Properties

Label 450.2.e.d.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(151,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,3,-1,0,-3,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.d.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 + 0.866025i) q^{6} +(-2.00000 + 3.46410i) q^{7} +1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(-1.50000 + 2.59808i) q^{11} -1.73205i q^{12} +(-2.00000 - 3.46410i) q^{13} +(-2.00000 - 3.46410i) q^{14} +(-0.500000 + 0.866025i) q^{16} -3.00000 q^{17} -3.00000 q^{18} +5.00000 q^{19} +(-6.00000 + 3.46410i) q^{21} +(-1.50000 - 2.59808i) q^{22} +(3.00000 + 5.19615i) q^{23} +(1.50000 + 0.866025i) q^{24} +4.00000 q^{26} +5.19615i q^{27} +4.00000 q^{28} +(-3.00000 + 5.19615i) q^{29} +(-1.00000 - 1.73205i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-4.50000 + 2.59808i) q^{33} +(1.50000 - 2.59808i) q^{34} +(1.50000 - 2.59808i) q^{36} +4.00000 q^{37} +(-2.50000 + 4.33013i) q^{38} -6.92820i q^{39} +(1.50000 + 2.59808i) q^{41} -6.92820i q^{42} +(5.50000 - 9.52628i) q^{43} +3.00000 q^{44} -6.00000 q^{46} +(-1.50000 + 0.866025i) q^{48} +(-4.50000 - 7.79423i) q^{49} +(-4.50000 - 2.59808i) q^{51} +(-2.00000 + 3.46410i) q^{52} -6.00000 q^{53} +(-4.50000 - 2.59808i) q^{54} +(-2.00000 + 3.46410i) q^{56} +(7.50000 + 4.33013i) q^{57} +(-3.00000 - 5.19615i) q^{58} +(1.50000 + 2.59808i) q^{59} +(5.00000 - 8.66025i) q^{61} +2.00000 q^{62} -12.0000 q^{63} +1.00000 q^{64} -5.19615i q^{66} +(2.50000 + 4.33013i) q^{67} +(1.50000 + 2.59808i) q^{68} +10.3923i q^{69} +6.00000 q^{71} +(1.50000 + 2.59808i) q^{72} +7.00000 q^{73} +(-2.00000 + 3.46410i) q^{74} +(-2.50000 - 4.33013i) q^{76} +(-6.00000 - 10.3923i) q^{77} +(6.00000 + 3.46410i) q^{78} +(-7.00000 + 12.1244i) q^{79} +(-4.50000 + 7.79423i) q^{81} -3.00000 q^{82} +(6.00000 - 10.3923i) q^{83} +(6.00000 + 3.46410i) q^{84} +(5.50000 + 9.52628i) q^{86} +(-9.00000 + 5.19615i) q^{87} +(-1.50000 + 2.59808i) q^{88} +6.00000 q^{89} +16.0000 q^{91} +(3.00000 - 5.19615i) q^{92} -3.46410i q^{93} -1.73205i q^{96} +(5.50000 - 9.52628i) q^{97} +9.00000 q^{98} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{3} - q^{4} - 3 q^{6} - 4 q^{7} + 2 q^{8} + 3 q^{9} - 3 q^{11} - 4 q^{13} - 4 q^{14} - q^{16} - 6 q^{17} - 6 q^{18} + 10 q^{19} - 12 q^{21} - 3 q^{22} + 6 q^{23} + 3 q^{24} + 8 q^{26}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) −1.50000 + 0.866025i −0.612372 + 0.353553i
\(7\) −2.00000 + 3.46410i −0.755929 + 1.30931i 0.188982 + 0.981981i \(0.439481\pi\)
−0.944911 + 0.327327i \(0.893852\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 1.73205i 0.500000i
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) −2.00000 3.46410i −0.534522 0.925820i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) −3.00000 −0.707107
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) −6.00000 + 3.46410i −1.30931 + 0.755929i
\(22\) −1.50000 2.59808i −0.319801 0.553912i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 1.50000 + 0.866025i 0.306186 + 0.176777i
\(25\) 0 0
\(26\) 4.00000 0.784465
\(27\) 5.19615i 1.00000i
\(28\) 4.00000 0.755929
\(29\) −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i \(0.354747\pi\)
−0.997738 + 0.0672232i \(0.978586\pi\)
\(30\) 0 0
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −4.50000 + 2.59808i −0.783349 + 0.452267i
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) 0 0
\(36\) 1.50000 2.59808i 0.250000 0.433013i
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −2.50000 + 4.33013i −0.405554 + 0.702439i
\(39\) 6.92820i 1.10940i
\(40\) 0 0
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 6.92820i 1.06904i
\(43\) 5.50000 9.52628i 0.838742 1.45274i −0.0522047 0.998636i \(-0.516625\pi\)
0.890947 0.454108i \(-0.150042\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −1.50000 + 0.866025i −0.216506 + 0.125000i
\(49\) −4.50000 7.79423i −0.642857 1.11346i
\(50\) 0 0
\(51\) −4.50000 2.59808i −0.630126 0.363803i
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) 0 0
\(56\) −2.00000 + 3.46410i −0.267261 + 0.462910i
\(57\) 7.50000 + 4.33013i 0.993399 + 0.573539i
\(58\) −3.00000 5.19615i −0.393919 0.682288i
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 5.00000 8.66025i 0.640184 1.10883i −0.345207 0.938527i \(-0.612191\pi\)
0.985391 0.170305i \(-0.0544754\pi\)
\(62\) 2.00000 0.254000
\(63\) −12.0000 −1.51186
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.19615i 0.639602i
\(67\) 2.50000 + 4.33013i 0.305424 + 0.529009i 0.977356 0.211604i \(-0.0678686\pi\)
−0.671932 + 0.740613i \(0.734535\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) 10.3923i 1.25109i
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 1.50000 + 2.59808i 0.176777 + 0.306186i
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) −2.00000 + 3.46410i −0.232495 + 0.402694i
\(75\) 0 0
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) −6.00000 10.3923i −0.683763 1.18431i
\(78\) 6.00000 + 3.46410i 0.679366 + 0.392232i
\(79\) −7.00000 + 12.1244i −0.787562 + 1.36410i 0.139895 + 0.990166i \(0.455323\pi\)
−0.927457 + 0.373930i \(0.878010\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −3.00000 −0.331295
\(83\) 6.00000 10.3923i 0.658586 1.14070i −0.322396 0.946605i \(-0.604488\pi\)
0.980982 0.194099i \(-0.0621783\pi\)
\(84\) 6.00000 + 3.46410i 0.654654 + 0.377964i
\(85\) 0 0
\(86\) 5.50000 + 9.52628i 0.593080 + 1.02725i
\(87\) −9.00000 + 5.19615i −0.964901 + 0.557086i
\(88\) −1.50000 + 2.59808i −0.159901 + 0.276956i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) 3.00000 5.19615i 0.312772 0.541736i
\(93\) 3.46410i 0.359211i
\(94\) 0 0
\(95\) 0 0
\(96\) 1.73205i 0.176777i
\(97\) 5.50000 9.52628i 0.558440 0.967247i −0.439187 0.898396i \(-0.644733\pi\)
0.997627 0.0688512i \(-0.0219334\pi\)
\(98\) 9.00000 0.909137
\(99\) −9.00000 −0.904534
\(100\) 0 0
\(101\) 6.00000 10.3923i 0.597022 1.03407i −0.396236 0.918149i \(-0.629684\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(102\) 4.50000 2.59808i 0.445566 0.257248i
\(103\) −2.00000 3.46410i −0.197066 0.341328i 0.750510 0.660859i \(-0.229808\pi\)
−0.947576 + 0.319531i \(0.896475\pi\)
\(104\) −2.00000 3.46410i −0.196116 0.339683i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 9.00000 0.870063 0.435031 0.900415i \(-0.356737\pi\)
0.435031 + 0.900415i \(0.356737\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 6.00000 + 3.46410i 0.569495 + 0.328798i
\(112\) −2.00000 3.46410i −0.188982 0.327327i
\(113\) 9.00000 + 15.5885i 0.846649 + 1.46644i 0.884182 + 0.467143i \(0.154717\pi\)
−0.0375328 + 0.999295i \(0.511950\pi\)
\(114\) −7.50000 + 4.33013i −0.702439 + 0.405554i
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 6.00000 10.3923i 0.554700 0.960769i
\(118\) −3.00000 −0.276172
\(119\) 6.00000 10.3923i 0.550019 0.952661i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 5.00000 + 8.66025i 0.452679 + 0.784063i
\(123\) 5.19615i 0.468521i
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) 0 0
\(126\) 6.00000 10.3923i 0.534522 0.925820i
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 16.5000 9.52628i 1.45274 0.838742i
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 4.50000 + 2.59808i 0.391675 + 0.226134i
\(133\) −10.0000 + 17.3205i −0.867110 + 1.50188i
\(134\) −5.00000 −0.431934
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −4.50000 + 7.79423i −0.384461 + 0.665906i −0.991694 0.128618i \(-0.958946\pi\)
0.607233 + 0.794524i \(0.292279\pi\)
\(138\) −9.00000 5.19615i −0.766131 0.442326i
\(139\) 0.500000 + 0.866025i 0.0424094 + 0.0734553i 0.886451 0.462822i \(-0.153163\pi\)
−0.844042 + 0.536278i \(0.819830\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.00000 + 5.19615i −0.251754 + 0.436051i
\(143\) 12.0000 1.00349
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) −3.50000 + 6.06218i −0.289662 + 0.501709i
\(147\) 15.5885i 1.28571i
\(148\) −2.00000 3.46410i −0.164399 0.284747i
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) 0 0
\(151\) 5.00000 8.66025i 0.406894 0.704761i −0.587646 0.809118i \(-0.699945\pi\)
0.994540 + 0.104357i \(0.0332784\pi\)
\(152\) 5.00000 0.405554
\(153\) −4.50000 7.79423i −0.363803 0.630126i
\(154\) 12.0000 0.966988
\(155\) 0 0
\(156\) −6.00000 + 3.46410i −0.480384 + 0.277350i
\(157\) 4.00000 + 6.92820i 0.319235 + 0.552931i 0.980329 0.197372i \(-0.0632408\pi\)
−0.661094 + 0.750303i \(0.729907\pi\)
\(158\) −7.00000 12.1244i −0.556890 0.964562i
\(159\) −9.00000 5.19615i −0.713746 0.412082i
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 1.50000 2.59808i 0.117130 0.202876i
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) −9.00000 15.5885i −0.696441 1.20627i −0.969693 0.244328i \(-0.921432\pi\)
0.273252 0.961943i \(-0.411901\pi\)
\(168\) −6.00000 + 3.46410i −0.462910 + 0.267261i
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 7.50000 + 12.9904i 0.573539 + 0.993399i
\(172\) −11.0000 −0.838742
\(173\) −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i \(0.406540\pi\)
−0.973670 + 0.227964i \(0.926793\pi\)
\(174\) 10.3923i 0.787839i
\(175\) 0 0
\(176\) −1.50000 2.59808i −0.113067 0.195837i
\(177\) 5.19615i 0.390567i
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) −8.00000 + 13.8564i −0.592999 + 1.02711i
\(183\) 15.0000 8.66025i 1.10883 0.640184i
\(184\) 3.00000 + 5.19615i 0.221163 + 0.383065i
\(185\) 0 0
\(186\) 3.00000 + 1.73205i 0.219971 + 0.127000i
\(187\) 4.50000 7.79423i 0.329073 0.569970i
\(188\) 0 0
\(189\) −18.0000 10.3923i −1.30931 0.755929i
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) −6.50000 11.2583i −0.467880 0.810392i 0.531446 0.847092i \(-0.321649\pi\)
−0.999326 + 0.0366998i \(0.988315\pi\)
\(194\) 5.50000 + 9.52628i 0.394877 + 0.683947i
\(195\) 0 0
\(196\) −4.50000 + 7.79423i −0.321429 + 0.556731i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 4.50000 7.79423i 0.319801 0.553912i
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) 8.66025i 0.610847i
\(202\) 6.00000 + 10.3923i 0.422159 + 0.731200i
\(203\) −12.0000 20.7846i −0.842235 1.45879i
\(204\) 5.19615i 0.363803i
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) −9.00000 + 15.5885i −0.625543 + 1.08347i
\(208\) 4.00000 0.277350
\(209\) −7.50000 + 12.9904i −0.518786 + 0.898563i
\(210\) 0 0
\(211\) 2.00000 + 3.46410i 0.137686 + 0.238479i 0.926620 0.375999i \(-0.122700\pi\)
−0.788935 + 0.614477i \(0.789367\pi\)
\(212\) 3.00000 + 5.19615i 0.206041 + 0.356873i
\(213\) 9.00000 + 5.19615i 0.616670 + 0.356034i
\(214\) −4.50000 + 7.79423i −0.307614 + 0.532803i
\(215\) 0 0
\(216\) 5.19615i 0.353553i
\(217\) 8.00000 0.543075
\(218\) 2.00000 3.46410i 0.135457 0.234619i
\(219\) 10.5000 + 6.06218i 0.709524 + 0.409644i
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) −6.00000 + 3.46410i −0.402694 + 0.232495i
\(223\) −11.0000 + 19.0526i −0.736614 + 1.27585i 0.217397 + 0.976083i \(0.430243\pi\)
−0.954011 + 0.299770i \(0.903090\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) −1.50000 + 2.59808i −0.0995585 + 0.172440i −0.911502 0.411296i \(-0.865076\pi\)
0.811943 + 0.583736i \(0.198410\pi\)
\(228\) 8.66025i 0.573539i
\(229\) −10.0000 17.3205i −0.660819 1.14457i −0.980401 0.197013i \(-0.936876\pi\)
0.319582 0.947559i \(-0.396457\pi\)
\(230\) 0 0
\(231\) 20.7846i 1.36753i
\(232\) −3.00000 + 5.19615i −0.196960 + 0.341144i
\(233\) −21.0000 −1.37576 −0.687878 0.725826i \(-0.741458\pi\)
−0.687878 + 0.725826i \(0.741458\pi\)
\(234\) 6.00000 + 10.3923i 0.392232 + 0.679366i
\(235\) 0 0
\(236\) 1.50000 2.59808i 0.0976417 0.169120i
\(237\) −21.0000 + 12.1244i −1.36410 + 0.787562i
\(238\) 6.00000 + 10.3923i 0.388922 + 0.673633i
\(239\) −3.00000 5.19615i −0.194054 0.336111i 0.752536 0.658551i \(-0.228830\pi\)
−0.946590 + 0.322440i \(0.895497\pi\)
\(240\) 0 0
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) −2.00000 −0.128565
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) −4.50000 2.59808i −0.286910 0.165647i
\(247\) −10.0000 17.3205i −0.636285 1.10208i
\(248\) −1.00000 1.73205i −0.0635001 0.109985i
\(249\) 18.0000 10.3923i 1.14070 0.658586i
\(250\) 0 0
\(251\) −21.0000 −1.32551 −0.662754 0.748837i \(-0.730613\pi\)
−0.662754 + 0.748837i \(0.730613\pi\)
\(252\) 6.00000 + 10.3923i 0.377964 + 0.654654i
\(253\) −18.0000 −1.13165
\(254\) 1.00000 1.73205i 0.0627456 0.108679i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 4.50000 + 7.79423i 0.280702 + 0.486191i 0.971558 0.236802i \(-0.0760993\pi\)
−0.690856 + 0.722993i \(0.742766\pi\)
\(258\) 19.0526i 1.18616i
\(259\) −8.00000 + 13.8564i −0.497096 + 0.860995i
\(260\) 0 0
\(261\) −18.0000 −1.11417
\(262\) 12.0000 0.741362
\(263\) 12.0000 20.7846i 0.739952 1.28163i −0.212565 0.977147i \(-0.568182\pi\)
0.952517 0.304487i \(-0.0984850\pi\)
\(264\) −4.50000 + 2.59808i −0.276956 + 0.159901i
\(265\) 0 0
\(266\) −10.0000 17.3205i −0.613139 1.06199i
\(267\) 9.00000 + 5.19615i 0.550791 + 0.317999i
\(268\) 2.50000 4.33013i 0.152712 0.264505i
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 1.50000 2.59808i 0.0909509 0.157532i
\(273\) 24.0000 + 13.8564i 1.45255 + 0.838628i
\(274\) −4.50000 7.79423i −0.271855 0.470867i
\(275\) 0 0
\(276\) 9.00000 5.19615i 0.541736 0.312772i
\(277\) −11.0000 + 19.0526i −0.660926 + 1.14476i 0.319447 + 0.947604i \(0.396503\pi\)
−0.980373 + 0.197153i \(0.936830\pi\)
\(278\) −1.00000 −0.0599760
\(279\) 3.00000 5.19615i 0.179605 0.311086i
\(280\) 0 0
\(281\) 3.00000 5.19615i 0.178965 0.309976i −0.762561 0.646916i \(-0.776058\pi\)
0.941526 + 0.336939i \(0.109392\pi\)
\(282\) 0 0
\(283\) 10.0000 + 17.3205i 0.594438 + 1.02960i 0.993626 + 0.112728i \(0.0359589\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(284\) −3.00000 5.19615i −0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) −12.0000 −0.708338
\(288\) 1.50000 2.59808i 0.0883883 0.153093i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 16.5000 9.52628i 0.967247 0.558440i
\(292\) −3.50000 6.06218i −0.204822 0.354762i
\(293\) −9.00000 15.5885i −0.525786 0.910687i −0.999549 0.0300351i \(-0.990438\pi\)
0.473763 0.880652i \(-0.342895\pi\)
\(294\) 13.5000 + 7.79423i 0.787336 + 0.454569i
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) −13.5000 7.79423i −0.783349 0.452267i
\(298\) 0 0
\(299\) 12.0000 20.7846i 0.693978 1.20201i
\(300\) 0 0
\(301\) 22.0000 + 38.1051i 1.26806 + 2.19634i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 18.0000 10.3923i 1.03407 0.597022i
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) 0 0
\(306\) 9.00000 0.514496
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) −6.00000 + 10.3923i −0.341882 + 0.592157i
\(309\) 6.92820i 0.394132i
\(310\) 0 0
\(311\) 3.00000 + 5.19615i 0.170114 + 0.294647i 0.938460 0.345389i \(-0.112253\pi\)
−0.768345 + 0.640036i \(0.778920\pi\)
\(312\) 6.92820i 0.392232i
\(313\) −0.500000 + 0.866025i −0.0282617 + 0.0489506i −0.879810 0.475325i \(-0.842331\pi\)
0.851549 + 0.524276i \(0.175664\pi\)
\(314\) −8.00000 −0.451466
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 12.0000 20.7846i 0.673987 1.16738i −0.302777 0.953062i \(-0.597914\pi\)
0.976764 0.214318i \(-0.0687530\pi\)
\(318\) 9.00000 5.19615i 0.504695 0.291386i
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 0 0
\(321\) 13.5000 + 7.79423i 0.753497 + 0.435031i
\(322\) 12.0000 20.7846i 0.668734 1.15828i
\(323\) −15.0000 −0.834622
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) −8.00000 + 13.8564i −0.443079 + 0.767435i
\(327\) −6.00000 3.46410i −0.331801 0.191565i
\(328\) 1.50000 + 2.59808i 0.0828236 + 0.143455i
\(329\) 0 0
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −12.0000 −0.658586
\(333\) 6.00000 + 10.3923i 0.328798 + 0.569495i
\(334\) 18.0000 0.984916
\(335\) 0 0
\(336\) 6.92820i 0.377964i
\(337\) −15.5000 26.8468i −0.844339 1.46244i −0.886194 0.463314i \(-0.846660\pi\)
0.0418554 0.999124i \(-0.486673\pi\)
\(338\) −1.50000 2.59808i −0.0815892 0.141317i
\(339\) 31.1769i 1.69330i
\(340\) 0 0
\(341\) 6.00000 0.324918
\(342\) −15.0000 −0.811107
\(343\) 8.00000 0.431959
\(344\) 5.50000 9.52628i 0.296540 0.513623i
\(345\) 0 0
\(346\) −9.00000 15.5885i −0.483843 0.838041i
\(347\) 10.5000 + 18.1865i 0.563670 + 0.976304i 0.997172 + 0.0751519i \(0.0239442\pi\)
−0.433503 + 0.901152i \(0.642722\pi\)
\(348\) 9.00000 + 5.19615i 0.482451 + 0.278543i
\(349\) 8.00000 13.8564i 0.428230 0.741716i −0.568486 0.822693i \(-0.692471\pi\)
0.996716 + 0.0809766i \(0.0258039\pi\)
\(350\) 0 0
\(351\) 18.0000 10.3923i 0.960769 0.554700i
\(352\) 3.00000 0.159901
\(353\) 4.50000 7.79423i 0.239511 0.414845i −0.721063 0.692869i \(-0.756346\pi\)
0.960574 + 0.278024i \(0.0896796\pi\)
\(354\) −4.50000 2.59808i −0.239172 0.138086i
\(355\) 0 0
\(356\) −3.00000 5.19615i −0.159000 0.275396i
\(357\) 18.0000 10.3923i 0.952661 0.550019i
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 8.00000 13.8564i 0.420471 0.728277i
\(363\) 3.46410i 0.181818i
\(364\) −8.00000 13.8564i −0.419314 0.726273i
\(365\) 0 0
\(366\) 17.3205i 0.905357i
\(367\) 4.00000 6.92820i 0.208798 0.361649i −0.742538 0.669804i \(-0.766378\pi\)
0.951336 + 0.308155i \(0.0997115\pi\)
\(368\) −6.00000 −0.312772
\(369\) −4.50000 + 7.79423i −0.234261 + 0.405751i
\(370\) 0 0
\(371\) 12.0000 20.7846i 0.623009 1.07908i
\(372\) −3.00000 + 1.73205i −0.155543 + 0.0898027i
\(373\) −5.00000 8.66025i −0.258890 0.448411i 0.707055 0.707159i \(-0.250023\pi\)
−0.965945 + 0.258748i \(0.916690\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 18.0000 10.3923i 0.925820 0.534522i
\(379\) 29.0000 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(380\) 0 0
\(381\) −3.00000 1.73205i −0.153695 0.0887357i
\(382\) 0 0
\(383\) 6.00000 + 10.3923i 0.306586 + 0.531022i 0.977613 0.210411i \(-0.0674801\pi\)
−0.671027 + 0.741433i \(0.734147\pi\)
\(384\) −1.50000 + 0.866025i −0.0765466 + 0.0441942i
\(385\) 0 0
\(386\) 13.0000 0.661683
\(387\) 33.0000 1.67748
\(388\) −11.0000 −0.558440
\(389\) −18.0000 + 31.1769i −0.912636 + 1.58073i −0.102311 + 0.994753i \(0.532624\pi\)
−0.810326 + 0.585980i \(0.800710\pi\)
\(390\) 0 0
\(391\) −9.00000 15.5885i −0.455150 0.788342i
\(392\) −4.50000 7.79423i −0.227284 0.393668i
\(393\) 20.7846i 1.04844i
\(394\) 0 0
\(395\) 0 0
\(396\) 4.50000 + 7.79423i 0.226134 + 0.391675i
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) −10.0000 + 17.3205i −0.501255 + 0.868199i
\(399\) −30.0000 + 17.3205i −1.50188 + 0.867110i
\(400\) 0 0
\(401\) −16.5000 28.5788i −0.823971 1.42716i −0.902703 0.430263i \(-0.858421\pi\)
0.0787327 0.996896i \(-0.474913\pi\)
\(402\) −7.50000 4.33013i −0.374066 0.215967i
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) −12.0000 −0.597022
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) −6.00000 + 10.3923i −0.297409 + 0.515127i
\(408\) −4.50000 2.59808i −0.222783 0.128624i
\(409\) 15.5000 + 26.8468i 0.766426 + 1.32749i 0.939490 + 0.342578i \(0.111300\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) −13.5000 + 7.79423i −0.665906 + 0.384461i
\(412\) −2.00000 + 3.46410i −0.0985329 + 0.170664i
\(413\) −12.0000 −0.590481
\(414\) −9.00000 15.5885i −0.442326 0.766131i
\(415\) 0 0
\(416\) −2.00000 + 3.46410i −0.0980581 + 0.169842i
\(417\) 1.73205i 0.0848189i
\(418\) −7.50000 12.9904i −0.366837 0.635380i
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) −1.00000 + 1.73205i −0.0487370 + 0.0844150i −0.889365 0.457198i \(-0.848853\pi\)
0.840628 + 0.541613i \(0.182186\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) −9.00000 + 5.19615i −0.436051 + 0.251754i
\(427\) 20.0000 + 34.6410i 0.967868 + 1.67640i
\(428\) −4.50000 7.79423i −0.217516 0.376748i
\(429\) 18.0000 + 10.3923i 0.869048 + 0.501745i
\(430\) 0 0
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) 13.0000 0.624740 0.312370 0.949960i \(-0.398877\pi\)
0.312370 + 0.949960i \(0.398877\pi\)
\(434\) −4.00000 + 6.92820i −0.192006 + 0.332564i
\(435\) 0 0
\(436\) 2.00000 + 3.46410i 0.0957826 + 0.165900i
\(437\) 15.0000 + 25.9808i 0.717547 + 1.24283i
\(438\) −10.5000 + 6.06218i −0.501709 + 0.289662i
\(439\) 5.00000 8.66025i 0.238637 0.413331i −0.721686 0.692220i \(-0.756633\pi\)
0.960323 + 0.278889i \(0.0899661\pi\)
\(440\) 0 0
\(441\) 13.5000 23.3827i 0.642857 1.11346i
\(442\) −12.0000 −0.570782
\(443\) 1.50000 2.59808i 0.0712672 0.123438i −0.828190 0.560448i \(-0.810629\pi\)
0.899457 + 0.437009i \(0.143962\pi\)
\(444\) 6.92820i 0.328798i
\(445\) 0 0
\(446\) −11.0000 19.0526i −0.520865 0.902165i
\(447\) 0 0
\(448\) −2.00000 + 3.46410i −0.0944911 + 0.163663i
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) −9.00000 −0.423793
\(452\) 9.00000 15.5885i 0.423324 0.733219i
\(453\) 15.0000 8.66025i 0.704761 0.406894i
\(454\) −1.50000 2.59808i −0.0703985 0.121934i
\(455\) 0 0
\(456\) 7.50000 + 4.33013i 0.351220 + 0.202777i
\(457\) −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i \(-0.840779\pi\)
0.854094 + 0.520119i \(0.174112\pi\)
\(458\) 20.0000 0.934539
\(459\) 15.5885i 0.727607i
\(460\) 0 0
\(461\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(462\) 18.0000 + 10.3923i 0.837436 + 0.483494i
\(463\) 10.0000 + 17.3205i 0.464739 + 0.804952i 0.999190 0.0402476i \(-0.0128147\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) −3.00000 5.19615i −0.139272 0.241225i
\(465\) 0 0
\(466\) 10.5000 18.1865i 0.486403 0.842475i
\(467\) −21.0000 −0.971764 −0.485882 0.874024i \(-0.661502\pi\)
−0.485882 + 0.874024i \(0.661502\pi\)
\(468\) −12.0000 −0.554700
\(469\) −20.0000 −0.923514
\(470\) 0 0
\(471\) 13.8564i 0.638470i
\(472\) 1.50000 + 2.59808i 0.0690431 + 0.119586i
\(473\) 16.5000 + 28.5788i 0.758671 + 1.31406i
\(474\) 24.2487i 1.11378i
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) −9.00000 15.5885i −0.412082 0.713746i
\(478\) 6.00000 0.274434
\(479\) 3.00000 5.19615i 0.137073 0.237418i −0.789314 0.613990i \(-0.789564\pi\)
0.926388 + 0.376571i \(0.122897\pi\)
\(480\) 0 0
\(481\) −8.00000 13.8564i −0.364769 0.631798i
\(482\) −8.50000 14.7224i −0.387164 0.670588i
\(483\) −36.0000 20.7846i −1.63806 0.945732i
\(484\) 1.00000 1.73205i 0.0454545 0.0787296i
\(485\) 0 0
\(486\) 15.5885i 0.707107i
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 5.00000 8.66025i 0.226339 0.392031i
\(489\) 24.0000 + 13.8564i 1.08532 + 0.626608i
\(490\) 0 0
\(491\) 16.5000 + 28.5788i 0.744635 + 1.28974i 0.950365 + 0.311136i \(0.100710\pi\)
−0.205731 + 0.978609i \(0.565957\pi\)
\(492\) 4.50000 2.59808i 0.202876 0.117130i
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) 20.0000 0.899843
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −12.0000 + 20.7846i −0.538274 + 0.932317i
\(498\) 20.7846i 0.931381i
\(499\) 15.5000 + 26.8468i 0.693875 + 1.20183i 0.970558 + 0.240866i \(0.0774314\pi\)
−0.276683 + 0.960961i \(0.589235\pi\)
\(500\) 0 0
\(501\) 31.1769i 1.39288i
\(502\) 10.5000 18.1865i 0.468638 0.811705i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) −12.0000 −0.534522
\(505\) 0 0
\(506\) 9.00000 15.5885i 0.400099 0.692991i
\(507\) −4.50000 + 2.59808i −0.199852 + 0.115385i
\(508\) 1.00000 + 1.73205i 0.0443678 + 0.0768473i
\(509\) 6.00000 + 10.3923i 0.265945 + 0.460631i 0.967811 0.251679i \(-0.0809826\pi\)
−0.701866 + 0.712309i \(0.747649\pi\)
\(510\) 0 0
\(511\) −14.0000 + 24.2487i −0.619324 + 1.07270i
\(512\) 1.00000 0.0441942
\(513\) 25.9808i 1.14708i
\(514\) −9.00000 −0.396973
\(515\) 0 0
\(516\) −16.5000 9.52628i −0.726372 0.419371i
\(517\) 0 0
\(518\) −8.00000 13.8564i −0.351500 0.608816i
\(519\) −27.0000 + 15.5885i −1.18517 + 0.684257i
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 9.00000 15.5885i 0.393919 0.682288i
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) 12.0000 + 20.7846i 0.523225 + 0.906252i
\(527\) 3.00000 + 5.19615i 0.130682 + 0.226348i
\(528\) 5.19615i 0.226134i
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 0 0
\(531\) −4.50000 + 7.79423i −0.195283 + 0.338241i
\(532\) 20.0000 0.867110
\(533\) 6.00000 10.3923i 0.259889 0.450141i
\(534\) −9.00000 + 5.19615i −0.389468 + 0.224860i
\(535\) 0 0
\(536\) 2.50000 + 4.33013i 0.107984 + 0.187033i
\(537\) 0 0
\(538\) −3.00000 + 5.19615i −0.129339 + 0.224022i
\(539\) 27.0000 1.16297
\(540\) 0 0
\(541\) 8.00000 0.343947 0.171973 0.985102i \(-0.444986\pi\)
0.171973 + 0.985102i \(0.444986\pi\)
\(542\) 8.00000 13.8564i 0.343629 0.595184i
\(543\) −24.0000 13.8564i −1.02994 0.594635i
\(544\) 1.50000 + 2.59808i 0.0643120 + 0.111392i
\(545\) 0 0
\(546\) −24.0000 + 13.8564i −1.02711 + 0.592999i
\(547\) −0.500000 + 0.866025i −0.0213785 + 0.0370286i −0.876517 0.481371i \(-0.840139\pi\)
0.855138 + 0.518400i \(0.173472\pi\)
\(548\) 9.00000 0.384461
\(549\) 30.0000 1.28037
\(550\) 0 0
\(551\) −15.0000 + 25.9808i −0.639021 + 1.10682i
\(552\) 10.3923i 0.442326i
\(553\) −28.0000 48.4974i −1.19068 2.06232i
\(554\) −11.0000 19.0526i −0.467345 0.809466i
\(555\) 0 0
\(556\) 0.500000 0.866025i 0.0212047 0.0367277i
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 3.00000 + 5.19615i 0.127000 + 0.219971i
\(559\) −44.0000 −1.86100
\(560\) 0 0
\(561\) 13.5000 7.79423i 0.569970 0.329073i
\(562\) 3.00000 + 5.19615i 0.126547 + 0.219186i
\(563\) −1.50000 2.59808i −0.0632175 0.109496i 0.832684 0.553748i \(-0.186803\pi\)
−0.895902 + 0.444252i \(0.853470\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −20.0000 −0.840663
\(567\) −18.0000 31.1769i −0.755929 1.30931i
\(568\) 6.00000 0.251754
\(569\) 19.5000 33.7750i 0.817483 1.41592i −0.0900490 0.995937i \(-0.528702\pi\)
0.907532 0.419984i \(-0.137964\pi\)
\(570\) 0 0
\(571\) −14.5000 25.1147i −0.606806 1.05102i −0.991763 0.128085i \(-0.959117\pi\)
0.384957 0.922934i \(-0.374216\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) 0 0
\(574\) 6.00000 10.3923i 0.250435 0.433766i
\(575\) 0 0
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 7.00000 0.291414 0.145707 0.989328i \(-0.453454\pi\)
0.145707 + 0.989328i \(0.453454\pi\)
\(578\) 4.00000 6.92820i 0.166378 0.288175i
\(579\) 22.5167i 0.935760i
\(580\) 0 0
\(581\) 24.0000 + 41.5692i 0.995688 + 1.72458i
\(582\) 19.0526i 0.789754i
\(583\) 9.00000 15.5885i 0.372742 0.645608i
\(584\) 7.00000 0.289662
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 19.5000 33.7750i 0.804851 1.39404i −0.111540 0.993760i \(-0.535578\pi\)
0.916392 0.400283i \(-0.131088\pi\)
\(588\) −13.5000 + 7.79423i −0.556731 + 0.321429i
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) 0 0
\(591\) 0 0
\(592\) −2.00000 + 3.46410i −0.0821995 + 0.142374i
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 13.5000 7.79423i 0.553912 0.319801i
\(595\) 0 0
\(596\) 0 0
\(597\) 30.0000 + 17.3205i 1.22782 + 0.708881i
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 12.5000 21.6506i 0.509886 0.883148i −0.490049 0.871695i \(-0.663021\pi\)
0.999934 0.0114528i \(-0.00364562\pi\)
\(602\) −44.0000 −1.79331
\(603\) −7.50000 + 12.9904i −0.305424 + 0.529009i
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 20.7846i 0.844317i
\(607\) 4.00000 + 6.92820i 0.162355 + 0.281207i 0.935713 0.352763i \(-0.114758\pi\)
−0.773358 + 0.633970i \(0.781424\pi\)
\(608\) −2.50000 4.33013i −0.101388 0.175610i
\(609\) 41.5692i 1.68447i
\(610\) 0 0
\(611\) 0 0
\(612\) −4.50000 + 7.79423i −0.181902 + 0.315063i
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −3.50000 + 6.06218i −0.141249 + 0.244650i
\(615\) 0 0
\(616\) −6.00000 10.3923i −0.241747 0.418718i
\(617\) −19.5000 33.7750i −0.785040 1.35973i −0.928975 0.370143i \(-0.879309\pi\)
0.143934 0.989587i \(-0.454025\pi\)
\(618\) 6.00000 + 3.46410i 0.241355 + 0.139347i
\(619\) 9.50000 16.4545i 0.381837 0.661361i −0.609488 0.792796i \(-0.708625\pi\)
0.991325 + 0.131434i \(0.0419582\pi\)
\(620\) 0 0
\(621\) −27.0000 + 15.5885i −1.08347 + 0.625543i
\(622\) −6.00000 −0.240578
\(623\) −12.0000 + 20.7846i −0.480770 + 0.832718i
\(624\) 6.00000 + 3.46410i 0.240192 + 0.138675i
\(625\) 0 0
\(626\) −0.500000 0.866025i −0.0199840 0.0346133i
\(627\) −22.5000 + 12.9904i −0.898563 + 0.518786i
\(628\) 4.00000 6.92820i 0.159617 0.276465i
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −7.00000 + 12.1244i −0.278445 + 0.482281i
\(633\) 6.92820i 0.275371i
\(634\) 12.0000 + 20.7846i 0.476581 + 0.825462i
\(635\) 0 0
\(636\) 10.3923i 0.412082i
\(637\) −18.0000 + 31.1769i −0.713186 + 1.23527i
\(638\) 18.0000 0.712627
\(639\) 9.00000 + 15.5885i 0.356034 + 0.616670i
\(640\) 0 0
\(641\) −4.50000 + 7.79423i −0.177739 + 0.307854i −0.941106 0.338112i \(-0.890212\pi\)
0.763367 + 0.645966i \(0.223545\pi\)
\(642\) −13.5000 + 7.79423i −0.532803 + 0.307614i
\(643\) 11.5000 + 19.9186i 0.453516 + 0.785512i 0.998602 0.0528680i \(-0.0168363\pi\)
−0.545086 + 0.838380i \(0.683503\pi\)
\(644\) 12.0000 + 20.7846i 0.472866 + 0.819028i
\(645\) 0 0
\(646\) 7.50000 12.9904i 0.295084 0.511100i
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) −9.00000 −0.353281
\(650\) 0 0
\(651\) 12.0000 + 6.92820i 0.470317 + 0.271538i
\(652\) −8.00000 13.8564i −0.313304 0.542659i
\(653\) 21.0000 + 36.3731i 0.821794 + 1.42339i 0.904345 + 0.426801i \(0.140360\pi\)
−0.0825519 + 0.996587i \(0.526307\pi\)
\(654\) 6.00000 3.46410i 0.234619 0.135457i
\(655\) 0 0
\(656\) −3.00000 −0.117130
\(657\) 10.5000 + 18.1865i 0.409644 + 0.709524i
\(658\) 0 0
\(659\) 18.0000 31.1769i 0.701180 1.21448i −0.266872 0.963732i \(-0.585990\pi\)
0.968052 0.250748i \(-0.0806766\pi\)
\(660\) 0 0
\(661\) −16.0000 27.7128i −0.622328 1.07790i −0.989051 0.147573i \(-0.952854\pi\)
0.366723 0.930330i \(-0.380480\pi\)
\(662\) 2.00000 + 3.46410i 0.0777322 + 0.134636i
\(663\) 20.7846i 0.807207i
\(664\) 6.00000 10.3923i 0.232845 0.403300i
\(665\) 0 0
\(666\) −12.0000 −0.464991
\(667\) −36.0000 −1.39393
\(668\) −9.00000 + 15.5885i −0.348220 + 0.603136i
\(669\) −33.0000 + 19.0526i −1.27585 + 0.736614i
\(670\) 0 0
\(671\) 15.0000 + 25.9808i 0.579069 + 1.00298i
\(672\) 6.00000 + 3.46410i 0.231455 + 0.133631i
\(673\) 7.00000 12.1244i 0.269830 0.467360i −0.698988 0.715134i \(-0.746366\pi\)
0.968818 + 0.247774i \(0.0796991\pi\)
\(674\) 31.0000 1.19408
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −18.0000 + 31.1769i −0.691796 + 1.19823i 0.279453 + 0.960159i \(0.409847\pi\)
−0.971249 + 0.238067i \(0.923486\pi\)
\(678\) −27.0000 15.5885i −1.03693 0.598671i
\(679\) 22.0000 + 38.1051i 0.844283 + 1.46234i
\(680\) 0 0
\(681\) −4.50000 + 2.59808i −0.172440 + 0.0995585i
\(682\) −3.00000 + 5.19615i −0.114876 + 0.198971i
\(683\) 21.0000 0.803543 0.401771 0.915740i \(-0.368395\pi\)
0.401771 + 0.915740i \(0.368395\pi\)
\(684\) 7.50000 12.9904i 0.286770 0.496700i
\(685\) 0 0
\(686\) −4.00000 + 6.92820i −0.152721 + 0.264520i
\(687\) 34.6410i 1.32164i
\(688\) 5.50000 + 9.52628i 0.209686 + 0.363186i
\(689\) 12.0000 + 20.7846i 0.457164 + 0.791831i
\(690\) 0 0
\(691\) −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i \(-0.881959\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 18.0000 0.684257
\(693\) 18.0000 31.1769i 0.683763 1.18431i
\(694\) −21.0000 −0.797149
\(695\) 0 0
\(696\) −9.00000 + 5.19615i −0.341144 + 0.196960i
\(697\) −4.50000 7.79423i −0.170450 0.295227i
\(698\) 8.00000 + 13.8564i 0.302804 + 0.524473i
\(699\) −31.5000 18.1865i −1.19144 0.687878i
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 20.7846i 0.784465i
\(703\) 20.0000 0.754314
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) 4.50000 + 7.79423i 0.169360 + 0.293340i
\(707\) 24.0000 + 41.5692i 0.902613 + 1.56337i
\(708\) 4.50000 2.59808i 0.169120 0.0976417i
\(709\) 17.0000 29.4449i 0.638448 1.10583i −0.347325 0.937745i \(-0.612910\pi\)
0.985773 0.168080i \(-0.0537568\pi\)
\(710\) 0 0
\(711\) −42.0000 −1.57512
\(712\) 6.00000 0.224860
\(713\) 6.00000 10.3923i 0.224702 0.389195i
\(714\) 20.7846i 0.777844i
\(715\) 0 0
\(716\) 0 0
\(717\) 10.3923i 0.388108i
\(718\) 12.0000 20.7846i 0.447836 0.775675i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) −3.00000 + 5.19615i −0.111648 + 0.193381i
\(723\) −25.5000 + 14.7224i −0.948355 + 0.547533i
\(724\) 8.00000 + 13.8564i 0.297318 + 0.514969i
\(725\) 0 0
\(726\) −3.00000 1.73205i −0.111340 0.0642824i
\(727\) −14.0000 + 24.2487i −0.519231 + 0.899335i 0.480519 + 0.876984i \(0.340448\pi\)
−0.999750 + 0.0223506i \(0.992885\pi\)
\(728\) 16.0000 0.592999
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −16.5000 + 28.5788i −0.610275 + 1.05703i
\(732\) −15.0000 8.66025i −0.554416 0.320092i
\(733\) 16.0000 + 27.7128i 0.590973 + 1.02360i 0.994102 + 0.108453i \(0.0345896\pi\)
−0.403128 + 0.915144i \(0.632077\pi\)
\(734\) 4.00000 + 6.92820i 0.147643 + 0.255725i
\(735\) 0 0
\(736\) 3.00000 5.19615i 0.110581 0.191533i
\(737\) −15.0000 −0.552532
\(738\) −4.50000 7.79423i −0.165647 0.286910i
\(739\) 29.0000 1.06678 0.533391 0.845869i \(-0.320917\pi\)
0.533391 + 0.845869i \(0.320917\pi\)
\(740\) 0 0
\(741\) 34.6410i 1.27257i
\(742\) 12.0000 + 20.7846i 0.440534 + 0.763027i
\(743\) −3.00000 5.19615i −0.110059 0.190628i 0.805735 0.592277i \(-0.201771\pi\)
−0.915794 + 0.401648i \(0.868437\pi\)
\(744\) 3.46410i 0.127000i
\(745\) 0 0
\(746\) 10.0000 0.366126
\(747\) 36.0000 1.31717
\(748\) −9.00000 −0.329073
\(749\) −18.0000 + 31.1769i −0.657706 + 1.13918i
\(750\) 0 0
\(751\) 14.0000 + 24.2487i 0.510867 + 0.884848i 0.999921 + 0.0125942i \(0.00400897\pi\)
−0.489053 + 0.872254i \(0.662658\pi\)
\(752\) 0 0
\(753\) −31.5000 18.1865i −1.14792 0.662754i
\(754\) −12.0000 + 20.7846i −0.437014 + 0.756931i
\(755\) 0 0
\(756\) 20.7846i 0.755929i
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) −14.5000 + 25.1147i −0.526664 + 0.912208i
\(759\) −27.0000 15.5885i −0.980038 0.565825i
\(760\) 0 0
\(761\) −9.00000 15.5885i −0.326250 0.565081i 0.655515 0.755182i \(-0.272452\pi\)
−0.981764 + 0.190101i \(0.939118\pi\)
\(762\) 3.00000 1.73205i 0.108679 0.0627456i
\(763\) 8.00000 13.8564i 0.289619 0.501636i
\(764\) 0 0
\(765\) 0 0
\(766\) −12.0000 −0.433578
\(767\) 6.00000 10.3923i 0.216647 0.375244i
\(768\) 1.73205i 0.0625000i
\(769\) −25.0000 43.3013i −0.901523 1.56148i −0.825518 0.564376i \(-0.809117\pi\)
−0.0760054 0.997107i \(-0.524217\pi\)
\(770\) 0 0
\(771\) 15.5885i 0.561405i
\(772\) −6.50000 + 11.2583i −0.233940 + 0.405196i
\(773\) 30.0000 1.07903 0.539513 0.841978i \(-0.318609\pi\)
0.539513 + 0.841978i \(0.318609\pi\)
\(774\) −16.5000 + 28.5788i −0.593080 + 1.02725i
\(775\) 0 0
\(776\) 5.50000 9.52628i 0.197438 0.341974i
\(777\) −24.0000 + 13.8564i −0.860995 + 0.497096i
\(778\) −18.0000 31.1769i −0.645331 1.11775i
\(779\) 7.50000 + 12.9904i 0.268715 + 0.465429i
\(780\) 0 0
\(781\) −9.00000 + 15.5885i −0.322045 + 0.557799i
\(782\) 18.0000 0.643679
\(783\) −27.0000 15.5885i −0.964901 0.557086i
\(784\) 9.00000 0.321429
\(785\) 0 0
\(786\) 18.0000 + 10.3923i 0.642039 + 0.370681i
\(787\) −2.00000 3.46410i −0.0712923 0.123482i 0.828176 0.560469i \(-0.189379\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(788\) 0 0
\(789\) 36.0000 20.7846i 1.28163 0.739952i
\(790\) 0 0
\(791\) −72.0000 −2.56003
\(792\) −9.00000 −0.319801
\(793\) −40.0000 −1.42044
\(794\) 4.00000 6.92820i 0.141955 0.245873i
\(795\) 0 0
\(796\) −10.0000 17.3205i −0.354441 0.613909i
\(797\) −24.0000 41.5692i −0.850124 1.47246i −0.881096 0.472937i \(-0.843194\pi\)
0.0309726 0.999520i \(-0.490140\pi\)
\(798\) 34.6410i 1.22628i
\(799\) 0 0
\(800\) 0 0
\(801\) 9.00000 + 15.5885i 0.317999 + 0.550791i
\(802\) 33.0000 1.16527
\(803\) −10.5000 + 18.1865i −0.370537 + 0.641789i
\(804\) 7.50000 4.33013i 0.264505 0.152712i
\(805\) 0 0
\(806\) −4.00000 6.92820i −0.140894 0.244036i
\(807\) 9.00000 + 5.19615i 0.316815 + 0.182913i
\(808\) 6.00000 10.3923i 0.211079 0.365600i
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) 35.0000 1.22902 0.614508 0.788911i \(-0.289355\pi\)
0.614508 + 0.788911i \(0.289355\pi\)
\(812\) −12.0000 + 20.7846i −0.421117 + 0.729397i
\(813\) −24.0000 13.8564i −0.841717 0.485965i
\(814\) −6.00000 10.3923i −0.210300 0.364250i
\(815\) 0 0
\(816\) 4.50000 2.59808i 0.157532 0.0909509i
\(817\) 27.5000 47.6314i 0.962103 1.66641i
\(818\) −31.0000 −1.08389
\(819\) 24.0000 + 41.5692i 0.838628 + 1.45255i
\(820\) 0 0
\(821\) 24.0000 41.5692i 0.837606 1.45078i −0.0542853 0.998525i \(-0.517288\pi\)
0.891891 0.452250i \(-0.149379\pi\)
\(822\) 15.5885i 0.543710i
\(823\) −2.00000 3.46410i −0.0697156 0.120751i 0.829060 0.559159i \(-0.188876\pi\)
−0.898776 + 0.438408i \(0.855543\pi\)
\(824\) −2.00000 3.46410i −0.0696733 0.120678i
\(825\) 0 0
\(826\) 6.00000 10.3923i 0.208767 0.361595i
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 18.0000 0.625543
\(829\) 44.0000 1.52818 0.764092 0.645108i \(-0.223188\pi\)
0.764092 + 0.645108i \(0.223188\pi\)
\(830\) 0 0
\(831\) −33.0000 + 19.0526i −1.14476 + 0.660926i
\(832\) −2.00000 3.46410i −0.0693375 0.120096i
\(833\) 13.5000 + 23.3827i 0.467747 + 0.810162i
\(834\) −1.50000 0.866025i −0.0519408 0.0299880i
\(835\) 0 0
\(836\) 15.0000 0.518786
\(837\) 9.00000 5.19615i 0.311086 0.179605i
\(838\) 0 0
\(839\) 15.0000 25.9808i 0.517858 0.896956i −0.481927 0.876211i \(-0.660063\pi\)
0.999785 0.0207443i \(-0.00660359\pi\)
\(840\) 0 0
\(841\) −3.50000 6.06218i −0.120690 0.209041i
\(842\) −1.00000 1.73205i −0.0344623 0.0596904i
\(843\) 9.00000 5.19615i 0.309976 0.178965i
\(844\) 2.00000 3.46410i 0.0688428 0.119239i
\(845\) 0 0
\(846\) 0 0
\(847\) −8.00000 −0.274883
\(848\) 3.00000 5.19615i 0.103020 0.178437i
\(849\) 34.6410i 1.18888i
\(850\) 0 0
\(851\) 12.0000 + 20.7846i 0.411355 + 0.712487i
\(852\) 10.3923i 0.356034i
\(853\) 22.0000 38.1051i 0.753266 1.30469i −0.192966 0.981205i \(-0.561811\pi\)
0.946232 0.323489i \(-0.104856\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) 9.00000 0.307614
\(857\) −9.00000 + 15.5885i −0.307434 + 0.532492i −0.977800 0.209539i \(-0.932804\pi\)
0.670366 + 0.742030i \(0.266137\pi\)
\(858\) −18.0000 + 10.3923i −0.614510 + 0.354787i
\(859\) 9.50000 + 16.4545i 0.324136 + 0.561420i 0.981337 0.192295i \(-0.0615932\pi\)
−0.657201 + 0.753715i \(0.728260\pi\)
\(860\) 0 0
\(861\) −18.0000 10.3923i −0.613438 0.354169i
\(862\) −12.0000 + 20.7846i −0.408722 + 0.707927i
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 0 0
\(866\) −6.50000 + 11.2583i −0.220879 + 0.382574i
\(867\) −12.0000 6.92820i −0.407541 0.235294i
\(868\) −4.00000 6.92820i −0.135769 0.235159i
\(869\) −21.0000 36.3731i −0.712376 1.23387i
\(870\) 0 0
\(871\) 10.0000 17.3205i 0.338837 0.586883i
\(872\) −4.00000 −0.135457
\(873\) 33.0000 1.11688
\(874\) −30.0000 −1.01477
\(875\) 0 0
\(876\) 12.1244i 0.409644i
\(877\) 1.00000 + 1.73205i 0.0337676 + 0.0584872i 0.882415 0.470471i \(-0.155916\pi\)
−0.848648 + 0.528958i \(0.822583\pi\)
\(878\) 5.00000 + 8.66025i 0.168742 + 0.292269i
\(879\) 31.1769i 1.05157i
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 13.5000 + 23.3827i 0.454569 + 0.787336i
\(883\) −41.0000 −1.37976 −0.689880 0.723924i \(-0.742337\pi\)
−0.689880 + 0.723924i \(0.742337\pi\)
\(884\) 6.00000 10.3923i 0.201802 0.349531i
\(885\) 0 0
\(886\) 1.50000 + 2.59808i 0.0503935 + 0.0872841i
\(887\) −21.0000 36.3731i −0.705111 1.22129i −0.966651 0.256096i \(-0.917564\pi\)
0.261540 0.965193i \(-0.415770\pi\)
\(888\) 6.00000 + 3.46410i 0.201347 + 0.116248i
\(889\) 4.00000 6.92820i 0.134156 0.232364i
\(890\) 0 0
\(891\) −13.5000 23.3827i −0.452267 0.783349i
\(892\) 22.0000 0.736614
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 3.46410i −0.0668153 0.115728i
\(897\) 36.0000 20.7846i 1.20201 0.693978i
\(898\) 7.50000 12.9904i 0.250278 0.433495i
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) 4.50000 7.79423i 0.149834 0.259519i
\(903\) 76.2102i 2.53612i
\(904\) 9.00000 + 15.5885i 0.299336 + 0.518464i
\(905\) 0 0
\(906\) 17.3205i 0.575435i
\(907\) 2.50000 4.33013i 0.0830111 0.143780i −0.821531 0.570164i \(-0.806880\pi\)
0.904542 + 0.426385i \(0.140213\pi\)
\(908\) 3.00000 0.0995585
\(909\) 36.0000 1.19404
\(910\) 0 0
\(911\) 15.0000 25.9808i 0.496972 0.860781i −0.503022 0.864274i \(-0.667778\pi\)
0.999994 + 0.00349271i \(0.00111177\pi\)
\(912\) −7.50000 + 4.33013i −0.248350 + 0.143385i
\(913\) 18.0000 + 31.1769i 0.595713 + 1.03181i
\(914\) −0.500000 0.866025i −0.0165385 0.0286456i
\(915\) 0 0
\(916\) −10.0000 + 17.3205i −0.330409 + 0.572286i
\(917\) 48.0000 1.58510
\(918\) 13.5000 + 7.79423i 0.445566 + 0.257248i
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) 0 0
\(921\) 10.5000 + 6.06218i 0.345987 + 0.199756i
\(922\) 0 0
\(923\) −12.0000 20.7846i −0.394985 0.684134i
\(924\) −18.0000 + 10.3923i −0.592157 + 0.341882i
\(925\) 0 0
\(926\) −20.0000 −0.657241
\(927\) 6.00000 10.3923i 0.197066 0.341328i
\(928\) 6.00000 0.196960
\(929\) −15.0000 + 25.9808i −0.492134 + 0.852401i −0.999959 0.00905914i \(-0.997116\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(930\) 0 0
\(931\) −22.5000 38.9711i −0.737408 1.27723i
\(932\) 10.5000 + 18.1865i 0.343939 + 0.595720i
\(933\) 10.3923i 0.340229i
\(934\) 10.5000 18.1865i 0.343570 0.595082i
\(935\) 0 0
\(936\) 6.00000 10.3923i 0.196116 0.339683i
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 10.0000 17.3205i 0.326512 0.565535i
\(939\) −1.50000 + 0.866025i −0.0489506 + 0.0282617i
\(940\) 0 0
\(941\) −12.0000 20.7846i −0.391189 0.677559i 0.601418 0.798935i \(-0.294603\pi\)
−0.992607 + 0.121376i \(0.961269\pi\)
\(942\) −12.0000 6.92820i −0.390981 0.225733i
\(943\) −9.00000 + 15.5885i −0.293080 + 0.507630i
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) −33.0000 −1.07292
\(947\) 13.5000 23.3827i 0.438691 0.759835i −0.558898 0.829237i \(-0.688776\pi\)
0.997589 + 0.0694014i \(0.0221089\pi\)
\(948\) 21.0000 + 12.1244i 0.682048 + 0.393781i
\(949\) −14.0000 24.2487i −0.454459 0.787146i
\(950\) 0 0
\(951\) 36.0000 20.7846i 1.16738 0.673987i
\(952\) 6.00000 10.3923i 0.194461 0.336817i
\(953\) −51.0000 −1.65205 −0.826026 0.563632i \(-0.809404\pi\)
−0.826026 + 0.563632i \(0.809404\pi\)
\(954\) 18.0000 0.582772
\(955\) 0 0
\(956\) −3.00000 + 5.19615i −0.0970269 + 0.168056i
\(957\) 31.1769i 1.00781i
\(958\) 3.00000 + 5.19615i 0.0969256 + 0.167880i
\(959\) −18.0000 31.1769i −0.581250 1.00676i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 16.0000 0.515861
\(963\) 13.5000 + 23.3827i 0.435031 + 0.753497i
\(964\) 17.0000 0.547533
\(965\) 0 0
\(966\) 36.0000 20.7846i 1.15828 0.668734i
\(967\) −11.0000 19.0526i −0.353736 0.612689i 0.633165 0.774017i \(-0.281756\pi\)
−0.986901 + 0.161328i \(0.948422\pi\)
\(968\) 1.00000 + 1.73205i 0.0321412 + 0.0556702i
\(969\) −22.5000 12.9904i −0.722804 0.417311i
\(970\) 0 0
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) −4.00000 −0.128234
\(974\) 1.00000 1.73205i 0.0320421 0.0554985i
\(975\) 0 0
\(976\) 5.00000 + 8.66025i 0.160046 + 0.277208i
\(977\) −4.50000 7.79423i −0.143968 0.249359i 0.785020 0.619471i \(-0.212653\pi\)
−0.928987 + 0.370111i \(0.879319\pi\)
\(978\) −24.0000 + 13.8564i −0.767435 + 0.443079i
\(979\) −9.00000 + 15.5885i −0.287641 + 0.498209i
\(980\) 0 0
\(981\) −6.00000 10.3923i −0.191565 0.331801i
\(982\) −33.0000 −1.05307
\(983\) 18.0000 31.1769i 0.574111 0.994389i −0.422027 0.906583i \(-0.638681\pi\)
0.996138 0.0878058i \(-0.0279855\pi\)
\(984\) 5.19615i 0.165647i
\(985\) 0 0
\(986\) 9.00000 + 15.5885i 0.286618 + 0.496438i
\(987\) 0 0
\(988\) −10.0000 + 17.3205i −0.318142 + 0.551039i
\(989\) 66.0000 2.09868
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) −1.00000 + 1.73205i −0.0317500 + 0.0549927i
\(993\) 6.00000 3.46410i 0.190404 0.109930i
\(994\) −12.0000 20.7846i −0.380617 0.659248i
\(995\) 0 0
\(996\) −18.0000 10.3923i −0.570352 0.329293i
\(997\) 13.0000 22.5167i 0.411714 0.713110i −0.583363 0.812211i \(-0.698264\pi\)
0.995077 + 0.0991016i \(0.0315969\pi\)
\(998\) −31.0000 −0.981288
\(999\) 20.7846i 0.657596i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.d.151.1 2
3.2 odd 2 1350.2.e.g.451.1 2
5.2 odd 4 450.2.j.a.349.1 4
5.3 odd 4 450.2.j.a.349.2 4
5.4 even 2 90.2.e.b.61.1 yes 2
9.2 odd 6 4050.2.a.q.1.1 1
9.4 even 3 inner 450.2.e.d.301.1 2
9.5 odd 6 1350.2.e.g.901.1 2
9.7 even 3 4050.2.a.bi.1.1 1
15.2 even 4 1350.2.j.c.1099.2 4
15.8 even 4 1350.2.j.c.1099.1 4
15.14 odd 2 270.2.e.a.181.1 2
20.19 odd 2 720.2.q.c.241.1 2
45.2 even 12 4050.2.c.d.649.1 2
45.4 even 6 90.2.e.b.31.1 2
45.7 odd 12 4050.2.c.p.649.2 2
45.13 odd 12 450.2.j.a.49.1 4
45.14 odd 6 270.2.e.a.91.1 2
45.22 odd 12 450.2.j.a.49.2 4
45.23 even 12 1350.2.j.c.199.2 4
45.29 odd 6 810.2.a.e.1.1 1
45.32 even 12 1350.2.j.c.199.1 4
45.34 even 6 810.2.a.a.1.1 1
45.38 even 12 4050.2.c.d.649.2 2
45.43 odd 12 4050.2.c.p.649.1 2
60.59 even 2 2160.2.q.d.721.1 2
180.59 even 6 2160.2.q.d.1441.1 2
180.79 odd 6 6480.2.a.z.1.1 1
180.119 even 6 6480.2.a.l.1.1 1
180.139 odd 6 720.2.q.c.481.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.e.b.31.1 2 45.4 even 6
90.2.e.b.61.1 yes 2 5.4 even 2
270.2.e.a.91.1 2 45.14 odd 6
270.2.e.a.181.1 2 15.14 odd 2
450.2.e.d.151.1 2 1.1 even 1 trivial
450.2.e.d.301.1 2 9.4 even 3 inner
450.2.j.a.49.1 4 45.13 odd 12
450.2.j.a.49.2 4 45.22 odd 12
450.2.j.a.349.1 4 5.2 odd 4
450.2.j.a.349.2 4 5.3 odd 4
720.2.q.c.241.1 2 20.19 odd 2
720.2.q.c.481.1 2 180.139 odd 6
810.2.a.a.1.1 1 45.34 even 6
810.2.a.e.1.1 1 45.29 odd 6
1350.2.e.g.451.1 2 3.2 odd 2
1350.2.e.g.901.1 2 9.5 odd 6
1350.2.j.c.199.1 4 45.32 even 12
1350.2.j.c.199.2 4 45.23 even 12
1350.2.j.c.1099.1 4 15.8 even 4
1350.2.j.c.1099.2 4 15.2 even 4
2160.2.q.d.721.1 2 60.59 even 2
2160.2.q.d.1441.1 2 180.59 even 6
4050.2.a.q.1.1 1 9.2 odd 6
4050.2.a.bi.1.1 1 9.7 even 3
4050.2.c.d.649.1 2 45.2 even 12
4050.2.c.d.649.2 2 45.38 even 12
4050.2.c.p.649.1 2 45.43 odd 12
4050.2.c.p.649.2 2 45.7 odd 12
6480.2.a.l.1.1 1 180.119 even 6
6480.2.a.z.1.1 1 180.79 odd 6