Properties

Label 4050.2.c.p.649.1
Level 40504050
Weight 22
Character 4050.649
Analytic conductor 32.33932.339
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4050,2,Mod(649,4050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4050.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: N N == 4050=23452 4050 = 2 \cdot 3^{4} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4050.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,0,6,0,0,-8,0,2,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.339412818632.3394128186
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 649.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 4050.649
Dual form 4050.2.c.p.649.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000iq21.00000q44.00000iq7+1.00000iq8+3.00000q11+4.00000iq134.00000q14+1.00000q16+3.00000iq175.00000q193.00000iq226.00000iq23+4.00000q26+4.00000iq286.00000q29+2.00000q311.00000iq32+3.00000q344.00000iq37+5.00000iq383.00000q4111.0000iq433.00000q446.00000q469.00000q494.00000iq526.00000iq53+4.00000q56+6.00000iq58+3.00000q5910.0000q612.00000iq621.00000q64+5.00000iq673.00000iq68+6.00000q71+7.00000iq734.00000q74+5.00000q7612.0000iq7714.0000q79+3.00000iq8212.0000iq8311.0000q86+3.00000iq886.00000q89+16.0000q91+6.00000iq92+11.0000iq97+9.00000iq98+O(q100)q-1.00000i q^{2} -1.00000 q^{4} -4.00000i q^{7} +1.00000i q^{8} +3.00000 q^{11} +4.00000i q^{13} -4.00000 q^{14} +1.00000 q^{16} +3.00000i q^{17} -5.00000 q^{19} -3.00000i q^{22} -6.00000i q^{23} +4.00000 q^{26} +4.00000i q^{28} -6.00000 q^{29} +2.00000 q^{31} -1.00000i q^{32} +3.00000 q^{34} -4.00000i q^{37} +5.00000i q^{38} -3.00000 q^{41} -11.0000i q^{43} -3.00000 q^{44} -6.00000 q^{46} -9.00000 q^{49} -4.00000i q^{52} -6.00000i q^{53} +4.00000 q^{56} +6.00000i q^{58} +3.00000 q^{59} -10.0000 q^{61} -2.00000i q^{62} -1.00000 q^{64} +5.00000i q^{67} -3.00000i q^{68} +6.00000 q^{71} +7.00000i q^{73} -4.00000 q^{74} +5.00000 q^{76} -12.0000i q^{77} -14.0000 q^{79} +3.00000i q^{82} -12.0000i q^{83} -11.0000 q^{86} +3.00000i q^{88} -6.00000 q^{89} +16.0000 q^{91} +6.00000i q^{92} +11.0000i q^{97} +9.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q4+6q118q14+2q1610q19+8q2612q29+4q31+6q346q416q4412q4618q49+8q56+6q5920q612q64+12q71++32q91+O(q100) 2 q - 2 q^{4} + 6 q^{11} - 8 q^{14} + 2 q^{16} - 10 q^{19} + 8 q^{26} - 12 q^{29} + 4 q^{31} + 6 q^{34} - 6 q^{41} - 6 q^{44} - 12 q^{46} - 18 q^{49} + 8 q^{56} + 6 q^{59} - 20 q^{61} - 2 q^{64} + 12 q^{71}+ \cdots + 32 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4050Z)×\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times.

nn 23512351 37273727
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 1.00000i − 0.707107i
33 0 0
44 −1.00000 −0.500000
55 0 0
66 0 0
77 − 4.00000i − 1.51186i −0.654654 0.755929i 0.727186π-0.727186\pi
0.654654 0.755929i 0.272814π-0.272814\pi
88 1.00000i 0.353553i
99 0 0
1010 0 0
1111 3.00000 0.904534 0.452267 0.891883i 0.350615π-0.350615\pi
0.452267 + 0.891883i 0.350615π0.350615\pi
1212 0 0
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 −4.00000 −1.06904
1515 0 0
1616 1.00000 0.250000
1717 3.00000i 0.727607i 0.931476 + 0.363803i 0.118522π0.118522\pi
−0.931476 + 0.363803i 0.881478π0.881478\pi
1818 0 0
1919 −5.00000 −1.14708 −0.573539 0.819178i 0.694430π-0.694430\pi
−0.573539 + 0.819178i 0.694430π0.694430\pi
2020 0 0
2121 0 0
2222 − 3.00000i − 0.639602i
2323 − 6.00000i − 1.25109i −0.780189 0.625543i 0.784877π-0.784877\pi
0.780189 0.625543i 0.215123π-0.215123\pi
2424 0 0
2525 0 0
2626 4.00000 0.784465
2727 0 0
2828 4.00000i 0.755929i
2929 −6.00000 −1.11417 −0.557086 0.830455i 0.688081π-0.688081\pi
−0.557086 + 0.830455i 0.688081π0.688081\pi
3030 0 0
3131 2.00000 0.359211 0.179605 0.983739i 0.442518π-0.442518\pi
0.179605 + 0.983739i 0.442518π0.442518\pi
3232 − 1.00000i − 0.176777i
3333 0 0
3434 3.00000 0.514496
3535 0 0
3636 0 0
3737 − 4.00000i − 0.657596i −0.944400 0.328798i 0.893356π-0.893356\pi
0.944400 0.328798i 0.106644π-0.106644\pi
3838 5.00000i 0.811107i
3939 0 0
4040 0 0
4141 −3.00000 −0.468521 −0.234261 0.972174i 0.575267π-0.575267\pi
−0.234261 + 0.972174i 0.575267π0.575267\pi
4242 0 0
4343 − 11.0000i − 1.67748i −0.544529 0.838742i 0.683292π-0.683292\pi
0.544529 0.838742i 0.316708π-0.316708\pi
4444 −3.00000 −0.452267
4545 0 0
4646 −6.00000 −0.884652
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −9.00000 −1.28571
5050 0 0
5151 0 0
5252 − 4.00000i − 0.554700i
5353 − 6.00000i − 0.824163i −0.911147 0.412082i 0.864802π-0.864802\pi
0.911147 0.412082i 0.135198π-0.135198\pi
5454 0 0
5555 0 0
5656 4.00000 0.534522
5757 0 0
5858 6.00000i 0.787839i
5959 3.00000 0.390567 0.195283 0.980747i 0.437437π-0.437437\pi
0.195283 + 0.980747i 0.437437π0.437437\pi
6060 0 0
6161 −10.0000 −1.28037 −0.640184 0.768221i 0.721142π-0.721142\pi
−0.640184 + 0.768221i 0.721142π0.721142\pi
6262 − 2.00000i − 0.254000i
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 5.00000i 0.610847i 0.952217 + 0.305424i 0.0987981π0.0987981\pi
−0.952217 + 0.305424i 0.901202π0.901202\pi
6868 − 3.00000i − 0.363803i
6969 0 0
7070 0 0
7171 6.00000 0.712069 0.356034 0.934473i 0.384129π-0.384129\pi
0.356034 + 0.934473i 0.384129π0.384129\pi
7272 0 0
7373 7.00000i 0.819288i 0.912245 + 0.409644i 0.134347π0.134347\pi
−0.912245 + 0.409644i 0.865653π0.865653\pi
7474 −4.00000 −0.464991
7575 0 0
7676 5.00000 0.573539
7777 − 12.0000i − 1.36753i
7878 0 0
7979 −14.0000 −1.57512 −0.787562 0.616236i 0.788657π-0.788657\pi
−0.787562 + 0.616236i 0.788657π0.788657\pi
8080 0 0
8181 0 0
8282 3.00000i 0.331295i
8383 − 12.0000i − 1.31717i −0.752506 0.658586i 0.771155π-0.771155\pi
0.752506 0.658586i 0.228845π-0.228845\pi
8484 0 0
8585 0 0
8686 −11.0000 −1.18616
8787 0 0
8888 3.00000i 0.319801i
8989 −6.00000 −0.635999 −0.317999 0.948091i 0.603011π-0.603011\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 16.0000 1.67726
9292 6.00000i 0.625543i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 11.0000i 1.11688i 0.829545 + 0.558440i 0.188600π0.188600\pi
−0.829545 + 0.558440i 0.811400π0.811400\pi
9898 9.00000i 0.909137i
9999 0 0
100100 0 0
101101 −12.0000 −1.19404 −0.597022 0.802225i 0.703650π-0.703650\pi
−0.597022 + 0.802225i 0.703650π0.703650\pi
102102 0 0
103103 4.00000i 0.394132i 0.980390 + 0.197066i 0.0631413π0.0631413\pi
−0.980390 + 0.197066i 0.936859π0.936859\pi
104104 −4.00000 −0.392232
105105 0 0
106106 −6.00000 −0.582772
107107 − 9.00000i − 0.870063i −0.900415 0.435031i 0.856737π-0.856737\pi
0.900415 0.435031i 0.143263π-0.143263\pi
108108 0 0
109109 4.00000 0.383131 0.191565 0.981480i 0.438644π-0.438644\pi
0.191565 + 0.981480i 0.438644π0.438644\pi
110110 0 0
111111 0 0
112112 − 4.00000i − 0.377964i
113113 − 18.0000i − 1.69330i −0.532152 0.846649i 0.678617π-0.678617\pi
0.532152 0.846649i 0.321383π-0.321383\pi
114114 0 0
115115 0 0
116116 6.00000 0.557086
117117 0 0
118118 − 3.00000i − 0.276172i
119119 12.0000 1.10004
120120 0 0
121121 −2.00000 −0.181818
122122 10.0000i 0.905357i
123123 0 0
124124 −2.00000 −0.179605
125125 0 0
126126 0 0
127127 2.00000i 0.177471i 0.996055 + 0.0887357i 0.0282826π0.0282826\pi
−0.996055 + 0.0887357i 0.971717π0.971717\pi
128128 1.00000i 0.0883883i
129129 0 0
130130 0 0
131131 12.0000 1.04844 0.524222 0.851581i 0.324356π-0.324356\pi
0.524222 + 0.851581i 0.324356π0.324356\pi
132132 0 0
133133 20.0000i 1.73422i
134134 5.00000 0.431934
135135 0 0
136136 −3.00000 −0.257248
137137 − 9.00000i − 0.768922i −0.923141 0.384461i 0.874387π-0.874387\pi
0.923141 0.384461i 0.125613π-0.125613\pi
138138 0 0
139139 1.00000 0.0848189 0.0424094 0.999100i 0.486497π-0.486497\pi
0.0424094 + 0.999100i 0.486497π0.486497\pi
140140 0 0
141141 0 0
142142 − 6.00000i − 0.503509i
143143 12.0000i 1.00349i
144144 0 0
145145 0 0
146146 7.00000 0.579324
147147 0 0
148148 4.00000i 0.328798i
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 −10.0000 −0.813788 −0.406894 0.913475i 0.633388π-0.633388\pi
−0.406894 + 0.913475i 0.633388π0.633388\pi
152152 − 5.00000i − 0.405554i
153153 0 0
154154 −12.0000 −0.966988
155155 0 0
156156 0 0
157157 8.00000i 0.638470i 0.947676 + 0.319235i 0.103426π0.103426\pi
−0.947676 + 0.319235i 0.896574π0.896574\pi
158158 14.0000i 1.11378i
159159 0 0
160160 0 0
161161 −24.0000 −1.89146
162162 0 0
163163 16.0000i 1.25322i 0.779334 + 0.626608i 0.215557π0.215557\pi
−0.779334 + 0.626608i 0.784443π0.784443\pi
164164 3.00000 0.234261
165165 0 0
166166 −12.0000 −0.931381
167167 − 18.0000i − 1.39288i −0.717614 0.696441i 0.754766π-0.754766\pi
0.717614 0.696441i 0.245234π-0.245234\pi
168168 0 0
169169 −3.00000 −0.230769
170170 0 0
171171 0 0
172172 11.0000i 0.838742i
173173 18.0000i 1.36851i 0.729241 + 0.684257i 0.239873π0.239873\pi
−0.729241 + 0.684257i 0.760127π0.760127\pi
174174 0 0
175175 0 0
176176 3.00000 0.226134
177177 0 0
178178 6.00000i 0.449719i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 −16.0000 −1.18927 −0.594635 0.803996i 0.702704π-0.702704\pi
−0.594635 + 0.803996i 0.702704π0.702704\pi
182182 − 16.0000i − 1.18600i
183183 0 0
184184 6.00000 0.442326
185185 0 0
186186 0 0
187187 9.00000i 0.658145i
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 13.0000i 0.935760i 0.883792 + 0.467880i 0.154982π0.154982\pi
−0.883792 + 0.467880i 0.845018π0.845018\pi
194194 11.0000 0.789754
195195 0 0
196196 9.00000 0.642857
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 −20.0000 −1.41776 −0.708881 0.705328i 0.750800π-0.750800\pi
−0.708881 + 0.705328i 0.750800π0.750800\pi
200200 0 0
201201 0 0
202202 12.0000i 0.844317i
203203 24.0000i 1.68447i
204204 0 0
205205 0 0
206206 4.00000 0.278693
207207 0 0
208208 4.00000i 0.277350i
209209 −15.0000 −1.03757
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 6.00000i 0.412082i
213213 0 0
214214 −9.00000 −0.615227
215215 0 0
216216 0 0
217217 − 8.00000i − 0.543075i
218218 − 4.00000i − 0.270914i
219219 0 0
220220 0 0
221221 −12.0000 −0.807207
222222 0 0
223223 22.0000i 1.47323i 0.676313 + 0.736614i 0.263577π0.263577\pi
−0.676313 + 0.736614i 0.736423π0.736423\pi
224224 −4.00000 −0.267261
225225 0 0
226226 −18.0000 −1.19734
227227 − 3.00000i − 0.199117i −0.995032 0.0995585i 0.968257π-0.968257\pi
0.995032 0.0995585i 0.0317430π-0.0317430\pi
228228 0 0
229229 −20.0000 −1.32164 −0.660819 0.750546i 0.729791π-0.729791\pi
−0.660819 + 0.750546i 0.729791π0.729791\pi
230230 0 0
231231 0 0
232232 − 6.00000i − 0.393919i
233233 − 21.0000i − 1.37576i −0.725826 0.687878i 0.758542π-0.758542\pi
0.725826 0.687878i 0.241458π-0.241458\pi
234234 0 0
235235 0 0
236236 −3.00000 −0.195283
237237 0 0
238238 − 12.0000i − 0.777844i
239239 −6.00000 −0.388108 −0.194054 0.980991i 0.562164π-0.562164\pi
−0.194054 + 0.980991i 0.562164π0.562164\pi
240240 0 0
241241 17.0000 1.09507 0.547533 0.836784i 0.315567π-0.315567\pi
0.547533 + 0.836784i 0.315567π0.315567\pi
242242 2.00000i 0.128565i
243243 0 0
244244 10.0000 0.640184
245245 0 0
246246 0 0
247247 − 20.0000i − 1.27257i
248248 2.00000i 0.127000i
249249 0 0
250250 0 0
251251 −21.0000 −1.32551 −0.662754 0.748837i 0.730613π-0.730613\pi
−0.662754 + 0.748837i 0.730613π0.730613\pi
252252 0 0
253253 − 18.0000i − 1.13165i
254254 2.00000 0.125491
255255 0 0
256256 1.00000 0.0625000
257257 9.00000i 0.561405i 0.959795 + 0.280702i 0.0905674π0.0905674\pi
−0.959795 + 0.280702i 0.909433π0.909433\pi
258258 0 0
259259 −16.0000 −0.994192
260260 0 0
261261 0 0
262262 − 12.0000i − 0.741362i
263263 − 24.0000i − 1.47990i −0.672660 0.739952i 0.734848π-0.734848\pi
0.672660 0.739952i 0.265152π-0.265152\pi
264264 0 0
265265 0 0
266266 20.0000 1.22628
267267 0 0
268268 − 5.00000i − 0.305424i
269269 −6.00000 −0.365826 −0.182913 0.983129i 0.558553π-0.558553\pi
−0.182913 + 0.983129i 0.558553π0.558553\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 3.00000i 0.181902i
273273 0 0
274274 −9.00000 −0.543710
275275 0 0
276276 0 0
277277 − 22.0000i − 1.32185i −0.750451 0.660926i 0.770164π-0.770164\pi
0.750451 0.660926i 0.229836π-0.229836\pi
278278 − 1.00000i − 0.0599760i
279279 0 0
280280 0 0
281281 −6.00000 −0.357930 −0.178965 0.983855i 0.557275π-0.557275\pi
−0.178965 + 0.983855i 0.557275π0.557275\pi
282282 0 0
283283 − 20.0000i − 1.18888i −0.804141 0.594438i 0.797374π-0.797374\pi
0.804141 0.594438i 0.202626π-0.202626\pi
284284 −6.00000 −0.356034
285285 0 0
286286 12.0000 0.709575
287287 12.0000i 0.708338i
288288 0 0
289289 8.00000 0.470588
290290 0 0
291291 0 0
292292 − 7.00000i − 0.409644i
293293 18.0000i 1.05157i 0.850617 + 0.525786i 0.176229π0.176229\pi
−0.850617 + 0.525786i 0.823771π0.823771\pi
294294 0 0
295295 0 0
296296 4.00000 0.232495
297297 0 0
298298 0 0
299299 24.0000 1.38796
300300 0 0
301301 −44.0000 −2.53612
302302 10.0000i 0.575435i
303303 0 0
304304 −5.00000 −0.286770
305305 0 0
306306 0 0
307307 − 7.00000i − 0.399511i −0.979846 0.199756i 0.935985π-0.935985\pi
0.979846 0.199756i 0.0640148π-0.0640148\pi
308308 12.0000i 0.683763i
309309 0 0
310310 0 0
311311 −6.00000 −0.340229 −0.170114 0.985424i 0.554414π-0.554414\pi
−0.170114 + 0.985424i 0.554414π0.554414\pi
312312 0 0
313313 1.00000i 0.0565233i 0.999601 + 0.0282617i 0.00899717π0.00899717\pi
−0.999601 + 0.0282617i 0.991003π0.991003\pi
314314 8.00000 0.451466
315315 0 0
316316 14.0000 0.787562
317317 24.0000i 1.34797i 0.738743 + 0.673987i 0.235420π0.235420\pi
−0.738743 + 0.673987i 0.764580π0.764580\pi
318318 0 0
319319 −18.0000 −1.00781
320320 0 0
321321 0 0
322322 24.0000i 1.33747i
323323 − 15.0000i − 0.834622i
324324 0 0
325325 0 0
326326 16.0000 0.886158
327327 0 0
328328 − 3.00000i − 0.165647i
329329 0 0
330330 0 0
331331 −4.00000 −0.219860 −0.109930 0.993939i 0.535063π-0.535063\pi
−0.109930 + 0.993939i 0.535063π0.535063\pi
332332 12.0000i 0.658586i
333333 0 0
334334 −18.0000 −0.984916
335335 0 0
336336 0 0
337337 − 31.0000i − 1.68868i −0.535810 0.844339i 0.679994π-0.679994\pi
0.535810 0.844339i 0.320006π-0.320006\pi
338338 3.00000i 0.163178i
339339 0 0
340340 0 0
341341 6.00000 0.324918
342342 0 0
343343 8.00000i 0.431959i
344344 11.0000 0.593080
345345 0 0
346346 18.0000 0.967686
347347 21.0000i 1.12734i 0.826000 + 0.563670i 0.190611π0.190611\pi
−0.826000 + 0.563670i 0.809389π0.809389\pi
348348 0 0
349349 16.0000 0.856460 0.428230 0.903670i 0.359137π-0.359137\pi
0.428230 + 0.903670i 0.359137π0.359137\pi
350350 0 0
351351 0 0
352352 − 3.00000i − 0.159901i
353353 − 9.00000i − 0.479022i −0.970894 0.239511i 0.923013π-0.923013\pi
0.970894 0.239511i 0.0769871π-0.0769871\pi
354354 0 0
355355 0 0
356356 6.00000 0.317999
357357 0 0
358358 0 0
359359 24.0000 1.26667 0.633336 0.773877i 0.281685π-0.281685\pi
0.633336 + 0.773877i 0.281685π0.281685\pi
360360 0 0
361361 6.00000 0.315789
362362 16.0000i 0.840941i
363363 0 0
364364 −16.0000 −0.838628
365365 0 0
366366 0 0
367367 8.00000i 0.417597i 0.977959 + 0.208798i 0.0669552π0.0669552\pi
−0.977959 + 0.208798i 0.933045π0.933045\pi
368368 − 6.00000i − 0.312772i
369369 0 0
370370 0 0
371371 −24.0000 −1.24602
372372 0 0
373373 10.0000i 0.517780i 0.965907 + 0.258890i 0.0833568π0.0833568\pi
−0.965907 + 0.258890i 0.916643π0.916643\pi
374374 9.00000 0.465379
375375 0 0
376376 0 0
377377 − 24.0000i − 1.23606i
378378 0 0
379379 −29.0000 −1.48963 −0.744815 0.667271i 0.767462π-0.767462\pi
−0.744815 + 0.667271i 0.767462π0.767462\pi
380380 0 0
381381 0 0
382382 0 0
383383 − 12.0000i − 0.613171i −0.951843 0.306586i 0.900813π-0.900813\pi
0.951843 0.306586i 0.0991866π-0.0991866\pi
384384 0 0
385385 0 0
386386 13.0000 0.661683
387387 0 0
388388 − 11.0000i − 0.558440i
389389 −36.0000 −1.82527 −0.912636 0.408773i 0.865957π-0.865957\pi
−0.912636 + 0.408773i 0.865957π0.865957\pi
390390 0 0
391391 18.0000 0.910299
392392 − 9.00000i − 0.454569i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 8.00000i 0.401508i 0.979642 + 0.200754i 0.0643393π0.0643393\pi
−0.979642 + 0.200754i 0.935661π0.935661\pi
398398 20.0000i 1.00251i
399399 0 0
400400 0 0
401401 33.0000 1.64794 0.823971 0.566632i 0.191754π-0.191754\pi
0.823971 + 0.566632i 0.191754π0.191754\pi
402402 0 0
403403 8.00000i 0.398508i
404404 12.0000 0.597022
405405 0 0
406406 24.0000 1.19110
407407 − 12.0000i − 0.594818i
408408 0 0
409409 31.0000 1.53285 0.766426 0.642333i 0.222033π-0.222033\pi
0.766426 + 0.642333i 0.222033π0.222033\pi
410410 0 0
411411 0 0
412412 − 4.00000i − 0.197066i
413413 − 12.0000i − 0.590481i
414414 0 0
415415 0 0
416416 4.00000 0.196116
417417 0 0
418418 15.0000i 0.733674i
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 2.00000 0.0974740 0.0487370 0.998812i 0.484480π-0.484480\pi
0.0487370 + 0.998812i 0.484480π0.484480\pi
422422 4.00000i 0.194717i
423423 0 0
424424 6.00000 0.291386
425425 0 0
426426 0 0
427427 40.0000i 1.93574i
428428 9.00000i 0.435031i
429429 0 0
430430 0 0
431431 24.0000 1.15604 0.578020 0.816023i 0.303826π-0.303826\pi
0.578020 + 0.816023i 0.303826π0.303826\pi
432432 0 0
433433 13.0000i 0.624740i 0.949960 + 0.312370i 0.101123π0.101123\pi
−0.949960 + 0.312370i 0.898877π0.898877\pi
434434 −8.00000 −0.384012
435435 0 0
436436 −4.00000 −0.191565
437437 30.0000i 1.43509i
438438 0 0
439439 10.0000 0.477274 0.238637 0.971109i 0.423299π-0.423299\pi
0.238637 + 0.971109i 0.423299π0.423299\pi
440440 0 0
441441 0 0
442442 12.0000i 0.570782i
443443 − 3.00000i − 0.142534i −0.997457 0.0712672i 0.977296π-0.977296\pi
0.997457 0.0712672i 0.0227043π-0.0227043\pi
444444 0 0
445445 0 0
446446 22.0000 1.04173
447447 0 0
448448 4.00000i 0.188982i
449449 15.0000 0.707894 0.353947 0.935266i 0.384839π-0.384839\pi
0.353947 + 0.935266i 0.384839π0.384839\pi
450450 0 0
451451 −9.00000 −0.423793
452452 18.0000i 0.846649i
453453 0 0
454454 −3.00000 −0.140797
455455 0 0
456456 0 0
457457 − 1.00000i − 0.0467780i −0.999726 0.0233890i 0.992554π-0.992554\pi
0.999726 0.0233890i 0.00744563π-0.00744563\pi
458458 20.0000i 0.934539i
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 − 20.0000i − 0.929479i −0.885448 0.464739i 0.846148π-0.846148\pi
0.885448 0.464739i 0.153852π-0.153852\pi
464464 −6.00000 −0.278543
465465 0 0
466466 −21.0000 −0.972806
467467 21.0000i 0.971764i 0.874024 + 0.485882i 0.161502π0.161502\pi
−0.874024 + 0.485882i 0.838498π0.838498\pi
468468 0 0
469469 20.0000 0.923514
470470 0 0
471471 0 0
472472 3.00000i 0.138086i
473473 − 33.0000i − 1.51734i
474474 0 0
475475 0 0
476476 −12.0000 −0.550019
477477 0 0
478478 6.00000i 0.274434i
479479 6.00000 0.274147 0.137073 0.990561i 0.456230π-0.456230\pi
0.137073 + 0.990561i 0.456230π0.456230\pi
480480 0 0
481481 16.0000 0.729537
482482 − 17.0000i − 0.774329i
483483 0 0
484484 2.00000 0.0909091
485485 0 0
486486 0 0
487487 2.00000i 0.0906287i 0.998973 + 0.0453143i 0.0144289π0.0144289\pi
−0.998973 + 0.0453143i 0.985571π0.985571\pi
488488 − 10.0000i − 0.452679i
489489 0 0
490490 0 0
491491 −33.0000 −1.48927 −0.744635 0.667472i 0.767376π-0.767376\pi
−0.744635 + 0.667472i 0.767376π0.767376\pi
492492 0 0
493493 − 18.0000i − 0.810679i
494494 −20.0000 −0.899843
495495 0 0
496496 2.00000 0.0898027
497497 − 24.0000i − 1.07655i
498498 0 0
499499 31.0000 1.38775 0.693875 0.720095i 0.255902π-0.255902\pi
0.693875 + 0.720095i 0.255902π0.255902\pi
500500 0 0
501501 0 0
502502 21.0000i 0.937276i
503503 − 6.00000i − 0.267527i −0.991013 0.133763i 0.957294π-0.957294\pi
0.991013 0.133763i 0.0427062π-0.0427062\pi
504504 0 0
505505 0 0
506506 −18.0000 −0.800198
507507 0 0
508508 − 2.00000i − 0.0887357i
509509 12.0000 0.531891 0.265945 0.963988i 0.414316π-0.414316\pi
0.265945 + 0.963988i 0.414316π0.414316\pi
510510 0 0
511511 28.0000 1.23865
512512 − 1.00000i − 0.0441942i
513513 0 0
514514 9.00000 0.396973
515515 0 0
516516 0 0
517517 0 0
518518 16.0000i 0.703000i
519519 0 0
520520 0 0
521521 −3.00000 −0.131432 −0.0657162 0.997838i 0.520933π-0.520933\pi
−0.0657162 + 0.997838i 0.520933π0.520933\pi
522522 0 0
523523 − 20.0000i − 0.874539i −0.899331 0.437269i 0.855946π-0.855946\pi
0.899331 0.437269i 0.144054π-0.144054\pi
524524 −12.0000 −0.524222
525525 0 0
526526 −24.0000 −1.04645
527527 6.00000i 0.261364i
528528 0 0
529529 −13.0000 −0.565217
530530 0 0
531531 0 0
532532 − 20.0000i − 0.867110i
533533 − 12.0000i − 0.519778i
534534 0 0
535535 0 0
536536 −5.00000 −0.215967
537537 0 0
538538 6.00000i 0.258678i
539539 −27.0000 −1.16297
540540 0 0
541541 8.00000 0.343947 0.171973 0.985102i 0.444986π-0.444986\pi
0.171973 + 0.985102i 0.444986π0.444986\pi
542542 16.0000i 0.687259i
543543 0 0
544544 3.00000 0.128624
545545 0 0
546546 0 0
547547 − 1.00000i − 0.0427569i −0.999771 0.0213785i 0.993195π-0.993195\pi
0.999771 0.0213785i 0.00680549π-0.00680549\pi
548548 9.00000i 0.384461i
549549 0 0
550550 0 0
551551 30.0000 1.27804
552552 0 0
553553 56.0000i 2.38136i
554554 −22.0000 −0.934690
555555 0 0
556556 −1.00000 −0.0424094
557557 − 12.0000i − 0.508456i −0.967144 0.254228i 0.918179π-0.918179\pi
0.967144 0.254228i 0.0818214π-0.0818214\pi
558558 0 0
559559 44.0000 1.86100
560560 0 0
561561 0 0
562562 6.00000i 0.253095i
563563 3.00000i 0.126435i 0.998000 + 0.0632175i 0.0201362π0.0201362\pi
−0.998000 + 0.0632175i 0.979864π0.979864\pi
564564 0 0
565565 0 0
566566 −20.0000 −0.840663
567567 0 0
568568 6.00000i 0.251754i
569569 39.0000 1.63497 0.817483 0.575953i 0.195369π-0.195369\pi
0.817483 + 0.575953i 0.195369π0.195369\pi
570570 0 0
571571 29.0000 1.21361 0.606806 0.794850i 0.292450π-0.292450\pi
0.606806 + 0.794850i 0.292450π0.292450\pi
572572 − 12.0000i − 0.501745i
573573 0 0
574574 12.0000 0.500870
575575 0 0
576576 0 0
577577 − 7.00000i − 0.291414i −0.989328 0.145707i 0.953454π-0.953454\pi
0.989328 0.145707i 0.0465456π-0.0465456\pi
578578 − 8.00000i − 0.332756i
579579 0 0
580580 0 0
581581 −48.0000 −1.99138
582582 0 0
583583 − 18.0000i − 0.745484i
584584 −7.00000 −0.289662
585585 0 0
586586 18.0000 0.743573
587587 39.0000i 1.60970i 0.593477 + 0.804851i 0.297755π0.297755\pi
−0.593477 + 0.804851i 0.702245π0.702245\pi
588588 0 0
589589 −10.0000 −0.412043
590590 0 0
591591 0 0
592592 − 4.00000i − 0.164399i
593593 18.0000i 0.739171i 0.929197 + 0.369586i 0.120500π0.120500\pi
−0.929197 + 0.369586i 0.879500π0.879500\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 − 24.0000i − 0.981433i
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −25.0000 −1.01977 −0.509886 0.860242i 0.670312π-0.670312\pi
−0.509886 + 0.860242i 0.670312π0.670312\pi
602602 44.0000i 1.79331i
603603 0 0
604604 10.0000 0.406894
605605 0 0
606606 0 0
607607 8.00000i 0.324710i 0.986732 + 0.162355i 0.0519090π0.0519090\pi
−0.986732 + 0.162355i 0.948091π0.948091\pi
608608 5.00000i 0.202777i
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 − 2.00000i − 0.0807792i −0.999184 0.0403896i 0.987140π-0.987140\pi
0.999184 0.0403896i 0.0128599π-0.0128599\pi
614614 −7.00000 −0.282497
615615 0 0
616616 12.0000 0.483494
617617 − 39.0000i − 1.57008i −0.619445 0.785040i 0.712642π-0.712642\pi
0.619445 0.785040i 0.287358π-0.287358\pi
618618 0 0
619619 19.0000 0.763674 0.381837 0.924230i 0.375291π-0.375291\pi
0.381837 + 0.924230i 0.375291π0.375291\pi
620620 0 0
621621 0 0
622622 6.00000i 0.240578i
623623 24.0000i 0.961540i
624624 0 0
625625 0 0
626626 1.00000 0.0399680
627627 0 0
628628 − 8.00000i − 0.319235i
629629 12.0000 0.478471
630630 0 0
631631 −34.0000 −1.35352 −0.676759 0.736204i 0.736616π-0.736616\pi
−0.676759 + 0.736204i 0.736616π0.736616\pi
632632 − 14.0000i − 0.556890i
633633 0 0
634634 24.0000 0.953162
635635 0 0
636636 0 0
637637 − 36.0000i − 1.42637i
638638 18.0000i 0.712627i
639639 0 0
640640 0 0
641641 9.00000 0.355479 0.177739 0.984078i 0.443122π-0.443122\pi
0.177739 + 0.984078i 0.443122π0.443122\pi
642642 0 0
643643 − 23.0000i − 0.907031i −0.891248 0.453516i 0.850170π-0.850170\pi
0.891248 0.453516i 0.149830π-0.149830\pi
644644 24.0000 0.945732
645645 0 0
646646 −15.0000 −0.590167
647647 6.00000i 0.235884i 0.993020 + 0.117942i 0.0376297π0.0376297\pi
−0.993020 + 0.117942i 0.962370π0.962370\pi
648648 0 0
649649 9.00000 0.353281
650650 0 0
651651 0 0
652652 − 16.0000i − 0.626608i
653653 − 42.0000i − 1.64359i −0.569785 0.821794i 0.692974π-0.692974\pi
0.569785 0.821794i 0.307026π-0.307026\pi
654654 0 0
655655 0 0
656656 −3.00000 −0.117130
657657 0 0
658658 0 0
659659 36.0000 1.40236 0.701180 0.712984i 0.252657π-0.252657\pi
0.701180 + 0.712984i 0.252657π0.252657\pi
660660 0 0
661661 32.0000 1.24466 0.622328 0.782757i 0.286187π-0.286187\pi
0.622328 + 0.782757i 0.286187π0.286187\pi
662662 4.00000i 0.155464i
663663 0 0
664664 12.0000 0.465690
665665 0 0
666666 0 0
667667 36.0000i 1.39393i
668668 18.0000i 0.696441i
669669 0 0
670670 0 0
671671 −30.0000 −1.15814
672672 0 0
673673 − 14.0000i − 0.539660i −0.962908 0.269830i 0.913032π-0.913032\pi
0.962908 0.269830i 0.0869676π-0.0869676\pi
674674 −31.0000 −1.19408
675675 0 0
676676 3.00000 0.115385
677677 − 36.0000i − 1.38359i −0.722093 0.691796i 0.756820π-0.756820\pi
0.722093 0.691796i 0.243180π-0.243180\pi
678678 0 0
679679 44.0000 1.68857
680680 0 0
681681 0 0
682682 − 6.00000i − 0.229752i
683683 21.0000i 0.803543i 0.915740 + 0.401771i 0.131605π0.131605\pi
−0.915740 + 0.401771i 0.868395π0.868395\pi
684684 0 0
685685 0 0
686686 8.00000 0.305441
687687 0 0
688688 − 11.0000i − 0.419371i
689689 24.0000 0.914327
690690 0 0
691691 8.00000 0.304334 0.152167 0.988355i 0.451375π-0.451375\pi
0.152167 + 0.988355i 0.451375π0.451375\pi
692692 − 18.0000i − 0.684257i
693693 0 0
694694 21.0000 0.797149
695695 0 0
696696 0 0
697697 − 9.00000i − 0.340899i
698698 − 16.0000i − 0.605609i
699699 0 0
700700 0 0
701701 42.0000 1.58632 0.793159 0.609015i 0.208435π-0.208435\pi
0.793159 + 0.609015i 0.208435π0.208435\pi
702702 0 0
703703 20.0000i 0.754314i
704704 −3.00000 −0.113067
705705 0 0
706706 −9.00000 −0.338719
707707 48.0000i 1.80523i
708708 0 0
709709 34.0000 1.27690 0.638448 0.769665i 0.279577π-0.279577\pi
0.638448 + 0.769665i 0.279577π0.279577\pi
710710 0 0
711711 0 0
712712 − 6.00000i − 0.224860i
713713 − 12.0000i − 0.449404i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 − 24.0000i − 0.895672i
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 16.0000 0.595871
722722 − 6.00000i − 0.223297i
723723 0 0
724724 16.0000 0.594635
725725 0 0
726726 0 0
727727 − 28.0000i − 1.03846i −0.854634 0.519231i 0.826218π-0.826218\pi
0.854634 0.519231i 0.173782π-0.173782\pi
728728 16.0000i 0.592999i
729729 0 0
730730 0 0
731731 33.0000 1.22055
732732 0 0
733733 − 32.0000i − 1.18195i −0.806691 0.590973i 0.798744π-0.798744\pi
0.806691 0.590973i 0.201256π-0.201256\pi
734734 8.00000 0.295285
735735 0 0
736736 −6.00000 −0.221163
737737 15.0000i 0.552532i
738738 0 0
739739 −29.0000 −1.06678 −0.533391 0.845869i 0.679083π-0.679083\pi
−0.533391 + 0.845869i 0.679083π0.679083\pi
740740 0 0
741741 0 0
742742 24.0000i 0.881068i
743743 6.00000i 0.220119i 0.993925 + 0.110059i 0.0351041π0.0351041\pi
−0.993925 + 0.110059i 0.964896π0.964896\pi
744744 0 0
745745 0 0
746746 10.0000 0.366126
747747 0 0
748748 − 9.00000i − 0.329073i
749749 −36.0000 −1.31541
750750 0 0
751751 −28.0000 −1.02173 −0.510867 0.859660i 0.670676π-0.670676\pi
−0.510867 + 0.859660i 0.670676π0.670676\pi
752752 0 0
753753 0 0
754754 −24.0000 −0.874028
755755 0 0
756756 0 0
757757 38.0000i 1.38113i 0.723269 + 0.690567i 0.242639π0.242639\pi
−0.723269 + 0.690567i 0.757361π0.757361\pi
758758 29.0000i 1.05333i
759759 0 0
760760 0 0
761761 18.0000 0.652499 0.326250 0.945284i 0.394215π-0.394215\pi
0.326250 + 0.945284i 0.394215π0.394215\pi
762762 0 0
763763 − 16.0000i − 0.579239i
764764 0 0
765765 0 0
766766 −12.0000 −0.433578
767767 12.0000i 0.433295i
768768 0 0
769769 −50.0000 −1.80305 −0.901523 0.432731i 0.857550π-0.857550\pi
−0.901523 + 0.432731i 0.857550π0.857550\pi
770770 0 0
771771 0 0
772772 − 13.0000i − 0.467880i
773773 30.0000i 1.07903i 0.841978 + 0.539513i 0.181391π0.181391\pi
−0.841978 + 0.539513i 0.818609π0.818609\pi
774774 0 0
775775 0 0
776776 −11.0000 −0.394877
777777 0 0
778778 36.0000i 1.29066i
779779 15.0000 0.537431
780780 0 0
781781 18.0000 0.644091
782782 − 18.0000i − 0.643679i
783783 0 0
784784 −9.00000 −0.321429
785785 0 0
786786 0 0
787787 − 4.00000i − 0.142585i −0.997455 0.0712923i 0.977288π-0.977288\pi
0.997455 0.0712923i 0.0227123π-0.0227123\pi
788788 0 0
789789 0 0
790790 0 0
791791 −72.0000 −2.56003
792792 0 0
793793 − 40.0000i − 1.42044i
794794 8.00000 0.283909
795795 0 0
796796 20.0000 0.708881
797797 − 48.0000i − 1.70025i −0.526583 0.850124i 0.676527π-0.676527\pi
0.526583 0.850124i 0.323473π-0.323473\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 − 33.0000i − 1.16527i
803803 21.0000i 0.741074i
804804 0 0
805805 0 0
806806 8.00000 0.281788
807807 0 0
808808 − 12.0000i − 0.422159i
809809 39.0000 1.37117 0.685583 0.727994i 0.259547π-0.259547\pi
0.685583 + 0.727994i 0.259547π0.259547\pi
810810 0 0
811811 35.0000 1.22902 0.614508 0.788911i 0.289355π-0.289355\pi
0.614508 + 0.788911i 0.289355π0.289355\pi
812812 − 24.0000i − 0.842235i
813813 0 0
814814 −12.0000 −0.420600
815815 0 0
816816 0 0
817817 55.0000i 1.92421i
818818 − 31.0000i − 1.08389i
819819 0 0
820820 0 0
821821 −48.0000 −1.67521 −0.837606 0.546275i 0.816045π-0.816045\pi
−0.837606 + 0.546275i 0.816045π0.816045\pi
822822 0 0
823823 4.00000i 0.139431i 0.997567 + 0.0697156i 0.0222092π0.0222092\pi
−0.997567 + 0.0697156i 0.977791π0.977791\pi
824824 −4.00000 −0.139347
825825 0 0
826826 −12.0000 −0.417533
827827 − 36.0000i − 1.25184i −0.779886 0.625921i 0.784723π-0.784723\pi
0.779886 0.625921i 0.215277π-0.215277\pi
828828 0 0
829829 −44.0000 −1.52818 −0.764092 0.645108i 0.776812π-0.776812\pi
−0.764092 + 0.645108i 0.776812π0.776812\pi
830830 0 0
831831 0 0
832832 − 4.00000i − 0.138675i
833833 − 27.0000i − 0.935495i
834834 0 0
835835 0 0
836836 15.0000 0.518786
837837 0 0
838838 0 0
839839 30.0000 1.03572 0.517858 0.855467i 0.326730π-0.326730\pi
0.517858 + 0.855467i 0.326730π0.326730\pi
840840 0 0
841841 7.00000 0.241379
842842 − 2.00000i − 0.0689246i
843843 0 0
844844 4.00000 0.137686
845845 0 0
846846 0 0
847847 8.00000i 0.274883i
848848 − 6.00000i − 0.206041i
849849 0 0
850850 0 0
851851 −24.0000 −0.822709
852852 0 0
853853 − 44.0000i − 1.50653i −0.657716 0.753266i 0.728477π-0.728477\pi
0.657716 0.753266i 0.271523π-0.271523\pi
854854 40.0000 1.36877
855855 0 0
856856 9.00000 0.307614
857857 − 18.0000i − 0.614868i −0.951569 0.307434i 0.900530π-0.900530\pi
0.951569 0.307434i 0.0994704π-0.0994704\pi
858858 0 0
859859 19.0000 0.648272 0.324136 0.946011i 0.394927π-0.394927\pi
0.324136 + 0.946011i 0.394927π0.394927\pi
860860 0 0
861861 0 0
862862 − 24.0000i − 0.817443i
863863 6.00000i 0.204242i 0.994772 + 0.102121i 0.0325630π0.0325630\pi
−0.994772 + 0.102121i 0.967437π0.967437\pi
864864 0 0
865865 0 0
866866 13.0000 0.441758
867867 0 0
868868 8.00000i 0.271538i
869869 −42.0000 −1.42475
870870 0 0
871871 −20.0000 −0.677674
872872 4.00000i 0.135457i
873873 0 0
874874 30.0000 1.01477
875875 0 0
876876 0 0
877877 2.00000i 0.0675352i 0.999430 + 0.0337676i 0.0107506π0.0107506\pi
−0.999430 + 0.0337676i 0.989249π0.989249\pi
878878 − 10.0000i − 0.337484i
879879 0 0
880880 0 0
881881 30.0000 1.01073 0.505363 0.862907i 0.331359π-0.331359\pi
0.505363 + 0.862907i 0.331359π0.331359\pi
882882 0 0
883883 − 41.0000i − 1.37976i −0.723924 0.689880i 0.757663π-0.757663\pi
0.723924 0.689880i 0.242337π-0.242337\pi
884884 12.0000 0.403604
885885 0 0
886886 −3.00000 −0.100787
887887 − 42.0000i − 1.41022i −0.709097 0.705111i 0.750897π-0.750897\pi
0.709097 0.705111i 0.249103π-0.249103\pi
888888 0 0
889889 8.00000 0.268311
890890 0 0
891891 0 0
892892 − 22.0000i − 0.736614i
893893 0 0
894894 0 0
895895 0 0
896896 4.00000 0.133631
897897 0 0
898898 − 15.0000i − 0.500556i
899899 −12.0000 −0.400222
900900 0 0
901901 18.0000 0.599667
902902 9.00000i 0.299667i
903903 0 0
904904 18.0000 0.598671
905905 0 0
906906 0 0
907907 5.00000i 0.166022i 0.996549 + 0.0830111i 0.0264537π0.0264537\pi
−0.996549 + 0.0830111i 0.973546π0.973546\pi
908908 3.00000i 0.0995585i
909909 0 0
910910 0 0
911911 −30.0000 −0.993944 −0.496972 0.867766i 0.665555π-0.665555\pi
−0.496972 + 0.867766i 0.665555π0.665555\pi
912912 0 0
913913 − 36.0000i − 1.19143i
914914 −1.00000 −0.0330771
915915 0 0
916916 20.0000 0.660819
917917 − 48.0000i − 1.58510i
918918 0 0
919919 34.0000 1.12156 0.560778 0.827966i 0.310502π-0.310502\pi
0.560778 + 0.827966i 0.310502π0.310502\pi
920920 0 0
921921 0 0
922922 0 0
923923 24.0000i 0.789970i
924924 0 0
925925 0 0
926926 −20.0000 −0.657241
927927 0 0
928928 6.00000i 0.196960i
929929 −30.0000 −0.984268 −0.492134 0.870519i 0.663783π-0.663783\pi
−0.492134 + 0.870519i 0.663783π0.663783\pi
930930 0 0
931931 45.0000 1.47482
932932 21.0000i 0.687878i
933933 0 0
934934 21.0000 0.687141
935935 0 0
936936 0 0
937937 − 10.0000i − 0.326686i −0.986569 0.163343i 0.947772π-0.947772\pi
0.986569 0.163343i 0.0522277π-0.0522277\pi
938938 − 20.0000i − 0.653023i
939939 0 0
940940 0 0
941941 24.0000 0.782378 0.391189 0.920310i 0.372064π-0.372064\pi
0.391189 + 0.920310i 0.372064π0.372064\pi
942942 0 0
943943 18.0000i 0.586161i
944944 3.00000 0.0976417
945945 0 0
946946 −33.0000 −1.07292
947947 27.0000i 0.877382i 0.898638 + 0.438691i 0.144558π0.144558\pi
−0.898638 + 0.438691i 0.855442π0.855442\pi
948948 0 0
949949 −28.0000 −0.908918
950950 0 0
951951 0 0
952952 12.0000i 0.388922i
953953 − 51.0000i − 1.65205i −0.563632 0.826026i 0.690596π-0.690596\pi
0.563632 0.826026i 0.309404π-0.309404\pi
954954 0 0
955955 0 0
956956 6.00000 0.194054
957957 0 0
958958 − 6.00000i − 0.193851i
959959 −36.0000 −1.16250
960960 0 0
961961 −27.0000 −0.870968
962962 − 16.0000i − 0.515861i
963963 0 0
964964 −17.0000 −0.547533
965965 0 0
966966 0 0
967967 − 22.0000i − 0.707472i −0.935345 0.353736i 0.884911π-0.884911\pi
0.935345 0.353736i 0.115089π-0.115089\pi
968968 − 2.00000i − 0.0642824i
969969 0 0
970970 0 0
971971 60.0000 1.92549 0.962746 0.270408i 0.0871586π-0.0871586\pi
0.962746 + 0.270408i 0.0871586π0.0871586\pi
972972 0 0
973973 − 4.00000i − 0.128234i
974974 2.00000 0.0640841
975975 0 0
976976 −10.0000 −0.320092
977977 − 9.00000i − 0.287936i −0.989582 0.143968i 0.954014π-0.954014\pi
0.989582 0.143968i 0.0459862π-0.0459862\pi
978978 0 0
979979 −18.0000 −0.575282
980980 0 0
981981 0 0
982982 33.0000i 1.05307i
983983 − 36.0000i − 1.14822i −0.818778 0.574111i 0.805348π-0.805348\pi
0.818778 0.574111i 0.194652π-0.194652\pi
984984 0 0
985985 0 0
986986 −18.0000 −0.573237
987987 0 0
988988 20.0000i 0.636285i
989989 −66.0000 −2.09868
990990 0 0
991991 20.0000 0.635321 0.317660 0.948205i 0.397103π-0.397103\pi
0.317660 + 0.948205i 0.397103π0.397103\pi
992992 − 2.00000i − 0.0635001i
993993 0 0
994994 −24.0000 −0.761234
995995 0 0
996996 0 0
997997 26.0000i 0.823428i 0.911313 + 0.411714i 0.135070π0.135070\pi
−0.911313 + 0.411714i 0.864930π0.864930\pi
998998 − 31.0000i − 0.981288i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.p.649.1 2
3.2 odd 2 4050.2.c.d.649.2 2
5.2 odd 4 4050.2.a.bi.1.1 1
5.3 odd 4 810.2.a.a.1.1 1
5.4 even 2 inner 4050.2.c.p.649.2 2
9.2 odd 6 1350.2.j.c.199.2 4
9.4 even 3 450.2.j.a.349.2 4
9.5 odd 6 1350.2.j.c.1099.1 4
9.7 even 3 450.2.j.a.49.1 4
15.2 even 4 4050.2.a.q.1.1 1
15.8 even 4 810.2.a.e.1.1 1
15.14 odd 2 4050.2.c.d.649.1 2
20.3 even 4 6480.2.a.z.1.1 1
45.2 even 12 1350.2.e.g.901.1 2
45.4 even 6 450.2.j.a.349.1 4
45.7 odd 12 450.2.e.d.301.1 2
45.13 odd 12 90.2.e.b.61.1 yes 2
45.14 odd 6 1350.2.j.c.1099.2 4
45.22 odd 12 450.2.e.d.151.1 2
45.23 even 12 270.2.e.a.181.1 2
45.29 odd 6 1350.2.j.c.199.1 4
45.32 even 12 1350.2.e.g.451.1 2
45.34 even 6 450.2.j.a.49.2 4
45.38 even 12 270.2.e.a.91.1 2
45.43 odd 12 90.2.e.b.31.1 2
60.23 odd 4 6480.2.a.l.1.1 1
180.23 odd 12 2160.2.q.d.721.1 2
180.43 even 12 720.2.q.c.481.1 2
180.83 odd 12 2160.2.q.d.1441.1 2
180.103 even 12 720.2.q.c.241.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.b.31.1 2 45.43 odd 12
90.2.e.b.61.1 yes 2 45.13 odd 12
270.2.e.a.91.1 2 45.38 even 12
270.2.e.a.181.1 2 45.23 even 12
450.2.e.d.151.1 2 45.22 odd 12
450.2.e.d.301.1 2 45.7 odd 12
450.2.j.a.49.1 4 9.7 even 3
450.2.j.a.49.2 4 45.34 even 6
450.2.j.a.349.1 4 45.4 even 6
450.2.j.a.349.2 4 9.4 even 3
720.2.q.c.241.1 2 180.103 even 12
720.2.q.c.481.1 2 180.43 even 12
810.2.a.a.1.1 1 5.3 odd 4
810.2.a.e.1.1 1 15.8 even 4
1350.2.e.g.451.1 2 45.32 even 12
1350.2.e.g.901.1 2 45.2 even 12
1350.2.j.c.199.1 4 45.29 odd 6
1350.2.j.c.199.2 4 9.2 odd 6
1350.2.j.c.1099.1 4 9.5 odd 6
1350.2.j.c.1099.2 4 45.14 odd 6
2160.2.q.d.721.1 2 180.23 odd 12
2160.2.q.d.1441.1 2 180.83 odd 12
4050.2.a.q.1.1 1 15.2 even 4
4050.2.a.bi.1.1 1 5.2 odd 4
4050.2.c.d.649.1 2 15.14 odd 2
4050.2.c.d.649.2 2 3.2 odd 2
4050.2.c.p.649.1 2 1.1 even 1 trivial
4050.2.c.p.649.2 2 5.4 even 2 inner
6480.2.a.l.1.1 1 60.23 odd 4
6480.2.a.z.1.1 1 20.3 even 4