 + 0.794524i \(0.707721\pi\)
\(138\) 9.00000 5.19615i 0.766131 0.442326i
\(139\) 0.500000 0.866025i 0.0424094 0.0734553i −0.844042 0.536278i \(-0.819830\pi\)
0.886451 + 0.462822i \(0.153163\pi\)
\(140\) 2.00000 3.46410i 0.169031 0.292770i
\(141\) 0 0
\(142\) 3.00000 + 5.19615i 0.251754 + 0.436051i
\(143\) −12.0000 −1.00349
\(144\) −3.00000 −0.250000
\(145\) 6.00000 0.498273
\(146\) −3.50000 6.06218i −0.289662 0.501709i
\(147\) 15.5885i 1.28571i
\(148\) 2.00000 3.46410i 0.164399 0.284747i
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 1.73205i 0.141421i
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) −5.00000 −0.405554
\(153\) 4.50000 7.79423i 0.363803 0.630126i
\(154\) 12.0000 0.966988
\(155\) −1.00000 1.73205i −0.0803219 0.139122i
\(156\) −6.00000 3.46410i −0.480384 0.277350i
\(157\) −4.00000 + 6.92820i −0.319235 + 0.552931i −0.980329 0.197372i \(-0.936759\pi\)
0.661094 + 0.750303i \(0.270093\pi\)
\(158\) 7.00000 12.1244i 0.556890 0.964562i
\(159\) −9.00000 + 5.19615i −0.713746 + 0.412082i
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −24.0000 −1.89146
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 1.50000 + 2.59808i 0.117130 + 0.202876i
\(165\) −4.50000 + 2.59808i −0.350325 + 0.202260i
\(166\) 6.00000 10.3923i 0.465690 0.806599i
\(167\) 9.00000 15.5885i 0.696441 1.20627i −0.273252 0.961943i \(-0.588099\pi\)
0.969693 0.244328i \(-0.0785675\pi\)
\(168\) 6.00000 + 3.46410i 0.462910 + 0.267261i
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) −3.00000 −0.230089
\(171\) 7.50000 12.9904i 0.573539 0.993399i
\(172\) 11.0000 0.838742
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 2.00000 3.46410i 0.151186 0.261861i
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 5.19615i 0.390567i
\(178\) 3.00000 + 5.19615i 0.224860 + 0.389468i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −3.00000 −0.223607
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 8.00000 + 13.8564i 0.592999 + 1.02711i
\(183\) −15.0000 8.66025i −1.10883 0.640184i
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) 2.00000 3.46410i 0.147043 0.254686i
\(186\) 3.00000 1.73205i 0.219971 0.127000i
\(187\) −4.50000 7.79423i −0.329073 0.569970i
\(188\) 0 0
\(189\) −18.0000 + 10.3923i −1.30931 + 0.755929i
\(190\) −5.00000 −0.362738
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) 6.50000 11.2583i 0.467880 0.810392i −0.531446 0.847092i \(-0.678351\pi\)
0.999326 + 0.0366998i \(0.0116845\pi\)
\(194\) 5.50000 9.52628i 0.394877 0.683947i
\(195\) −6.00000 3.46410i −0.429669 0.248069i
\(196\) −4.50000 7.79423i −0.321429 0.556731i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) −4.50000 7.79423i −0.319801 0.553912i
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 8.66025i 0.610847i
\(202\) −6.00000 + 10.3923i −0.422159 + 0.731200i
\(203\) 12.0000 20.7846i 0.842235 1.45879i
\(204\) 5.19615i 0.363803i
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 4.00000 0.278693
\(207\) 9.00000 + 15.5885i 0.625543 + 1.08347i
\(208\) −4.00000 −0.277350
\(209\) −7.50000 12.9904i −0.518786 0.898563i
\(210\) 6.00000 + 3.46410i 0.414039 + 0.239046i
\(211\) 2.00000 3.46410i 0.137686 0.238479i −0.788935 0.614477i \(-0.789367\pi\)
0.926620 + 0.375999i \(0.122700\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) −9.00000 + 5.19615i −0.616670 + 0.356034i
\(214\) −4.50000 7.79423i −0.307614 0.532803i
\(215\) 11.0000 0.750194
\(216\) 5.19615i 0.353553i
\(217\) −8.00000 −0.543075
\(218\) −2.00000 3.46410i −0.135457 0.234619i
\(219\) 10.5000 6.06218i 0.709524 0.409644i
\(220\) −1.50000 + 2.59808i −0.101130 + 0.175162i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 6.00000 + 3.46410i 0.402694 + 0.232495i
\(223\) 11.0000 + 19.0526i 0.736614 + 1.27585i 0.954011 + 0.299770i \(0.0969101\pi\)
−0.217397 + 0.976083i \(0.569757\pi\)
\(224\) 4.00000 0.267261
\(225\) −3.00000 −0.200000
\(226\) −18.0000 −1.19734
\(227\) 1.50000 + 2.59808i 0.0995585 + 0.172440i 0.911502 0.411296i \(-0.134924\pi\)
−0.811943 + 0.583736i \(0.801590\pi\)
\(228\) 8.66025i 0.573539i
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 3.00000 5.19615i 0.197814 0.342624i
\(231\) 20.7846i 1.36753i
\(232\) 3.00000 + 5.19615i 0.196960 + 0.341144i
\(233\) 21.0000 1.37576 0.687878 0.725826i \(-0.258542\pi\)
0.687878 + 0.725826i \(0.258542\pi\)
\(234\) 6.00000 10.3923i 0.392232 0.679366i
\(235\) 0 0
\(236\) 1.50000 + 2.59808i 0.0976417 + 0.169120i
\(237\) 21.0000 + 12.1244i 1.36410 + 0.787562i
\(238\) −6.00000 + 10.3923i −0.388922 + 0.673633i
\(239\) −3.00000 + 5.19615i −0.194054 + 0.336111i −0.946590 0.322440i \(-0.895497\pi\)
0.752536 + 0.658551i \(0.228830\pi\)
\(240\) −1.50000 + 0.866025i −0.0968246 + 0.0559017i
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) 2.00000 0.128565
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) −10.0000 −0.640184
\(245\) −4.50000 7.79423i −0.287494 0.497955i
\(246\) −4.50000 + 2.59808i −0.286910 + 0.165647i
\(247\) 10.0000 17.3205i 0.636285 1.10208i
\(248\) 1.00000 1.73205i 0.0635001 0.109985i
\(249\) 18.0000 + 10.3923i 1.14070 + 0.658586i
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) −6.00000 + 10.3923i −0.377964 + 0.654654i
\(253\) 18.0000 1.13165
\(254\) 1.00000 + 1.73205i 0.0627456 + 0.108679i
\(255\) 5.19615i 0.325396i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.50000 + 7.79423i −0.280702 + 0.486191i −0.971558 0.236802i \(-0.923901\pi\)
0.690856 + 0.722993i \(0.257234\pi\)
\(258\) 19.0526i 1.18616i
\(259\) −8.00000 13.8564i −0.497096 0.860995i
\(260\) −4.00000 −0.248069
\(261\) −18.0000 −1.11417
\(262\) −12.0000 −0.741362
\(263\) −12.0000 20.7846i −0.739952 1.28163i −0.952517 0.304487i \(-0.901515\pi\)
0.212565 0.977147i \(-0.431818\pi\)
\(264\) −4.50000 2.59808i −0.276956 0.159901i
\(265\) −3.00000 + 5.19615i −0.184289 + 0.319197i
\(266\) −10.0000 + 17.3205i −0.613139 + 1.06199i
\(267\) −9.00000 + 5.19615i −0.550791 + 0.317999i
\(268\) −2.50000 4.33013i −0.152712 0.264505i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 5.19615i 0.316228i
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) −1.50000 2.59808i −0.0909509 0.157532i
\(273\) −24.0000 + 13.8564i −1.45255 + 0.838628i
\(274\) −4.50000 + 7.79423i −0.271855 + 0.470867i
\(275\) −1.50000 + 2.59808i −0.0904534 + 0.156670i
\(276\) 9.00000 + 5.19615i 0.541736 + 0.312772i
\(277\) 11.0000 + 19.0526i 0.660926 + 1.14476i 0.980373 + 0.197153i \(0.0631696\pi\)
−0.319447 + 0.947604i \(0.603497\pi\)
\(278\) 1.00000 0.0599760
\(279\) 3.00000 + 5.19615i 0.179605 + 0.311086i
\(280\) 4.00000 0.239046
\(281\) 3.00000 + 5.19615i 0.178965 + 0.309976i 0.941526 0.336939i \(-0.109392\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(282\) 0 0
\(283\) −10.0000 + 17.3205i −0.594438 + 1.02960i 0.399188 + 0.916869i \(0.369292\pi\)
−0.993626 + 0.112728i \(0.964041\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 8.66025i 0.512989i
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 12.0000 0.708338
\(288\) −1.50000 2.59808i −0.0883883 0.153093i
\(289\) −8.00000 −0.470588
\(290\) 3.00000 + 5.19615i 0.176166 + 0.305129i
\(291\) 16.5000 + 9.52628i 0.967247 + 0.558440i
\(292\) 3.50000 6.06218i 0.204822 0.354762i
\(293\) 9.00000 15.5885i 0.525786 0.910687i −0.473763 0.880652i \(-0.657105\pi\)
0.999549 0.0300351i \(-0.00956192\pi\)
\(294\) 13.5000 7.79423i 0.787336 0.454569i
\(295\) 1.50000 + 2.59808i 0.0873334 + 0.151266i
\(296\) 4.00000 0.232495
\(297\) 13.5000 7.79423i 0.783349 0.452267i
\(298\) 0 0
\(299\) 12.0000 + 20.7846i 0.693978 + 1.20201i
\(300\) −1.50000 + 0.866025i −0.0866025 + 0.0500000i
\(301\) 22.0000 38.1051i 1.26806 2.19634i
\(302\) −5.00000 + 8.66025i −0.287718 + 0.498342i
\(303\) −18.0000 10.3923i −1.03407 0.597022i
\(304\) −2.50000 4.33013i −0.143385 0.248350i
\(305\) −10.0000 −0.572598
\(306\) 9.00000 0.514496
\(307\) −7.00000 −0.399511 −0.199756 0.979846i \(-0.564015\pi\)
−0.199756 + 0.979846i \(0.564015\pi\)
\(308\) 6.00000 + 10.3923i 0.341882 + 0.592157i
\(309\) 6.92820i 0.394132i
\(310\) 1.00000 1.73205i 0.0567962 0.0983739i
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 6.92820i 0.392232i
\(313\) 0.500000 + 0.866025i 0.0282617 + 0.0489506i 0.879810 0.475325i \(-0.157669\pi\)
−0.851549 + 0.524276i \(0.824336\pi\)
\(314\) −8.00000 −0.451466
\(315\) −6.00000 + 10.3923i −0.338062 + 0.585540i
\(316\) 14.0000 0.787562
\(317\) −12.0000 20.7846i −0.673987 1.16738i −0.976764 0.214318i \(-0.931247\pi\)
0.302777 0.953062i \(-0.402086\pi\)
\(318\) −9.00000 5.19615i −0.504695 0.291386i
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 13.5000 7.79423i 0.753497 0.435031i
\(322\) −12.0000 20.7846i −0.668734 1.15828i
\(323\) 15.0000 0.834622
\(324\) 9.00000 0.500000
\(325\) −4.00000 −0.221880
\(326\) −8.00000 13.8564i −0.443079 0.767435i
\(327\) 6.00000 3.46410i 0.331801 0.191565i
\(328\) −1.50000 + 2.59808i −0.0828236 + 0.143455i
\(329\) 0 0
\(330\) −4.50000 2.59808i −0.247717 0.143019i
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 12.0000 0.658586
\(333\) −6.00000 + 10.3923i −0.328798 + 0.569495i
\(334\) 18.0000 0.984916
\(335\) −2.50000 4.33013i −0.136590 0.236580i
\(336\) 6.92820i 0.377964i
\(337\) 15.5000 26.8468i 0.844339 1.46244i −0.0418554 0.999124i \(-0.513327\pi\)
0.886194 0.463314i \(-0.153340\pi\)
\(338\) 1.50000 2.59808i 0.0815892 0.141317i
\(339\) 31.1769i 1.69330i
\(340\) −1.50000 2.59808i −0.0813489 0.140900i
\(341\) 6.00000 0.324918
\(342\) 15.0000 0.811107
\(343\) −8.00000 −0.431959
\(344\) 5.50000 + 9.52628i 0.296540 + 0.513623i
\(345\) 9.00000 + 5.19615i 0.484544 + 0.279751i
\(346\) −9.00000 + 15.5885i −0.483843 + 0.838041i
\(347\) −10.5000 + 18.1865i −0.563670 + 0.976304i 0.433503 + 0.901152i \(0.357278\pi\)
−0.997172 + 0.0751519i \(0.976056\pi\)
\(348\) −9.00000 + 5.19615i −0.482451 + 0.278543i
\(349\) 8.00000 + 13.8564i 0.428230 + 0.741716i 0.996716 0.0809766i \(-0.0258039\pi\)
−0.568486 + 0.822693i \(0.692471\pi\)
\(350\) 4.00000 0.213809
\(351\) 18.0000 + 10.3923i 0.960769 + 0.554700i
\(352\) −3.00000 −0.159901
\(353\) −4.50000 7.79423i −0.239511 0.414845i 0.721063 0.692869i \(-0.243654\pi\)
−0.960574 + 0.278024i \(0.910320\pi\)
\(354\) −4.50000 + 2.59808i −0.239172 + 0.138086i
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) −18.0000 10.3923i −0.952661 0.550019i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) −1.50000 2.59808i −0.0790569 0.136931i
\(361\) 6.00000 0.315789
\(362\) −8.00000 13.8564i −0.420471 0.728277i
\(363\) 3.46410i 0.181818i
\(364\) −8.00000 + 13.8564i −0.419314 + 0.726273i
\(365\) 3.50000 6.06218i 0.183198 0.317309i
\(366\) 17.3205i 0.905357i
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 6.00000 0.312772
\(369\) −4.50000 7.79423i −0.234261 0.405751i
\(370\) 4.00000 0.207950
\(371\) 12.0000 + 20.7846i 0.623009 + 1.07908i
\(372\) 3.00000 + 1.73205i 0.155543 + 0.0898027i
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 4.50000 7.79423i 0.232689 0.403030i
\(375\) −1.50000 + 0.866025i −0.0774597 + 0.0447214i
\(376\) 0 0
\(377\) −24.0000 −1.23606
\(378\) −18.0000 10.3923i −0.925820 0.534522i
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) −2.50000 4.33013i −0.128247 0.222131i
\(381\) −3.00000 + 1.73205i −0.153695 + 0.0887357i
\(382\) 0 0
\(383\) −6.00000 + 10.3923i −0.306586 + 0.531022i −0.977613 0.210411i \(-0.932520\pi\)
0.671027 + 0.741433i \(0.265853\pi\)
\(384\) −1.50000 0.866025i −0.0765466 0.0441942i
\(385\) 6.00000 + 10.3923i 0.305788 + 0.529641i
\(386\) 13.0000 0.661683
\(387\) −33.0000 −1.67748
\(388\) 11.0000 0.558440
\(389\) −18.0000 31.1769i −0.912636 1.58073i −0.810326 0.585980i \(-0.800710\pi\)
−0.102311 0.994753i \(-0.532624\pi\)
\(390\) 6.92820i 0.350823i
\(391\) −9.00000 + 15.5885i −0.455150 + 0.788342i
\(392\) 4.50000 7.79423i 0.227284 0.393668i
\(393\) 20.7846i 1.04844i
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 4.50000 7.79423i 0.226134 0.391675i
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 10.0000 + 17.3205i 0.501255 + 0.868199i
\(399\) −30.0000 17.3205i −1.50188 0.867110i
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −16.5000 + 28.5788i −0.823971 + 1.42716i 0.0787327 + 0.996896i \(0.474913\pi\)
−0.902703 + 0.430263i \(0.858421\pi\)
\(402\) 7.50000 4.33013i 0.374066 0.215967i
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) −12.0000 −0.597022
\(405\) 9.00000 0.447214
\(406\) 24.0000 1.19110
\(407\) 6.00000 + 10.3923i 0.297409 + 0.515127i
\(408\) 4.50000 2.59808i 0.222783 0.128624i
\(409\) 15.5000 26.8468i 0.766426 1.32749i −0.173064 0.984911i \(-0.555367\pi\)
0.939490 0.342578i \(-0.111300\pi\)
\(410\) −1.50000 + 2.59808i −0.0740797 + 0.128310i
\(411\) −13.5000 7.79423i −0.665906 0.384461i
\(412\) 2.00000 + 3.46410i 0.0985329 + 0.170664i
\(413\) 12.0000 0.590481
\(414\) −9.00000 + 15.5885i −0.442326 + 0.766131i
\(415\) 12.0000 0.589057
\(416\) −2.00000 3.46410i −0.0980581 0.169842i
\(417\) 1.73205i 0.0848189i
\(418\) 7.50000 12.9904i 0.366837 0.635380i
\(419\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(420\) 6.92820i 0.338062i
\(421\) −1.00000 1.73205i −0.0487370 0.0844150i 0.840628 0.541613i \(-0.182186\pi\)
−0.889365 + 0.457198i \(0.848853\pi\)
\(422\) 4.00000 0.194717
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −1.50000 2.59808i −0.0727607 0.126025i
\(426\) −9.00000 5.19615i −0.436051 0.251754i
\(427\) −20.0000 + 34.6410i −0.967868 + 1.67640i
\(428\) 4.50000 7.79423i 0.217516 0.376748i
\(429\) 18.0000 10.3923i 0.869048 0.501745i
\(430\) 5.50000 + 9.52628i 0.265234 + 0.459398i
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) −13.0000 −0.624740 −0.312370 0.949960i \(-0.601123\pi\)
−0.312370 + 0.949960i \(0.601123\pi\)
\(434\) −4.00000 6.92820i −0.192006 0.332564i
\(435\) −9.00000 + 5.19615i −0.431517 + 0.249136i
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) −15.0000 + 25.9808i −0.717547 + 1.24283i
\(438\) 10.5000 + 6.06218i 0.501709 + 0.289662i
\(439\) 5.00000 + 8.66025i 0.238637 + 0.413331i 0.960323 0.278889i \(-0.0899661\pi\)
−0.721686 + 0.692220i \(0.756633\pi\)
\(440\) −3.00000 −0.143019
\(441\) 13.5000 + 23.3827i 0.642857 + 1.11346i
\(442\) 12.0000 0.570782
\(443\) −1.50000 2.59808i −0.0712672 0.123438i 0.828190 0.560448i \(-0.189371\pi\)
−0.899457 + 0.437009i \(0.856038\pi\)
\(444\) 6.92820i 0.328798i
\(445\) −3.00000 + 5.19615i −0.142214 + 0.246321i
\(446\) −11.0000 + 19.0526i −0.520865 + 0.902165i
\(447\) 0 0
\(448\) 2.00000 + 3.46410i 0.0944911 + 0.163663i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) −1.50000 2.59808i −0.0707107 0.122474i
\(451\) −9.00000 −0.423793
\(452\) −9.00000 15.5885i −0.423324 0.733219i
\(453\) −15.0000 8.66025i −0.704761 0.406894i
\(454\) −1.50000 + 2.59808i −0.0703985 + 0.121934i
\(455\) −8.00000 + 13.8564i −0.375046 + 0.649598i
\(456\) 7.50000 4.33013i 0.351220 0.202777i
\(457\) 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i \(-0.159221\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(458\) −20.0000 −0.934539
\(459\) 15.5885i 0.727607i
\(460\) 6.00000 0.279751
\(461\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(462\) −18.0000 + 10.3923i −0.837436 + 0.483494i
\(463\) −10.0000 + 17.3205i −0.464739 + 0.804952i −0.999190 0.0402476i \(-0.987185\pi\)
0.534450 + 0.845200i \(0.320519\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) 3.00000 + 1.73205i 0.139122 + 0.0803219i
\(466\) 10.5000 + 18.1865i 0.486403 + 0.842475i
\(467\) 21.0000 0.971764 0.485882 0.874024i \(-0.338498\pi\)
0.485882 + 0.874024i \(0.338498\pi\)
\(468\) 12.0000 0.554700
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 13.8564i 0.638470i
\(472\) −1.50000 + 2.59808i −0.0690431 + 0.119586i
\(473\) −16.5000 + 28.5788i −0.758671 + 1.31406i
\(474\) 24.2487i 1.11378i
\(475\) −2.50000 4.33013i −0.114708 0.198680i
\(476\) −12.0000 −0.550019
\(477\) 9.00000 15.5885i 0.412082 0.713746i
\(478\) −6.00000 −0.274434
\(479\) 3.00000 + 5.19615i 0.137073 + 0.237418i 0.926388 0.376571i \(-0.122897\pi\)
−0.789314 + 0.613990i \(0.789564\pi\)
\(480\) −1.50000 0.866025i −0.0684653 0.0395285i
\(481\) −8.00000 + 13.8564i −0.364769 + 0.631798i
\(482\) 8.50000 14.7224i 0.387164 0.670588i
\(483\) 36.0000 20.7846i 1.63806 0.945732i
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 11.0000 0.499484
\(486\) 15.5885i 0.707107i
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) −5.00000 8.66025i −0.226339 0.392031i
\(489\) 24.0000 13.8564i 1.08532 0.626608i
\(490\) 4.50000 7.79423i 0.203289 0.352107i
\(491\) 16.5000 28.5788i 0.744635 1.28974i −0.205731 0.978609i \(-0.565957\pi\)
0.950365 0.311136i \(-0.100710\pi\)
\(492\) −4.50000 2.59808i −0.202876 0.117130i
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) 20.0000 0.899843
\(495\) 4.50000 7.79423i 0.202260 0.350325i
\(496\) 2.00000 0.0898027
\(497\) 12.0000 + 20.7846i 0.538274 + 0.932317i
\(498\) 20.7846i 0.931381i
\(499\) 15.5000 26.8468i 0.693875 1.20183i −0.276683 0.960961i \(-0.589235\pi\)
0.970558 0.240866i \(-0.0774314\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 31.1769i 1.39288i
\(502\) −10.5000 18.1865i −0.468638 0.811705i
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) −12.0000 −0.534522
\(505\) −12.0000 −0.533993
\(506\) 9.00000 + 15.5885i 0.400099 + 0.692991i
\(507\) 4.50000 + 2.59808i 0.199852 + 0.115385i
\(508\) −1.00000 + 1.73205i −0.0443678 + 0.0768473i
\(509\) 6.00000 10.3923i 0.265945 0.460631i −0.701866 0.712309i \(-0.747649\pi\)
0.967811 + 0.251679i \(0.0809826\pi\)
\(510\) 4.50000 2.59808i 0.199263 0.115045i
\(511\) −14.0000 24.2487i −0.619324 1.07270i
\(512\) −1.00000 −0.0441942
\(513\) 25.9808i 1.14708i
\(514\) −9.00000 −0.396973
\(515\) 2.00000 + 3.46410i 0.0881305 + 0.152647i
\(516\) −16.5000 + 9.52628i −0.726372 + 0.419371i
\(517\) 0 0
\(518\) 8.00000 13.8564i 0.351500 0.608816i
\(519\) −27.0000 15.5885i −1.18517 0.684257i
\(520\) −2.00000 3.46410i −0.0877058 0.151911i
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) −9.00000 15.5885i −0.393919 0.682288i
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 6.92820i 0.302372i
\(526\) 12.0000 20.7846i 0.523225 0.906252i
\(527\) −3.00000 + 5.19615i −0.130682 + 0.226348i
\(528\) 5.19615i 0.226134i
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) −6.00000 −0.260623
\(531\) −4.50000 7.79423i −0.195283 0.338241i
\(532\) −20.0000 −0.867110
\(533\) −6.00000 10.3923i −0.259889 0.450141i
\(534\) −9.00000 5.19615i −0.389468 0.224860i
\(535\) 4.50000 7.79423i 0.194552 0.336974i
\(536\) 2.50000 4.33013i 0.107984 0.187033i
\(537\) 0 0
\(538\) 3.00000 + 5.19615i 0.129339 + 0.224022i
\(539\) 27.0000 1.16297
\(540\) 4.50000 2.59808i 0.193649 0.111803i
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) −8.00000 13.8564i −0.343629 0.595184i
\(543\) 24.0000 13.8564i 1.02994 0.594635i
\(544\) 1.50000 2.59808i 0.0643120 0.111392i
\(545\) 2.00000 3.46410i 0.0856706 0.148386i
\(546\) −24.0000 13.8564i −1.02711 0.592999i
\(547\) 0.500000 + 0.866025i 0.0213785 + 0.0370286i 0.876517 0.481371i \(-0.159861\pi\)
−0.855138 + 0.518400i \(0.826528\pi\)
\(548\) −9.00000 −0.384461
\(549\) 30.0000 1.28037
\(550\) −3.00000 −0.127920
\(551\) −15.0000 25.9808i −0.639021 1.10682i
\(552\) 10.3923i 0.442326i
\(553\) 28.0000 48.4974i 1.19068 2.06232i
\(554\) −11.0000 + 19.0526i −0.467345 + 0.809466i
\(555\) 6.92820i 0.294086i
\(556\) 0.500000 + 0.866025i 0.0212047 + 0.0367277i
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) −3.00000 + 5.19615i −0.127000 + 0.219971i
\(559\) −44.0000 −1.86100
\(560\) 2.00000 + 3.46410i 0.0845154 + 0.146385i
\(561\) 13.5000 + 7.79423i 0.569970 + 0.329073i
\(562\) −3.00000 + 5.19615i −0.126547 + 0.219186i
\(563\) 1.50000 2.59808i 0.0632175 0.109496i −0.832684 0.553748i \(-0.813197\pi\)
0.895902 + 0.444252i \(0.146530\pi\)
\(564\) 0 0
\(565\) −9.00000 15.5885i −0.378633 0.655811i
\(566\) −20.0000 −0.840663
\(567\) 18.0000 31.1769i 0.755929 1.30931i
\(568\) −6.00000 −0.251754
\(569\) 19.5000 + 33.7750i 0.817483 + 1.41592i 0.907532 + 0.419984i \(0.137964\pi\)
−0.0900490 + 0.995937i \(0.528702\pi\)
\(570\) 7.50000 4.33013i 0.314140 0.181369i
\(571\) −14.5000 + 25.1147i −0.606806 + 1.05102i 0.384957 + 0.922934i \(0.374216\pi\)
−0.991763 + 0.128085i \(0.959117\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) 0 0
\(574\) 6.00000 + 10.3923i 0.250435 + 0.433766i
\(575\) 6.00000 0.250217
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −7.00000 −0.291414 −0.145707 0.989328i \(-0.546546\pi\)
−0.145707 + 0.989328i \(0.546546\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 22.5167i 0.935760i
\(580\) −3.00000 + 5.19615i −0.124568 + 0.215758i
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 19.0526i 0.789754i
\(583\) −9.00000 15.5885i −0.372742 0.645608i
\(584\) 7.00000 0.289662
\(585\) 12.0000 0.496139
\(586\) 18.0000 0.743573
\(587\) −19.5000 33.7750i −0.804851 1.39404i −0.916392 0.400283i \(-0.868912\pi\)
0.111540 0.993760i \(-0.464422\pi\)
\(588\) 13.5000 + 7.79423i 0.556731 + 0.321429i
\(589\) −5.00000 + 8.66025i −0.206021 + 0.356840i
\(590\) −1.50000 + 2.59808i −0.0617540 + 0.106961i
\(591\) 0 0
\(592\) 2.00000 + 3.46410i 0.0821995 + 0.142374i
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 13.5000 + 7.79423i 0.553912 + 0.319801i
\(595\) −12.0000 −0.491952
\(596\) 0 0
\(597\) −30.0000 + 17.3205i −1.22782 + 0.708881i
\(598\) −12.0000 + 20.7846i −0.490716 + 0.849946i
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) −1.50000 0.866025i −0.0612372 0.0353553i
\(601\) 12.5000 + 21.6506i 0.509886 + 0.883148i 0.999934 + 0.0114528i \(0.00364562\pi\)
−0.490049 + 0.871695i \(0.663021\pi\)
\(602\) 44.0000 1.79331
\(603\) 7.50000 + 12.9904i 0.305424 + 0.529009i
\(604\) −10.0000 −0.406894
\(605\) 1.00000 + 1.73205i 0.0406558 + 0.0704179i
\(606\) 20.7846i 0.844317i
\(607\) −4.00000 + 6.92820i −0.162355 + 0.281207i −0.935713 0.352763i \(-0.885242\pi\)
0.773358 + 0.633970i \(0.218576\pi\)
\(608\) 2.50000 4.33013i 0.101388 0.175610i
\(609\) 41.5692i 1.68447i
\(610\) −5.00000 8.66025i −0.202444 0.350643i
\(611\) 0 0
\(612\) 4.50000 + 7.79423i 0.181902 + 0.315063i
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) −3.50000 6.06218i −0.141249 0.244650i
\(615\) −4.50000 2.59808i −0.181458 0.104765i
\(616\) −6.00000 + 10.3923i −0.241747 + 0.418718i
\(617\) 19.5000 33.7750i 0.785040 1.35973i −0.143934 0.989587i \(-0.545975\pi\)
0.928975 0.370143i \(-0.120691\pi\)
\(618\) −6.00000 + 3.46410i −0.241355 + 0.139347i
\(619\) 9.50000 + 16.4545i 0.381837 + 0.661361i 0.991325 0.131434i \(-0.0419582\pi\)
−0.609488 + 0.792796i \(0.708625\pi\)
\(620\) 2.00000 0.0803219
\(621\) −27.0000 15.5885i −1.08347 0.625543i
\(622\) 6.00000 0.240578
\(623\) 12.0000 + 20.7846i 0.480770 + 0.832718i
\(624\) 6.00000 3.46410i 0.240192 0.138675i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −0.500000 + 0.866025i −0.0199840 + 0.0346133i
\(627\) 22.5000 + 12.9904i 0.898563 + 0.518786i
\(628\) −4.00000 6.92820i −0.159617 0.276465i
\(629\) −12.0000 −0.478471
\(630\) −12.0000 −0.478091
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) 7.00000 + 12.1244i 0.278445 + 0.482281i
\(633\) 6.92820i 0.275371i
\(634\) 12.0000 20.7846i 0.476581 0.825462i
\(635\) −1.00000 + 1.73205i −0.0396838 + 0.0687343i
\(636\) 10.3923i 0.412082i
\(637\) 18.0000 + 31.1769i 0.713186 + 1.23527i
\(638\) −18.0000 −0.712627
\(639\) 9.00000 15.5885i 0.356034 0.616670i
\(640\) −1.00000 −0.0395285
\(641\) −4.50000 7.79423i −0.177739 0.307854i 0.763367 0.645966i \(-0.223545\pi\)
−0.941106 + 0.338112i \(0.890212\pi\)
\(642\) 13.5000 + 7.79423i 0.532803 + 0.307614i
\(643\) −11.5000 + 19.9186i −0.453516 + 0.785512i −0.998602 0.0528680i \(-0.983164\pi\)
0.545086 + 0.838380i \(0.316497\pi\)
\(644\) 12.0000 20.7846i 0.472866 0.819028i
\(645\) −16.5000 + 9.52628i −0.649687 + 0.375097i
\(646\) 7.50000 + 12.9904i 0.295084 + 0.511100i
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) −9.00000 −0.353281
\(650\) −2.00000 3.46410i −0.0784465 0.135873i
\(651\) 12.0000 6.92820i 0.470317 0.271538i
\(652\) 8.00000 13.8564i 0.313304 0.542659i
\(653\) −21.0000 + 36.3731i −0.821794 + 1.42339i 0.0825519 + 0.996587i \(0.473693\pi\)
−0.904345 + 0.426801i \(0.859640\pi\)
\(654\) 6.00000 + 3.46410i 0.234619 + 0.135457i
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) −3.00000 −0.117130
\(657\) −10.5000 + 18.1865i −0.409644 + 0.709524i
\(658\) 0 0
\(659\) 18.0000 + 31.1769i 0.701180 + 1.21448i 0.968052 + 0.250748i \(0.0806766\pi\)
−0.266872 + 0.963732i \(0.585990\pi\)
\(660\) 5.19615i 0.202260i
\(661\) −16.0000 + 27.7128i −0.622328 + 1.07790i 0.366723 + 0.930330i \(0.380480\pi\)
−0.989051 + 0.147573i \(0.952854\pi\)
\(662\) −2.00000 + 3.46410i −0.0777322 + 0.134636i
\(663\) 20.7846i 0.807207i
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) −20.0000 −0.775567
\(666\) −12.0000 −0.464991
\(667\) 36.0000 1.39393
\(668\) 9.00000 + 15.5885i 0.348220 + 0.603136i
\(669\) −33.0000 19.0526i −1.27585 0.736614i
\(670\) 2.50000 4.33013i 0.0965834 0.167287i
\(671\) 15.0000 25.9808i 0.579069 1.00298i
\(672\) −6.00000 + 3.46410i −0.231455 + 0.133631i
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) 31.0000 1.19408
\(675\) 4.50000 2.59808i 0.173205 0.100000i
\(676\) 3.00000 0.115385
\(677\) 18.0000 + 31.1769i 0.691796 + 1.19823i 0.971249 + 0.238067i \(0.0765137\pi\)
−0.279453 + 0.960159i \(0.590153\pi\)
\(678\) 27.0000 15.5885i 1.03693 0.598671i
\(679\) 22.0000 38.1051i 0.844283 1.46234i
\(680\) 1.50000 2.59808i 0.0575224 0.0996317i
\(681\) −4.50000 2.59808i −0.172440 0.0995585i
\(682\) 3.00000 + 5.19615i 0.114876 + 0.198971i
\(683\) −21.0000 −0.803543 −0.401771 0.915740i \(-0.631605\pi\)
−0.401771 + 0.915740i \(0.631605\pi\)
\(684\) 7.50000 + 12.9904i 0.286770 + 0.496700i
\(685\) −9.00000 −0.343872
\(686\) −4.00000 6.92820i −0.152721 0.264520i
\(687\) 34.6410i 1.32164i
\(688\) −5.50000 + 9.52628i −0.209686 + 0.363186i
\(689\) 12.0000 20.7846i 0.457164 0.791831i
\(690\) 10.3923i 0.395628i
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) −18.0000 −0.684257
\(693\) −18.0000 31.1769i −0.683763 1.18431i
\(694\) −21.0000 −0.797149
\(695\) 0.500000 + 0.866025i 0.0189661 + 0.0328502i
\(696\) −9.00000 5.19615i −0.341144 0.196960i
\(697\) 4.50000 7.79423i 0.170450 0.295227i
\(698\) −8.00000 + 13.8564i −0.302804 + 0.524473i
\(699\) −31.5000 + 18.1865i −1.19144 + 0.687878i
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 20.7846i 0.784465i
\(703\) −20.0000 −0.754314
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) 4.50000 7.79423i 0.169360 0.293340i
\(707\) −24.0000 + 41.5692i −0.902613 + 1.56337i
\(708\) −4.50000 2.59808i −0.169120 0.0976417i
\(709\) 17.0000 + 29.4449i 0.638448 + 1.10583i 0.985773 + 0.168080i \(0.0537568\pi\)
−0.347325 + 0.937745i \(0.612910\pi\)
\(710\) −6.00000 −0.225176
\(711\) −42.0000 −1.57512
\(712\) −6.00000 −0.224860
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 20.7846i 0.777844i
\(715\) 6.00000 10.3923i 0.224387 0.388650i
\(716\) 0 0
\(717\) 10.3923i 0.388108i
\(718\) −12.0000 20.7846i −0.447836 0.775675i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 1.50000 2.59808i 0.0559017 0.0968246i
\(721\) 16.0000 0.595871
\(722\) 3.00000 + 5.19615i 0.111648 + 0.193381i
\(723\) 25.5000 + 14.7224i 0.948355 + 0.547533i
\(724\) 8.00000 13.8564i 0.297318 0.514969i
\(725\) −3.00000 + 5.19615i −0.111417 + 0.192980i
\(726\) −3.00000 + 1.73205i −0.111340 + 0.0642824i
\(727\) 14.0000 + 24.2487i 0.519231 + 0.899335i 0.999750 + 0.0223506i \(0.00711500\pi\)
−0.480519 + 0.876984i \(0.659552\pi\)
\(728\) −16.0000 −0.592999
\(729\) −27.0000 −1.00000
\(730\) 7.00000 0.259082
\(731\) −16.5000 28.5788i −0.610275 1.05703i
\(732\) 15.0000 8.66025i 0.554416 0.320092i
\(733\) −16.0000 + 27.7128i −0.590973 + 1.02360i 0.403128 + 0.915144i \(0.367923\pi\)
−0.994102 + 0.108453i \(0.965410\pi\)
\(734\) 4.00000 6.92820i 0.147643 0.255725i
\(735\) 13.5000 + 7.79423i 0.497955 + 0.287494i
\(736\) 3.00000 + 5.19615i 0.110581 + 0.191533i
\(737\) 15.0000 0.552532
\(738\) 4.50000 7.79423i 0.165647 0.286910i
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) 34.6410i 1.27257i
\(742\) −12.0000 + 20.7846i −0.440534 + 0.763027i
\(743\) 3.00000 5.19615i 0.110059 0.190628i −0.805735 0.592277i \(-0.798229\pi\)
0.915794 + 0.401648i \(0.131563\pi\)
\(744\) 3.46410i 0.127000i
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) −36.0000 −1.31717
\(748\) 9.00000 0.329073
\(749\) −18.0000 31.1769i −0.657706 1.13918i
\(750\) −1.50000 0.866025i −0.0547723 0.0316228i
\(751\) 14.0000 24.2487i 0.510867 0.884848i −0.489053 0.872254i \(-0.662658\pi\)
0.999921 0.0125942i \(-0.00400897\pi\)
\(752\) 0 0
\(753\) 31.5000 18.1865i 1.14792 0.662754i
\(754\) −12.0000 20.7846i −0.437014 0.756931i
\(755\) −10.0000 −0.363937
\(756\) 20.7846i 0.755929i
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 14.5000 + 25.1147i 0.526664 + 0.912208i
\(759\) −27.0000 + 15.5885i −0.980038 + 0.565825i
\(760\) 2.50000 4.33013i 0.0906845 0.157070i
\(761\) −9.00000 + 15.5885i −0.326250 + 0.565081i −0.981764 0.190101i \(-0.939118\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(762\) −3.00000 1.73205i −0.108679 0.0627456i
\(763\) −8.00000 13.8564i −0.289619 0.501636i
\(764\) 0 0
\(765\) 4.50000 + 7.79423i 0.162698 + 0.281801i
\(766\) −12.0000 −0.433578
\(767\) −6.00000 10.3923i −0.216647 0.375244i
\(768\) 1.73205i 0.0625000i
\(769\) −25.0000 + 43.3013i −0.901523 + 1.56148i −0.0760054 + 0.997107i \(0.524217\pi\)
−0.825518 + 0.564376i \(0.809117\pi\)
\(770\) −6.00000 + 10.3923i −0.216225 + 0.374513i
\(771\) 15.5885i 0.561405i
\(772\) 6.50000 + 11.2583i 0.233940 + 0.405196i
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) −16.5000 28.5788i −0.593080 1.02725i
\(775\) 2.00000 0.0718421
\(776\) 5.50000 + 9.52628i 0.197438 + 0.341974i
\(777\) 24.0000 + 13.8564i 0.860995 + 0.497096i
\(778\) 18.0000 31.1769i 0.645331 1.11775i
\(779\) 7.50000 12.9904i 0.268715 0.465429i
\(780\) 6.00000 3.46410i 0.214834 0.124035i
\(781\) −9.00000 15.5885i −0.322045 0.557799i
\(782\) −18.0000 −0.643679
\(783\) 27.0000 15.5885i 0.964901 0.557086i
\(784\) 9.00000 0.321429
\(785\) −4.00000 6.92820i −0.142766 0.247278i
\(786\) 18.0000 10.3923i 0.642039 0.370681i
\(787\) 2.00000 3.46410i 0.0712923 0.123482i −0.828176 0.560469i \(-0.810621\pi\)
0.899468 + 0.436987i \(0.143954\pi\)
\(788\) 0 0
\(789\) 36.0000 + 20.7846i 1.28163 + 0.739952i
\(790\) 7.00000 + 12.1244i 0.249049 + 0.431365i
\(791\) −72.0000 −2.56003
\(792\) 9.00000 0.319801
\(793\) 40.0000 1.42044
\(794\) 4.00000 + 6.92820i 0.141955 + 0.245873i
\(795\) 10.3923i 0.368577i
\(796\) −10.0000 + 17.3205i −0.354441 + 0.613909i
\(797\) 24.0000 41.5692i 0.850124 1.47246i −0.0309726 0.999520i \(-0.509860\pi\)
0.881096 0.472937i \(-0.156806\pi\)
\(798\) 34.6410i 1.22628i
\(799\) 0 0
\(800\) −1.00000 −0.0353553
\(801\) 9.00000 15.5885i 0.317999 0.550791i
\(802\) −33.0000 −1.16527
\(803\) 10.5000 + 18.1865i 0.370537 + 0.641789i
\(804\) 7.50000 + 4.33013i 0.264505 + 0.152712i
\(805\) 12.0000 20.7846i 0.422944 0.732561i
\(806\) −4.00000 + 6.92820i −0.140894 + 0.244036i
\(807\) −9.00000 + 5.19615i −0.316815 + 0.182913i
\(808\) −6.00000 10.3923i −0.211079 0.365600i
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 4.50000 + 7.79423i 0.158114 + 0.273861i
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) 12.0000 + 20.7846i 0.421117 + 0.729397i
\(813\) 24.0000 13.8564i 0.841717 0.485965i
\(814\) −6.00000 + 10.3923i −0.210300 + 0.364250i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 4.50000 + 2.59808i 0.157532 + 0.0909509i
\(817\) −27.5000 47.6314i −0.962103 1.66641i
\(818\) 31.0000 1.08389
\(819\) 24.0000 41.5692i 0.838628 1.45255i
\(820\) −3.00000 −0.104765
\(821\) 24.0000 + 41.5692i 0.837606 + 1.45078i 0.891891 + 0.452250i \(0.149379\pi\)
−0.0542853 + 0.998525i \(0.517288\pi\)
\(822\) 15.5885i 0.543710i
\(823\) 2.00000 3.46410i 0.0697156 0.120751i −0.829060 0.559159i \(-0.811124\pi\)
0.898776 + 0.438408i \(0.144457\pi\)
\(824\) −2.00000 + 3.46410i −0.0696733 + 0.120678i
\(825\) 5.19615i 0.180907i
\(826\) 6.00000 + 10.3923i 0.208767 + 0.361595i
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) −18.0000 −0.625543
\(829\) 44.0000 1.52818 0.764092 0.645108i \(-0.223188\pi\)
0.764092 + 0.645108i \(0.223188\pi\)
\(830\) 6.00000 + 10.3923i 0.208263 + 0.360722i
\(831\) −33.0000 19.0526i −1.14476 0.660926i
\(832\) 2.00000 3.46410i 0.0693375 0.120096i
\(833\) −13.5000 + 23.3827i −0.467747 + 0.810162i
\(834\) −1.50000 + 0.866025i −0.0519408 + 0.0299880i
\(835\) 9.00000 + 15.5885i 0.311458 + 0.539461i
\(836\) 15.0000 0.518786
\(837\) −9.00000 5.19615i −0.311086 0.179605i
\(838\) 0 0
\(839\) 15.0000 + 25.9808i 0.517858 + 0.896956i 0.999785 + 0.0207443i \(0.00660359\pi\)
−0.481927 + 0.876211i \(0.660063\pi\)
\(840\) −6.00000 + 3.46410i −0.207020 + 0.119523i
\(841\) −3.50000 + 6.06218i −0.120690 + 0.209041i
\(842\) 1.00000 1.73205i 0.0344623 0.0596904i
\(843\) −9.00000 5.19615i −0.309976 0.178965i
\(844\) 2.00000 + 3.46410i 0.0688428 + 0.119239i
\(845\) 3.00000 0.103203
\(846\) 0 0
\(847\) 8.00000 0.274883
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 34.6410i 1.18888i
\(850\) 1.50000 2.59808i 0.0514496 0.0891133i
\(851\) 12.0000 20.7846i 0.411355 0.712487i
\(852\) 10.3923i 0.356034i
\(853\) −22.0000 38.1051i −0.753266 1.30469i −0.946232 0.323489i \(-0.895144\pi\)
0.192966 0.981205i \(-0.438189\pi\)
\(854\) −40.0000 −1.36877
\(855\) 7.50000 + 12.9904i 0.256495 + 0.444262i
\(856\) 9.00000 0.307614
\(857\) 9.00000 + 15.5885i 0.307434 + 0.532492i 0.977800 0.209539i \(-0.0671963\pi\)
−0.670366 + 0.742030i \(0.733863\pi\)
\(858\) 18.0000 + 10.3923i 0.614510 + 0.354787i
\(859\) 9.50000 16.4545i 0.324136 0.561420i −0.657201 0.753715i \(-0.728260\pi\)
0.981337 + 0.192295i \(0.0615932\pi\)
\(860\) −5.50000 + 9.52628i −0.187548 + 0.324843i
\(861\) −18.0000 + 10.3923i −0.613438 + 0.354169i
\(862\) 12.0000 + 20.7846i 0.408722 + 0.707927i
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 4.50000 + 2.59808i 0.153093 + 0.0883883i
\(865\) −18.0000 −0.612018
\(866\) −6.50000 11.2583i −0.220879 0.382574i
\(867\) 12.0000 6.92820i 0.407541 0.235294i
\(868\) 4.00000 6.92820i 0.135769 0.235159i
\(869\) −21.0000 + 36.3731i −0.712376 + 1.23387i
\(870\) −9.00000 5.19615i −0.305129 0.176166i
\(871\) 10.0000 + 17.3205i 0.338837 + 0.586883i
\(872\) 4.00000 0.135457
\(873\) −33.0000 −1.11688
\(874\) −30.0000 −1.01477
\(875\) 2.00000 + 3.46410i 0.0676123 + 0.117108i
\(876\) 12.1244i 0.409644i
\(877\) −1.00000 + 1.73205i −0.0337676 + 0.0584872i −0.882415 0.470471i \(-0.844084\pi\)
0.848648 + 0.528958i \(0.177417\pi\)
\(878\) −5.00000 + 8.66025i −0.168742 + 0.292269i
\(879\) 31.1769i 1.05157i
\(880\) −1.50000 2.59808i −0.0505650 0.0875811i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) −13.5000 + 23.3827i −0.454569 + 0.787336i
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) 6.00000 + 10.3923i 0.201802 + 0.349531i
\(885\) −4.50000 2.59808i −0.151266 0.0873334i
\(886\) 1.50000 2.59808i 0.0503935 0.0872841i
\(887\) 21.0000 36.3731i 0.705111 1.22129i −0.261540 0.965193i \(-0.584230\pi\)
0.966651 0.256096i \(-0.0824362\pi\)
\(888\) −6.00000 + 3.46410i −0.201347 + 0.116248i
\(889\) 4.00000 + 6.92820i 0.134156 + 0.232364i
\(890\) −6.00000 −0.201120
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) −22.0000 −0.736614
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 + 3.46410i −0.0668153 + 0.115728i
\(897\) −36.0000 20.7846i −1.20201 0.693978i
\(898\) −7.50000 12.9904i −0.250278 0.433495i
\(899\) 12.0000 0.400222
\(900\) 1.50000 2.59808i 0.0500000 0.0866025i
\(901\) 18.0000 0.599667
\(902\) −4.50000 7.79423i −0.149834 0.259519i
\(903\) 76.2102i 2.53612i
\(904\) 9.00000 15.5885i 0.299336 0.518464i
\(905\) 8.00000 13.8564i 0.265929 0.460603i
\(906\) 17.3205i 0.575435i
\(907\) −2.50000 4.33013i −0.0830111 0.143780i 0.821531 0.570164i \(-0.193120\pi\)
−0.904542 + 0.426385i \(0.859787\pi\)
\(908\) −3.00000 −0.0995585
\(909\) 36.0000 1.19404
\(910\) −16.0000 −0.530395
\(911\) 15.0000 + 25.9808i 0.496972 + 0.860781i 0.999994 0.00349271i \(-0.00111177\pi\)
−0.503022 + 0.864274i \(0.667778\pi\)
\(912\) 7.50000 + 4.33013i 0.248350 + 0.143385i
\(913\) −18.0000 + 31.1769i −0.595713 + 1.03181i
\(914\) −0.500000 + 0.866025i −0.0165385 + 0.0286456i
\(915\) 15.0000 8.66025i 0.495885 0.286299i
\(916\) −10.0000 17.3205i −0.330409 0.572286i
\(917\) −48.0000 −1.58510
\(918\) −13.5000 + 7.79423i −0.445566 + 0.257248i
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 3.00000 + 5.19615i 0.0989071 + 0.171312i
\(921\) 10.5000 6.06218i 0.345987 0.199756i
\(922\) 0 0
\(923\) 12.0000 20.7846i 0.394985 0.684134i
\(924\) −18.0000 10.3923i −0.592157 0.341882i
\(925\) 2.00000 + 3.46410i 0.0657596 + 0.113899i
\(926\) −20.0000 −0.657241
\(927\) −6.00000 10.3923i −0.197066 0.341328i
\(928\) −6.00000 −0.196960
\(929\) −15.0000 25.9808i −0.492134 0.852401i 0.507825 0.861460i \(-0.330450\pi\)
−0.999959 + 0.00905914i \(0.997116\pi\)
\(930\) 3.46410i 0.113592i
\(931\) −22.5000 + 38.9711i −0.737408 + 1.27723i
\(932\) −10.5000 + 18.1865i −0.343939 + 0.595720i
\(933\) 10.3923i 0.340229i
\(934\) 10.5000 + 18.1865i 0.343570 + 0.595082i
\(935\) 9.00000 0.294331
\(936\) 6.00000 + 10.3923i 0.196116 + 0.339683i
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) −10.0000 17.3205i −0.326512 0.565535i
\(939\) −1.50000 0.866025i −0.0489506 0.0282617i
\(940\) 0 0
\(941\) −12.0000 + 20.7846i −0.391189 + 0.677559i −0.992607 0.121376i \(-0.961269\pi\)
0.601418 + 0.798935i \(0.294603\pi\)
\(942\) 12.0000 6.92820i 0.390981 0.225733i
\(943\) 9.00000 + 15.5885i 0.293080 + 0.507630i
\(944\) −3.00000 −0.0976417
\(945\) 20.7846i 0.676123i
\(946\) −33.0000 −1.07292
\(947\) −13.5000 23.3827i −0.438691 0.759835i 0.558898 0.829237i \(-0.311224\pi\)
−0.997589 + 0.0694014i \(0.977891\pi\)
\(948\) −21.0000 + 12.1244i −0.682048 + 0.393781i
\(949\) −14.0000 + 24.2487i −0.454459 + 0.787146i
\(950\) 2.50000 4.33013i 0.0811107 0.140488i
\(951\) 36.0000 + 20.7846i 1.16738 + 0.673987i
\(952\) −6.00000 10.3923i −0.194461 0.336817i
\(953\) 51.0000 1.65205 0.826026 0.563632i \(-0.190596\pi\)
0.826026 + 0.563632i \(0.190596\pi\)
\(954\) 18.0000 0.582772
\(955\) 0 0
\(956\) −3.00000 5.19615i −0.0970269 0.168056i
\(957\) 31.1769i 1.00781i
\(958\) −3.00000 + 5.19615i −0.0969256 + 0.167880i
\(959\) −18.0000 + 31.1769i −0.581250 + 1.00676i
\(960\) 1.73205i 0.0559017i
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) −16.0000 −0.515861
\(963\) −13.5000 + 23.3827i −0.435031 + 0.753497i
\(964\) 17.0000 0.547533
\(965\) 6.50000 + 11.2583i 0.209242 + 0.362418i
\(966\) 36.0000 + 20.7846i 1.15828 + 0.668734i
\(967\) 11.0000 19.0526i 0.353736 0.612689i −0.633165 0.774017i \(-0.718244\pi\)
0.986901 + 0.161328i \(0.0515777\pi\)
\(968\) −1.00000 + 1.73205i −0.0321412 + 0.0556702i
\(969\) −22.5000 + 12.9904i −0.722804 + 0.417311i
\(970\) 5.50000 + 9.52628i 0.176594 + 0.305870i
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) −13.5000 + 7.79423i −0.433013 + 0.250000i
\(973\) 4.00000 0.128234
\(974\) 1.00000 + 1.73205i 0.0320421 + 0.0554985i
\(975\) 6.00000 3.46410i 0.192154 0.110940i
\(976\) 5.00000 8.66025i 0.160046 0.277208i
\(977\) 4.50000 7.79423i 0.143968 0.249359i −0.785020 0.619471i \(-0.787347\pi\)
0.928987 + 0.370111i \(0.120681\pi\)
\(978\) 24.0000 + 13.8564i 0.767435 + 0.443079i
\(979\) −9.00000 15.5885i −0.287641 0.498209i
\(980\) 9.00000 0.287494
\(981\) −6.00000 + 10.3923i −0.191565 + 0.331801i
\(982\) 33.0000 1.05307
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 5.19615i 0.165647i
\(985\) 0 0
\(986\) 9.00000 15.5885i 0.286618 0.496438i
\(987\) 0 0
\(988\) 10.0000 + 17.3205i 0.318142 + 0.551039i
\(989\) 66.0000 2.09868
\(990\) 9.00000 0.286039
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 1.00000 + 1.73205i 0.0317500 + 0.0549927i
\(993\) −6.00000 3.46410i −0.190404 0.109930i
\(994\) −12.0000 + 20.7846i −0.380617 + 0.659248i
\(995\) −10.0000 + 17.3205i −0.317021 + 0.549097i
\(996\) −18.0000 + 10.3923i −0.570352 + 0.329293i
\(997\) −13.0000 22.5167i −0.411714 0.713110i 0.583363 0.812211i \(-0.301736\pi\)
−0.995077 + 0.0991016i \(0.968403\pi\)
\(998\) 31.0000 0.981288
\(999\) 20.7846i 0.657596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 90.2.e.b.31.1 2
3.2 odd 2 270.2.e.a.91.1 2
4.3 odd 2 720.2.q.c.481.1 2
5.2 odd 4 450.2.j.a.49.1 4
5.3 odd 4 450.2.j.a.49.2 4
5.4 even 2 450.2.e.d.301.1 2
9.2 odd 6 270.2.e.a.181.1 2
9.4 even 3 810.2.a.a.1.1 1
9.5 odd 6 810.2.a.e.1.1 1
9.7 even 3 inner 90.2.e.b.61.1 yes 2
12.11 even 2 2160.2.q.d.1441.1 2
15.2 even 4 1350.2.j.c.199.2 4
15.8 even 4 1350.2.j.c.199.1 4
15.14 odd 2 1350.2.e.g.901.1 2
36.7 odd 6 720.2.q.c.241.1 2
36.11 even 6 2160.2.q.d.721.1 2
36.23 even 6 6480.2.a.l.1.1 1
36.31 odd 6 6480.2.a.z.1.1 1
45.2 even 12 1350.2.j.c.1099.1 4
45.4 even 6 4050.2.a.bi.1.1 1
45.7 odd 12 450.2.j.a.349.2 4
45.13 odd 12 4050.2.c.p.649.2 2
45.14 odd 6 4050.2.a.q.1.1 1
45.22 odd 12 4050.2.c.p.649.1 2
45.23 even 12 4050.2.c.d.649.1 2
45.29 odd 6 1350.2.e.g.451.1 2
45.32 even 12 4050.2.c.d.649.2 2
45.34 even 6 450.2.e.d.151.1 2
45.38 even 12 1350.2.j.c.1099.2 4
45.43 odd 12 450.2.j.a.349.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.b.31.1 2 1.1 even 1 trivial
90.2.e.b.61.1 yes 2 9.7 even 3 inner
270.2.e.a.91.1 2 3.2 odd 2
270.2.e.a.181.1 2 9.2 odd 6
450.2.e.d.151.1 2 45.34 even 6
450.2.e.d.301.1 2 5.4 even 2
450.2.j.a.49.1 4 5.2 odd 4
450.2.j.a.49.2 4 5.3 odd 4
450.2.j.a.349.1 4 45.43 odd 12
450.2.j.a.349.2 4 45.7 odd 12
720.2.q.c.241.1 2 36.7 odd 6
720.2.q.c.481.1 2 4.3 odd 2
810.2.a.a.1.1 1 9.4 even 3
810.2.a.e.1.1 1 9.5 odd 6
1350.2.e.g.451.1 2 45.29 odd 6
1350.2.e.g.901.1 2 15.14 odd 2
1350.2.j.c.199.1 4 15.8 even 4
1350.2.j.c.199.2 4 15.2 even 4
1350.2.j.c.1099.1 4 45.2 even 12
1350.2.j.c.1099.2 4 45.38 even 12
2160.2.q.d.721.1 2 36.11 even 6
2160.2.q.d.1441.1 2 12.11 even 2
4050.2.a.q.1.1 1 45.14 odd 6
4050.2.a.bi.1.1 1 45.4 even 6
4050.2.c.d.649.1 2 45.23 even 12
4050.2.c.d.649.2 2 45.32 even 12
4050.2.c.p.649.1 2 45.22 odd 12
4050.2.c.p.649.2 2 45.13 odd 12
6480.2.a.l.1.1 1 36.23 even 6
6480.2.a.z.1.1 1 36.31 odd 6