Properties

Label 135.4.e.c.46.5
Level $135$
Weight $4$
Character 135.46
Analytic conductor $7.965$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [135,4,Mod(46,135)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(135, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("135.46"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 135.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.96525785077\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} + 48 x^{12} - 60 x^{11} + 1605 x^{10} - 1800 x^{9} + 23232 x^{8} - 2346 x^{7} + \cdots + 82944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{13} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 46.5
Root \(-0.785104 - 1.35984i\) of defining polynomial
Character \(\chi\) \(=\) 135.46
Dual form 135.4.e.c.91.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.785104 - 1.35984i) q^{2} +(2.76722 + 4.79297i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(-17.1199 + 29.6525i) q^{7} +21.2519 q^{8} -7.85104 q^{10} +(-13.4480 + 23.2926i) q^{11} +(9.74401 + 16.8771i) q^{13} +(26.8818 + 46.5607i) q^{14} +(-5.45281 + 9.44454i) q^{16} -29.1232 q^{17} +47.1006 q^{19} +(13.8361 - 23.9648i) q^{20} +(21.1162 + 36.5743i) q^{22} +(56.6083 + 98.0485i) q^{23} +(-12.5000 + 21.6506i) q^{25} +30.6003 q^{26} -189.498 q^{28} +(40.6219 - 70.3593i) q^{29} +(5.41811 + 9.38445i) q^{31} +(93.5697 + 162.067i) q^{32} +(-22.8648 + 39.6029i) q^{34} +171.199 q^{35} +410.002 q^{37} +(36.9789 - 64.0493i) q^{38} +(-53.1298 - 92.0234i) q^{40} +(-221.755 - 384.091i) q^{41} +(-169.748 + 294.012i) q^{43} -148.854 q^{44} +177.774 q^{46} +(118.121 - 204.591i) q^{47} +(-414.681 - 718.249i) q^{49} +(19.6276 + 33.9960i) q^{50} +(-53.9277 + 93.4055i) q^{52} -609.634 q^{53} +134.480 q^{55} +(-363.830 + 630.173i) q^{56} +(-63.7849 - 110.479i) q^{58} +(7.77272 + 13.4627i) q^{59} +(-30.5255 + 52.8717i) q^{61} +17.0151 q^{62} +206.603 q^{64} +(48.7201 - 84.3856i) q^{65} +(-108.445 - 187.832i) q^{67} +(-80.5903 - 139.587i) q^{68} +(134.409 - 232.803i) q^{70} -65.4315 q^{71} +711.811 q^{73} +(321.895 - 557.538i) q^{74} +(130.338 + 225.752i) q^{76} +(-460.457 - 797.534i) q^{77} +(478.876 - 829.438i) q^{79} +54.5281 q^{80} -696.404 q^{82} +(-261.220 + 452.446i) q^{83} +(72.8080 + 126.107i) q^{85} +(266.540 + 461.660i) q^{86} +(-285.796 + 495.012i) q^{88} +1602.24 q^{89} -667.266 q^{91} +(-313.296 + 542.644i) q^{92} +(-185.474 - 321.251i) q^{94} +(-117.751 - 203.952i) q^{95} +(-400.969 + 694.499i) q^{97} -1302.27 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{2} - 36 q^{4} - 35 q^{5} - 22 q^{7} + 36 q^{8} + 20 q^{10} - 23 q^{11} - 96 q^{13} + 21 q^{14} - 324 q^{16} + 322 q^{17} + 558 q^{19} - 180 q^{20} - 311 q^{22} - 96 q^{23} - 175 q^{25} - 716 q^{26}+ \cdots + 2558 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.785104 1.35984i 0.277576 0.480776i −0.693206 0.720740i \(-0.743802\pi\)
0.970782 + 0.239964i \(0.0771355\pi\)
\(3\) 0 0
\(4\) 2.76722 + 4.79297i 0.345903 + 0.599121i
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) −17.1199 + 29.6525i −0.924387 + 1.60109i −0.131844 + 0.991271i \(0.542090\pi\)
−0.792544 + 0.609815i \(0.791244\pi\)
\(8\) 21.2519 0.939210
\(9\) 0 0
\(10\) −7.85104 −0.248272
\(11\) −13.4480 + 23.2926i −0.368611 + 0.638453i −0.989349 0.145565i \(-0.953500\pi\)
0.620737 + 0.784019i \(0.286833\pi\)
\(12\) 0 0
\(13\) 9.74401 + 16.8771i 0.207885 + 0.360067i 0.951048 0.309043i \(-0.100009\pi\)
−0.743163 + 0.669110i \(0.766675\pi\)
\(14\) 26.8818 + 46.5607i 0.513176 + 0.888847i
\(15\) 0 0
\(16\) −5.45281 + 9.44454i −0.0852001 + 0.147571i
\(17\) −29.1232 −0.415495 −0.207747 0.978182i \(-0.566613\pi\)
−0.207747 + 0.978182i \(0.566613\pi\)
\(18\) 0 0
\(19\) 47.1006 0.568717 0.284358 0.958718i \(-0.408219\pi\)
0.284358 + 0.958718i \(0.408219\pi\)
\(20\) 13.8361 23.9648i 0.154692 0.267935i
\(21\) 0 0
\(22\) 21.1162 + 36.5743i 0.204636 + 0.354439i
\(23\) 56.6083 + 98.0485i 0.513202 + 0.888892i 0.999883 + 0.0153124i \(0.00487428\pi\)
−0.486680 + 0.873580i \(0.661792\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 30.6003 0.230816
\(27\) 0 0
\(28\) −189.498 −1.27899
\(29\) 40.6219 70.3593i 0.260114 0.450531i −0.706158 0.708054i \(-0.749573\pi\)
0.966272 + 0.257524i \(0.0829065\pi\)
\(30\) 0 0
\(31\) 5.41811 + 9.38445i 0.0313910 + 0.0543708i 0.881294 0.472568i \(-0.156673\pi\)
−0.849903 + 0.526939i \(0.823340\pi\)
\(32\) 93.5697 + 162.067i 0.516904 + 0.895304i
\(33\) 0 0
\(34\) −22.8648 + 39.6029i −0.115332 + 0.199760i
\(35\) 171.199 0.826797
\(36\) 0 0
\(37\) 410.002 1.82173 0.910864 0.412706i \(-0.135416\pi\)
0.910864 + 0.412706i \(0.135416\pi\)
\(38\) 36.9789 64.0493i 0.157862 0.273426i
\(39\) 0 0
\(40\) −53.1298 92.0234i −0.210014 0.363755i
\(41\) −221.755 384.091i −0.844691 1.46305i −0.885889 0.463897i \(-0.846451\pi\)
0.0411978 0.999151i \(-0.486883\pi\)
\(42\) 0 0
\(43\) −169.748 + 294.012i −0.602007 + 1.04271i 0.390510 + 0.920599i \(0.372299\pi\)
−0.992517 + 0.122108i \(0.961035\pi\)
\(44\) −148.854 −0.510015
\(45\) 0 0
\(46\) 177.774 0.569811
\(47\) 118.121 204.591i 0.366589 0.634950i −0.622441 0.782667i \(-0.713859\pi\)
0.989030 + 0.147716i \(0.0471923\pi\)
\(48\) 0 0
\(49\) −414.681 718.249i −1.20898 2.09402i
\(50\) 19.6276 + 33.9960i 0.0555153 + 0.0961553i
\(51\) 0 0
\(52\) −53.9277 + 93.4055i −0.143816 + 0.249096i
\(53\) −609.634 −1.57999 −0.789997 0.613111i \(-0.789918\pi\)
−0.789997 + 0.613111i \(0.789918\pi\)
\(54\) 0 0
\(55\) 134.480 0.329696
\(56\) −363.830 + 630.173i −0.868194 + 1.50376i
\(57\) 0 0
\(58\) −63.7849 110.479i −0.144403 0.250113i
\(59\) 7.77272 + 13.4627i 0.0171512 + 0.0297068i 0.874474 0.485073i \(-0.161207\pi\)
−0.857322 + 0.514780i \(0.827874\pi\)
\(60\) 0 0
\(61\) −30.5255 + 52.8717i −0.0640719 + 0.110976i −0.896282 0.443485i \(-0.853742\pi\)
0.832210 + 0.554461i \(0.187075\pi\)
\(62\) 17.0151 0.0348536
\(63\) 0 0
\(64\) 206.603 0.403521
\(65\) 48.7201 84.3856i 0.0929689 0.161027i
\(66\) 0 0
\(67\) −108.445 187.832i −0.197741 0.342497i 0.750055 0.661376i \(-0.230027\pi\)
−0.947796 + 0.318879i \(0.896694\pi\)
\(68\) −80.5903 139.587i −0.143721 0.248932i
\(69\) 0 0
\(70\) 134.409 232.803i 0.229499 0.397504i
\(71\) −65.4315 −0.109370 −0.0546852 0.998504i \(-0.517416\pi\)
−0.0546852 + 0.998504i \(0.517416\pi\)
\(72\) 0 0
\(73\) 711.811 1.14125 0.570624 0.821211i \(-0.306701\pi\)
0.570624 + 0.821211i \(0.306701\pi\)
\(74\) 321.895 557.538i 0.505669 0.875844i
\(75\) 0 0
\(76\) 130.338 + 225.752i 0.196721 + 0.340730i
\(77\) −460.457 797.534i −0.681479 1.18036i
\(78\) 0 0
\(79\) 478.876 829.438i 0.681997 1.18125i −0.292373 0.956304i \(-0.594445\pi\)
0.974370 0.224949i \(-0.0722217\pi\)
\(80\) 54.5281 0.0762053
\(81\) 0 0
\(82\) −696.404 −0.937865
\(83\) −261.220 + 452.446i −0.345453 + 0.598343i −0.985436 0.170047i \(-0.945608\pi\)
0.639983 + 0.768389i \(0.278942\pi\)
\(84\) 0 0
\(85\) 72.8080 + 126.107i 0.0929075 + 0.160920i
\(86\) 266.540 + 461.660i 0.334206 + 0.578862i
\(87\) 0 0
\(88\) −285.796 + 495.012i −0.346204 + 0.599642i
\(89\) 1602.24 1.90828 0.954141 0.299359i \(-0.0967728\pi\)
0.954141 + 0.299359i \(0.0967728\pi\)
\(90\) 0 0
\(91\) −667.266 −0.768664
\(92\) −313.296 + 542.644i −0.355036 + 0.614941i
\(93\) 0 0
\(94\) −185.474 321.251i −0.203513 0.352494i
\(95\) −117.751 203.952i −0.127169 0.220263i
\(96\) 0 0
\(97\) −400.969 + 694.499i −0.419714 + 0.726966i −0.995910 0.0903455i \(-0.971203\pi\)
0.576197 + 0.817311i \(0.304536\pi\)
\(98\) −1302.27 −1.34234
\(99\) 0 0
\(100\) −138.361 −0.138361
\(101\) 293.065 507.604i 0.288724 0.500084i −0.684782 0.728748i \(-0.740102\pi\)
0.973505 + 0.228664i \(0.0734358\pi\)
\(102\) 0 0
\(103\) 410.337 + 710.725i 0.392541 + 0.679901i 0.992784 0.119917i \(-0.0382627\pi\)
−0.600243 + 0.799818i \(0.704929\pi\)
\(104\) 207.079 + 358.671i 0.195248 + 0.338179i
\(105\) 0 0
\(106\) −478.626 + 829.005i −0.438569 + 0.759623i
\(107\) 1358.33 1.22724 0.613621 0.789600i \(-0.289712\pi\)
0.613621 + 0.789600i \(0.289712\pi\)
\(108\) 0 0
\(109\) 489.495 0.430139 0.215069 0.976599i \(-0.431002\pi\)
0.215069 + 0.976599i \(0.431002\pi\)
\(110\) 105.581 182.871i 0.0915158 0.158510i
\(111\) 0 0
\(112\) −186.703 323.379i −0.157516 0.272825i
\(113\) 398.832 + 690.797i 0.332026 + 0.575086i 0.982909 0.184092i \(-0.0589345\pi\)
−0.650883 + 0.759178i \(0.725601\pi\)
\(114\) 0 0
\(115\) 283.042 490.243i 0.229511 0.397525i
\(116\) 449.640 0.359897
\(117\) 0 0
\(118\) 24.4096 0.0190431
\(119\) 498.586 863.576i 0.384078 0.665243i
\(120\) 0 0
\(121\) 303.803 + 526.202i 0.228251 + 0.395343i
\(122\) 47.9314 + 83.0196i 0.0355697 + 0.0616085i
\(123\) 0 0
\(124\) −29.9862 + 51.9377i −0.0217165 + 0.0376141i
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 1728.22 1.20752 0.603759 0.797167i \(-0.293669\pi\)
0.603759 + 0.797167i \(0.293669\pi\)
\(128\) −586.352 + 1015.59i −0.404896 + 0.701301i
\(129\) 0 0
\(130\) −76.5007 132.503i −0.0516120 0.0893945i
\(131\) 319.551 + 553.478i 0.213124 + 0.369142i 0.952691 0.303942i \(-0.0983028\pi\)
−0.739566 + 0.673084i \(0.764969\pi\)
\(132\) 0 0
\(133\) −806.357 + 1396.65i −0.525715 + 0.910564i
\(134\) −340.562 −0.219553
\(135\) 0 0
\(136\) −618.923 −0.390237
\(137\) −1417.97 + 2456.00i −0.884274 + 1.53161i −0.0377300 + 0.999288i \(0.512013\pi\)
−0.846544 + 0.532319i \(0.821321\pi\)
\(138\) 0 0
\(139\) −87.4981 151.551i −0.0533920 0.0924777i 0.838094 0.545526i \(-0.183670\pi\)
−0.891486 + 0.453048i \(0.850337\pi\)
\(140\) 473.745 + 820.551i 0.285991 + 0.495352i
\(141\) 0 0
\(142\) −51.3706 + 88.9764i −0.0303586 + 0.0525827i
\(143\) −524.150 −0.306515
\(144\) 0 0
\(145\) −406.219 −0.232653
\(146\) 558.846 967.949i 0.316784 0.548685i
\(147\) 0 0
\(148\) 1134.57 + 1965.13i 0.630141 + 1.09144i
\(149\) 511.766 + 886.405i 0.281379 + 0.487363i 0.971725 0.236117i \(-0.0758748\pi\)
−0.690345 + 0.723480i \(0.742541\pi\)
\(150\) 0 0
\(151\) 436.998 756.902i 0.235512 0.407920i −0.723909 0.689895i \(-0.757656\pi\)
0.959421 + 0.281976i \(0.0909898\pi\)
\(152\) 1000.98 0.534145
\(153\) 0 0
\(154\) −1446.03 −0.756650
\(155\) 27.0906 46.9222i 0.0140385 0.0243154i
\(156\) 0 0
\(157\) −61.7762 107.000i −0.0314031 0.0543917i 0.849897 0.526949i \(-0.176664\pi\)
−0.881300 + 0.472558i \(0.843331\pi\)
\(158\) −751.936 1302.39i −0.378613 0.655776i
\(159\) 0 0
\(160\) 467.848 810.337i 0.231167 0.400392i
\(161\) −3876.51 −1.89759
\(162\) 0 0
\(163\) −1410.89 −0.677972 −0.338986 0.940791i \(-0.610084\pi\)
−0.338986 + 0.940791i \(0.610084\pi\)
\(164\) 1227.29 2125.73i 0.584362 1.01214i
\(165\) 0 0
\(166\) 410.170 + 710.435i 0.191779 + 0.332172i
\(167\) −1013.85 1756.04i −0.469786 0.813692i 0.529618 0.848236i \(-0.322335\pi\)
−0.999403 + 0.0345441i \(0.989002\pi\)
\(168\) 0 0
\(169\) 908.608 1573.76i 0.413568 0.716320i
\(170\) 228.648 0.103156
\(171\) 0 0
\(172\) −1878.92 −0.832944
\(173\) 1351.99 2341.71i 0.594160 1.02912i −0.399505 0.916731i \(-0.630818\pi\)
0.993665 0.112384i \(-0.0358488\pi\)
\(174\) 0 0
\(175\) −427.997 741.313i −0.184877 0.320217i
\(176\) −146.659 254.020i −0.0628115 0.108793i
\(177\) 0 0
\(178\) 1257.93 2178.79i 0.529694 0.917456i
\(179\) 750.694 0.313461 0.156730 0.987641i \(-0.449905\pi\)
0.156730 + 0.987641i \(0.449905\pi\)
\(180\) 0 0
\(181\) −1134.08 −0.465722 −0.232861 0.972510i \(-0.574809\pi\)
−0.232861 + 0.972510i \(0.574809\pi\)
\(182\) −523.873 + 907.375i −0.213363 + 0.369556i
\(183\) 0 0
\(184\) 1203.03 + 2083.72i 0.482005 + 0.834857i
\(185\) −1025.01 1775.36i −0.407351 0.705552i
\(186\) 0 0
\(187\) 391.649 678.355i 0.153156 0.265274i
\(188\) 1307.46 0.507216
\(189\) 0 0
\(190\) −369.789 −0.141196
\(191\) −267.627 + 463.544i −0.101387 + 0.175607i −0.912256 0.409620i \(-0.865661\pi\)
0.810870 + 0.585227i \(0.198995\pi\)
\(192\) 0 0
\(193\) −1311.77 2272.06i −0.489241 0.847391i 0.510682 0.859770i \(-0.329393\pi\)
−0.999923 + 0.0123786i \(0.996060\pi\)
\(194\) 629.605 + 1090.51i 0.233005 + 0.403577i
\(195\) 0 0
\(196\) 2295.03 3975.11i 0.836382 1.44866i
\(197\) −2954.08 −1.06837 −0.534186 0.845367i \(-0.679382\pi\)
−0.534186 + 0.845367i \(0.679382\pi\)
\(198\) 0 0
\(199\) 2639.35 0.940192 0.470096 0.882615i \(-0.344219\pi\)
0.470096 + 0.882615i \(0.344219\pi\)
\(200\) −265.649 + 460.117i −0.0939210 + 0.162676i
\(201\) 0 0
\(202\) −460.174 797.044i −0.160286 0.277623i
\(203\) 1390.89 + 2409.09i 0.480892 + 0.832929i
\(204\) 0 0
\(205\) −1108.78 + 1920.46i −0.377757 + 0.654295i
\(206\) 1288.63 0.435841
\(207\) 0 0
\(208\) −212.529 −0.0708473
\(209\) −633.409 + 1097.10i −0.209635 + 0.363099i
\(210\) 0 0
\(211\) 995.327 + 1723.96i 0.324745 + 0.562474i 0.981461 0.191664i \(-0.0613883\pi\)
−0.656716 + 0.754138i \(0.728055\pi\)
\(212\) −1686.99 2921.96i −0.546524 0.946607i
\(213\) 0 0
\(214\) 1066.43 1847.12i 0.340654 0.590029i
\(215\) 1697.48 0.538452
\(216\) 0 0
\(217\) −371.030 −0.116070
\(218\) 384.305 665.635i 0.119396 0.206800i
\(219\) 0 0
\(220\) 372.136 + 644.558i 0.114043 + 0.197528i
\(221\) −283.777 491.516i −0.0863751 0.149606i
\(222\) 0 0
\(223\) 337.450 584.481i 0.101333 0.175515i −0.810901 0.585184i \(-0.801022\pi\)
0.912234 + 0.409669i \(0.134356\pi\)
\(224\) −6407.61 −1.91128
\(225\) 0 0
\(226\) 1252.50 0.368650
\(227\) 945.926 1638.39i 0.276579 0.479048i −0.693954 0.720020i \(-0.744133\pi\)
0.970532 + 0.240972i \(0.0774661\pi\)
\(228\) 0 0
\(229\) −1704.26 2951.86i −0.491792 0.851810i 0.508163 0.861261i \(-0.330325\pi\)
−0.999955 + 0.00945146i \(0.996991\pi\)
\(230\) −444.435 769.783i −0.127414 0.220687i
\(231\) 0 0
\(232\) 863.294 1495.27i 0.244302 0.423143i
\(233\) 2841.86 0.799041 0.399521 0.916724i \(-0.369177\pi\)
0.399521 + 0.916724i \(0.369177\pi\)
\(234\) 0 0
\(235\) −1181.21 −0.327887
\(236\) −43.0177 + 74.5088i −0.0118653 + 0.0205513i
\(237\) 0 0
\(238\) −782.884 1356.00i −0.213222 0.369311i
\(239\) 809.803 + 1402.62i 0.219171 + 0.379615i 0.954555 0.298036i \(-0.0963315\pi\)
−0.735384 + 0.677651i \(0.762998\pi\)
\(240\) 0 0
\(241\) −13.3504 + 23.1235i −0.00356835 + 0.00618057i −0.867804 0.496907i \(-0.834469\pi\)
0.864236 + 0.503087i \(0.167803\pi\)
\(242\) 954.068 0.253429
\(243\) 0 0
\(244\) −337.883 −0.0886506
\(245\) −2073.41 + 3591.25i −0.540674 + 0.936475i
\(246\) 0 0
\(247\) 458.949 + 794.923i 0.118228 + 0.204776i
\(248\) 115.145 + 199.437i 0.0294828 + 0.0510657i
\(249\) 0 0
\(250\) 98.1381 169.980i 0.0248272 0.0430019i
\(251\) 427.354 0.107467 0.0537337 0.998555i \(-0.482888\pi\)
0.0537337 + 0.998555i \(0.482888\pi\)
\(252\) 0 0
\(253\) −3045.07 −0.756689
\(254\) 1356.83 2350.10i 0.335178 0.580546i
\(255\) 0 0
\(256\) 1747.11 + 3026.08i 0.426540 + 0.738789i
\(257\) 1920.77 + 3326.88i 0.466204 + 0.807490i 0.999255 0.0385936i \(-0.0122878\pi\)
−0.533051 + 0.846083i \(0.678954\pi\)
\(258\) 0 0
\(259\) −7019.19 + 12157.6i −1.68398 + 2.91674i
\(260\) 539.277 0.128633
\(261\) 0 0
\(262\) 1003.52 0.236633
\(263\) −399.437 + 691.845i −0.0936514 + 0.162209i −0.909045 0.416698i \(-0.863187\pi\)
0.815394 + 0.578907i \(0.196521\pi\)
\(264\) 0 0
\(265\) 1524.08 + 2639.79i 0.353297 + 0.611929i
\(266\) 1266.15 + 2193.03i 0.291852 + 0.505502i
\(267\) 0 0
\(268\) 600.181 1039.54i 0.136798 0.236941i
\(269\) −7934.42 −1.79840 −0.899201 0.437536i \(-0.855851\pi\)
−0.899201 + 0.437536i \(0.855851\pi\)
\(270\) 0 0
\(271\) −2309.09 −0.517592 −0.258796 0.965932i \(-0.583326\pi\)
−0.258796 + 0.965932i \(0.583326\pi\)
\(272\) 158.803 275.055i 0.0354002 0.0613150i
\(273\) 0 0
\(274\) 2226.51 + 3856.43i 0.490907 + 0.850276i
\(275\) −336.200 582.315i −0.0737223 0.127691i
\(276\) 0 0
\(277\) −380.651 + 659.307i −0.0825672 + 0.143011i −0.904352 0.426787i \(-0.859645\pi\)
0.821785 + 0.569798i \(0.192979\pi\)
\(278\) −274.781 −0.0592815
\(279\) 0 0
\(280\) 3638.30 0.776536
\(281\) −643.638 + 1114.81i −0.136641 + 0.236670i −0.926223 0.376975i \(-0.876964\pi\)
0.789582 + 0.613645i \(0.210297\pi\)
\(282\) 0 0
\(283\) 1363.25 + 2361.22i 0.286350 + 0.495972i 0.972936 0.231076i \(-0.0742248\pi\)
−0.686586 + 0.727049i \(0.740891\pi\)
\(284\) −181.064 313.611i −0.0378315 0.0655261i
\(285\) 0 0
\(286\) −411.512 + 712.760i −0.0850813 + 0.147365i
\(287\) 15185.7 3.12329
\(288\) 0 0
\(289\) −4064.84 −0.827364
\(290\) −318.925 + 552.394i −0.0645790 + 0.111854i
\(291\) 0 0
\(292\) 1969.74 + 3411.69i 0.394761 + 0.683746i
\(293\) −48.1869 83.4622i −0.00960789 0.0166414i 0.861181 0.508298i \(-0.169725\pi\)
−0.870789 + 0.491656i \(0.836392\pi\)
\(294\) 0 0
\(295\) 38.8636 67.3137i 0.00767026 0.0132853i
\(296\) 8713.33 1.71099
\(297\) 0 0
\(298\) 1607.16 0.312417
\(299\) −1103.18 + 1910.77i −0.213374 + 0.369575i
\(300\) 0 0
\(301\) −5812.13 10066.9i −1.11298 1.92773i
\(302\) −686.178 1188.50i −0.130745 0.226458i
\(303\) 0 0
\(304\) −256.831 + 444.844i −0.0484547 + 0.0839261i
\(305\) 305.255 0.0573076
\(306\) 0 0
\(307\) 5258.02 0.977495 0.488747 0.872425i \(-0.337454\pi\)
0.488747 + 0.872425i \(0.337454\pi\)
\(308\) 2548.37 4413.91i 0.471451 0.816577i
\(309\) 0 0
\(310\) −42.5378 73.6777i −0.00779351 0.0134988i
\(311\) −2615.66 4530.45i −0.476914 0.826039i 0.522736 0.852495i \(-0.324911\pi\)
−0.999650 + 0.0264555i \(0.991578\pi\)
\(312\) 0 0
\(313\) 1996.33 3457.74i 0.360509 0.624419i −0.627536 0.778588i \(-0.715936\pi\)
0.988045 + 0.154168i \(0.0492698\pi\)
\(314\) −194.003 −0.0348670
\(315\) 0 0
\(316\) 5300.63 0.943619
\(317\) −2366.79 + 4099.40i −0.419344 + 0.726325i −0.995874 0.0907509i \(-0.971073\pi\)
0.576529 + 0.817076i \(0.304407\pi\)
\(318\) 0 0
\(319\) 1092.57 + 1892.38i 0.191762 + 0.332141i
\(320\) −516.507 894.617i −0.0902301 0.156283i
\(321\) 0 0
\(322\) −3043.47 + 5271.44i −0.526726 + 0.912317i
\(323\) −1371.72 −0.236299
\(324\) 0 0
\(325\) −487.201 −0.0831539
\(326\) −1107.70 + 1918.59i −0.188189 + 0.325953i
\(327\) 0 0
\(328\) −4712.72 8162.67i −0.793343 1.37411i
\(329\) 4044.43 + 7005.15i 0.677740 + 1.17388i
\(330\) 0 0
\(331\) −4684.92 + 8114.52i −0.777965 + 1.34747i 0.155148 + 0.987891i \(0.450415\pi\)
−0.933113 + 0.359583i \(0.882919\pi\)
\(332\) −2891.42 −0.477973
\(333\) 0 0
\(334\) −3183.92 −0.521605
\(335\) −542.223 + 939.159i −0.0884323 + 0.153169i
\(336\) 0 0
\(337\) −2724.41 4718.83i −0.440381 0.762762i 0.557337 0.830287i \(-0.311823\pi\)
−0.997718 + 0.0675246i \(0.978490\pi\)
\(338\) −1426.71 2471.13i −0.229593 0.397667i
\(339\) 0 0
\(340\) −402.952 + 697.933i −0.0642739 + 0.111326i
\(341\) −291.451 −0.0462843
\(342\) 0 0
\(343\) 16653.0 2.62150
\(344\) −3607.47 + 6248.31i −0.565411 + 0.979321i
\(345\) 0 0
\(346\) −2122.90 3676.98i −0.329850 0.571316i
\(347\) −1948.77 3375.38i −0.301486 0.522189i 0.674987 0.737830i \(-0.264149\pi\)
−0.976473 + 0.215641i \(0.930816\pi\)
\(348\) 0 0
\(349\) 3129.53 5420.51i 0.480000 0.831384i −0.519737 0.854326i \(-0.673970\pi\)
0.999737 + 0.0229422i \(0.00730337\pi\)
\(350\) −1344.09 −0.205270
\(351\) 0 0
\(352\) −5033.30 −0.762147
\(353\) 171.433 296.931i 0.0258483 0.0447706i −0.852812 0.522218i \(-0.825105\pi\)
0.878660 + 0.477448i \(0.158438\pi\)
\(354\) 0 0
\(355\) 163.579 + 283.327i 0.0244559 + 0.0423589i
\(356\) 4433.75 + 7679.48i 0.660080 + 1.14329i
\(357\) 0 0
\(358\) 589.373 1020.82i 0.0870093 0.150705i
\(359\) −10448.9 −1.53613 −0.768066 0.640371i \(-0.778781\pi\)
−0.768066 + 0.640371i \(0.778781\pi\)
\(360\) 0 0
\(361\) −4640.53 −0.676561
\(362\) −890.373 + 1542.17i −0.129273 + 0.223908i
\(363\) 0 0
\(364\) −1846.47 3198.18i −0.265883 0.460523i
\(365\) −1779.53 3082.23i −0.255191 0.442004i
\(366\) 0 0
\(367\) 2586.87 4480.58i 0.367938 0.637288i −0.621305 0.783569i \(-0.713397\pi\)
0.989243 + 0.146281i \(0.0467305\pi\)
\(368\) −1234.70 −0.174900
\(369\) 0 0
\(370\) −3218.95 −0.452284
\(371\) 10436.9 18077.2i 1.46053 2.52970i
\(372\) 0 0
\(373\) −1050.53 1819.58i −0.145830 0.252585i 0.783852 0.620947i \(-0.213252\pi\)
−0.929682 + 0.368362i \(0.879919\pi\)
\(374\) −614.970 1065.16i −0.0850250 0.147268i
\(375\) 0 0
\(376\) 2510.29 4347.95i 0.344304 0.596352i
\(377\) 1583.28 0.216295
\(378\) 0 0
\(379\) 11242.6 1.52374 0.761868 0.647732i \(-0.224282\pi\)
0.761868 + 0.647732i \(0.224282\pi\)
\(380\) 651.689 1128.76i 0.0879762 0.152379i
\(381\) 0 0
\(382\) 420.231 + 727.862i 0.0562851 + 0.0974886i
\(383\) 3397.44 + 5884.53i 0.453266 + 0.785080i 0.998587 0.0531478i \(-0.0169255\pi\)
−0.545321 + 0.838227i \(0.683592\pi\)
\(384\) 0 0
\(385\) −2302.28 + 3987.67i −0.304767 + 0.527871i
\(386\) −4119.52 −0.543207
\(387\) 0 0
\(388\) −4438.28 −0.580721
\(389\) 3524.70 6104.96i 0.459407 0.795717i −0.539522 0.841971i \(-0.681395\pi\)
0.998930 + 0.0462544i \(0.0147285\pi\)
\(390\) 0 0
\(391\) −1648.62 2855.49i −0.213233 0.369330i
\(392\) −8812.77 15264.2i −1.13549 1.96673i
\(393\) 0 0
\(394\) −2319.26 + 4017.08i −0.296555 + 0.513648i
\(395\) −4788.76 −0.609997
\(396\) 0 0
\(397\) 3011.36 0.380694 0.190347 0.981717i \(-0.439039\pi\)
0.190347 + 0.981717i \(0.439039\pi\)
\(398\) 2072.16 3589.09i 0.260975 0.452022i
\(399\) 0 0
\(400\) −136.320 236.114i −0.0170400 0.0295142i
\(401\) −2084.07 3609.72i −0.259535 0.449528i 0.706582 0.707631i \(-0.250236\pi\)
−0.966118 + 0.258103i \(0.916903\pi\)
\(402\) 0 0
\(403\) −105.588 + 182.884i −0.0130514 + 0.0226058i
\(404\) 3243.91 0.399481
\(405\) 0 0
\(406\) 4367.96 0.533937
\(407\) −5513.71 + 9550.03i −0.671510 + 1.16309i
\(408\) 0 0
\(409\) 6302.68 + 10916.6i 0.761974 + 1.31978i 0.941832 + 0.336085i \(0.109103\pi\)
−0.179858 + 0.983693i \(0.557564\pi\)
\(410\) 1741.01 + 3015.52i 0.209713 + 0.363234i
\(411\) 0 0
\(412\) −2270.99 + 3933.47i −0.271562 + 0.470359i
\(413\) −532.272 −0.0634175
\(414\) 0 0
\(415\) 2612.20 0.308983
\(416\) −1823.49 + 3158.37i −0.214913 + 0.372240i
\(417\) 0 0
\(418\) 994.584 + 1722.67i 0.116380 + 0.201575i
\(419\) −2572.24 4455.24i −0.299909 0.519458i 0.676206 0.736713i \(-0.263623\pi\)
−0.976115 + 0.217255i \(0.930290\pi\)
\(420\) 0 0
\(421\) 1685.03 2918.56i 0.195068 0.337867i −0.751855 0.659329i \(-0.770841\pi\)
0.946923 + 0.321461i \(0.104174\pi\)
\(422\) 3125.74 0.360566
\(423\) 0 0
\(424\) −12955.9 −1.48395
\(425\) 364.040 630.536i 0.0415495 0.0719658i
\(426\) 0 0
\(427\) −1045.19 1810.31i −0.118454 0.205169i
\(428\) 3758.81 + 6510.45i 0.424507 + 0.735267i
\(429\) 0 0
\(430\) 1332.70 2308.30i 0.149461 0.258875i
\(431\) −14948.3 −1.67061 −0.835306 0.549785i \(-0.814710\pi\)
−0.835306 + 0.549785i \(0.814710\pi\)
\(432\) 0 0
\(433\) −14011.1 −1.55504 −0.777520 0.628858i \(-0.783523\pi\)
−0.777520 + 0.628858i \(0.783523\pi\)
\(434\) −291.297 + 504.542i −0.0322182 + 0.0558036i
\(435\) 0 0
\(436\) 1354.54 + 2346.13i 0.148786 + 0.257705i
\(437\) 2666.29 + 4618.14i 0.291867 + 0.505528i
\(438\) 0 0
\(439\) 2391.10 4141.50i 0.259956 0.450257i −0.706274 0.707939i \(-0.749625\pi\)
0.966230 + 0.257681i \(0.0829585\pi\)
\(440\) 2857.96 0.309654
\(441\) 0 0
\(442\) −891.178 −0.0959027
\(443\) 2387.01 4134.42i 0.256005 0.443413i −0.709163 0.705044i \(-0.750927\pi\)
0.965168 + 0.261631i \(0.0842604\pi\)
\(444\) 0 0
\(445\) −4005.60 6937.90i −0.426705 0.739074i
\(446\) −529.867 917.757i −0.0562555 0.0974374i
\(447\) 0 0
\(448\) −3537.02 + 6126.30i −0.373010 + 0.646072i
\(449\) 855.812 0.0899516 0.0449758 0.998988i \(-0.485679\pi\)
0.0449758 + 0.998988i \(0.485679\pi\)
\(450\) 0 0
\(451\) 11928.7 1.24545
\(452\) −2207.31 + 3823.18i −0.229697 + 0.397848i
\(453\) 0 0
\(454\) −1485.30 2572.62i −0.153543 0.265945i
\(455\) 1668.16 + 2889.35i 0.171879 + 0.297702i
\(456\) 0 0
\(457\) 6708.99 11620.3i 0.686725 1.18944i −0.286166 0.958180i \(-0.592381\pi\)
0.972891 0.231263i \(-0.0742857\pi\)
\(458\) −5352.08 −0.546040
\(459\) 0 0
\(460\) 3132.96 0.317554
\(461\) −7942.99 + 13757.7i −0.802477 + 1.38993i 0.115503 + 0.993307i \(0.463152\pi\)
−0.917981 + 0.396625i \(0.870181\pi\)
\(462\) 0 0
\(463\) −3280.69 5682.32i −0.329302 0.570367i 0.653072 0.757296i \(-0.273480\pi\)
−0.982373 + 0.186929i \(0.940147\pi\)
\(464\) 443.007 + 767.311i 0.0443235 + 0.0767705i
\(465\) 0 0
\(466\) 2231.16 3864.48i 0.221795 0.384160i
\(467\) 6792.37 0.673048 0.336524 0.941675i \(-0.390749\pi\)
0.336524 + 0.941675i \(0.390749\pi\)
\(468\) 0 0
\(469\) 7426.25 0.731156
\(470\) −927.371 + 1606.25i −0.0910137 + 0.157640i
\(471\) 0 0
\(472\) 165.185 + 286.109i 0.0161086 + 0.0279009i
\(473\) −4565.54 7907.74i −0.443813 0.768707i
\(474\) 0 0
\(475\) −588.757 + 1019.76i −0.0568717 + 0.0985046i
\(476\) 5518.79 0.531415
\(477\) 0 0
\(478\) 2543.12 0.243346
\(479\) 8826.24 15287.5i 0.841923 1.45825i −0.0463438 0.998926i \(-0.514757\pi\)
0.888267 0.459328i \(-0.151910\pi\)
\(480\) 0 0
\(481\) 3995.07 + 6919.66i 0.378710 + 0.655945i
\(482\) 20.9629 + 36.3088i 0.00198098 + 0.00343116i
\(483\) 0 0
\(484\) −1681.38 + 2912.23i −0.157906 + 0.273501i
\(485\) 4009.69 0.375403
\(486\) 0 0
\(487\) −5318.16 −0.494844 −0.247422 0.968908i \(-0.579583\pi\)
−0.247422 + 0.968908i \(0.579583\pi\)
\(488\) −648.724 + 1123.62i −0.0601770 + 0.104230i
\(489\) 0 0
\(490\) 3255.68 + 5639.01i 0.300157 + 0.519886i
\(491\) 5434.98 + 9413.66i 0.499546 + 0.865239i 1.00000 0.000523887i \(-0.000166759\pi\)
−0.500454 + 0.865763i \(0.666833\pi\)
\(492\) 0 0
\(493\) −1183.04 + 2049.09i −0.108076 + 0.187193i
\(494\) 1441.29 0.131269
\(495\) 0 0
\(496\) −118.176 −0.0106981
\(497\) 1120.18 1940.21i 0.101101 0.175111i
\(498\) 0 0
\(499\) −5185.25 8981.12i −0.465178 0.805711i 0.534032 0.845464i \(-0.320676\pi\)
−0.999210 + 0.0397529i \(0.987343\pi\)
\(500\) 345.903 + 599.121i 0.0309385 + 0.0535870i
\(501\) 0 0
\(502\) 335.517 581.133i 0.0298304 0.0516678i
\(503\) 12396.4 1.09886 0.549432 0.835538i \(-0.314844\pi\)
0.549432 + 0.835538i \(0.314844\pi\)
\(504\) 0 0
\(505\) −2930.65 −0.258242
\(506\) −2390.70 + 4140.82i −0.210039 + 0.363798i
\(507\) 0 0
\(508\) 4782.37 + 8283.30i 0.417684 + 0.723449i
\(509\) 2780.52 + 4816.00i 0.242130 + 0.419382i 0.961321 0.275431i \(-0.0888205\pi\)
−0.719190 + 0.694813i \(0.755487\pi\)
\(510\) 0 0
\(511\) −12186.1 + 21107.0i −1.05496 + 1.82724i
\(512\) −3894.99 −0.336203
\(513\) 0 0
\(514\) 6032.03 0.517629
\(515\) 2051.69 3553.63i 0.175550 0.304061i
\(516\) 0 0
\(517\) 3176.97 + 5502.68i 0.270258 + 0.468100i
\(518\) 11021.6 + 19090.0i 0.934868 + 1.61924i
\(519\) 0 0
\(520\) 1035.39 1793.36i 0.0873174 0.151238i
\(521\) 2613.39 0.219760 0.109880 0.993945i \(-0.464953\pi\)
0.109880 + 0.993945i \(0.464953\pi\)
\(522\) 0 0
\(523\) −2927.73 −0.244781 −0.122391 0.992482i \(-0.539056\pi\)
−0.122391 + 0.992482i \(0.539056\pi\)
\(524\) −1768.53 + 3063.19i −0.147440 + 0.255374i
\(525\) 0 0
\(526\) 627.199 + 1086.34i 0.0519908 + 0.0900508i
\(527\) −157.793 273.305i −0.0130428 0.0225908i
\(528\) 0 0
\(529\) −325.506 + 563.793i −0.0267532 + 0.0463379i
\(530\) 4786.26 0.392268
\(531\) 0 0
\(532\) −8925.48 −0.727384
\(533\) 4321.57 7485.18i 0.351197 0.608291i
\(534\) 0 0
\(535\) −3395.83 5881.75i −0.274420 0.475309i
\(536\) −2304.66 3991.78i −0.185720 0.321677i
\(537\) 0 0
\(538\) −6229.35 + 10789.5i −0.499194 + 0.864629i
\(539\) 22306.5 1.78258
\(540\) 0 0
\(541\) −4023.02 −0.319710 −0.159855 0.987140i \(-0.551103\pi\)
−0.159855 + 0.987140i \(0.551103\pi\)
\(542\) −1812.88 + 3140.00i −0.143671 + 0.248846i
\(543\) 0 0
\(544\) −2725.05 4719.92i −0.214771 0.371994i
\(545\) −1223.74 2119.57i −0.0961819 0.166592i
\(546\) 0 0
\(547\) −1652.77 + 2862.68i −0.129191 + 0.223765i −0.923363 0.383927i \(-0.874571\pi\)
0.794172 + 0.607692i \(0.207905\pi\)
\(548\) −15695.4 −1.22349
\(549\) 0 0
\(550\) −1055.81 −0.0818542
\(551\) 1913.32 3313.96i 0.147931 0.256224i
\(552\) 0 0
\(553\) 16396.6 + 28399.8i 1.26086 + 2.18387i
\(554\) 597.702 + 1035.25i 0.0458374 + 0.0793927i
\(555\) 0 0
\(556\) 484.253 838.752i 0.0369369 0.0639766i
\(557\) −6472.87 −0.492396 −0.246198 0.969220i \(-0.579181\pi\)
−0.246198 + 0.969220i \(0.579181\pi\)
\(558\) 0 0
\(559\) −6616.10 −0.500593
\(560\) −933.515 + 1616.90i −0.0704432 + 0.122011i
\(561\) 0 0
\(562\) 1010.65 + 1750.49i 0.0758569 + 0.131388i
\(563\) −10277.6 17801.4i −0.769362 1.33257i −0.937909 0.346881i \(-0.887241\pi\)
0.168547 0.985694i \(-0.446093\pi\)
\(564\) 0 0
\(565\) 1994.16 3453.98i 0.148487 0.257186i
\(566\) 4281.18 0.317936
\(567\) 0 0
\(568\) −1390.54 −0.102722
\(569\) 635.311 1100.39i 0.0468078 0.0810735i −0.841672 0.539989i \(-0.818429\pi\)
0.888480 + 0.458915i \(0.151762\pi\)
\(570\) 0 0
\(571\) 8376.66 + 14508.8i 0.613927 + 1.06335i 0.990572 + 0.136995i \(0.0437444\pi\)
−0.376645 + 0.926358i \(0.622922\pi\)
\(572\) −1450.44 2512.23i −0.106024 0.183639i
\(573\) 0 0
\(574\) 11922.4 20650.1i 0.866951 1.50160i
\(575\) −2830.42 −0.205281
\(576\) 0 0
\(577\) −7800.01 −0.562770 −0.281385 0.959595i \(-0.590794\pi\)
−0.281385 + 0.959595i \(0.590794\pi\)
\(578\) −3191.32 + 5527.53i −0.229657 + 0.397777i
\(579\) 0 0
\(580\) −1124.10 1947.00i −0.0804753 0.139387i
\(581\) −8944.12 15491.7i −0.638665 1.10620i
\(582\) 0 0
\(583\) 8198.35 14200.0i 0.582403 1.00875i
\(584\) 15127.3 1.07187
\(585\) 0 0
\(586\) −151.327 −0.0106677
\(587\) −1184.62 + 2051.83i −0.0832958 + 0.144273i −0.904664 0.426126i \(-0.859878\pi\)
0.821368 + 0.570399i \(0.193211\pi\)
\(588\) 0 0
\(589\) 255.196 + 442.013i 0.0178526 + 0.0309216i
\(590\) −61.0240 105.697i −0.00425816 0.00737536i
\(591\) 0 0
\(592\) −2235.66 + 3872.28i −0.155212 + 0.268834i
\(593\) −11974.3 −0.829218 −0.414609 0.910000i \(-0.636082\pi\)
−0.414609 + 0.910000i \(0.636082\pi\)
\(594\) 0 0
\(595\) −4985.86 −0.343530
\(596\) −2832.34 + 4905.76i −0.194660 + 0.337160i
\(597\) 0 0
\(598\) 1732.23 + 3000.31i 0.118455 + 0.205170i
\(599\) 11099.7 + 19225.3i 0.757134 + 1.31139i 0.944307 + 0.329067i \(0.106734\pi\)
−0.187173 + 0.982327i \(0.559932\pi\)
\(600\) 0 0
\(601\) 5749.47 9958.38i 0.390226 0.675891i −0.602253 0.798305i \(-0.705730\pi\)
0.992479 + 0.122414i \(0.0390635\pi\)
\(602\) −18252.5 −1.23574
\(603\) 0 0
\(604\) 4837.08 0.325858
\(605\) 1519.01 2631.01i 0.102077 0.176803i
\(606\) 0 0
\(607\) 7636.51 + 13226.8i 0.510636 + 0.884448i 0.999924 + 0.0123257i \(0.00392350\pi\)
−0.489288 + 0.872122i \(0.662743\pi\)
\(608\) 4407.19 + 7633.47i 0.293972 + 0.509175i
\(609\) 0 0
\(610\) 239.657 415.098i 0.0159072 0.0275522i
\(611\) 4603.88 0.304833
\(612\) 0 0
\(613\) −16440.8 −1.08326 −0.541630 0.840617i \(-0.682192\pi\)
−0.541630 + 0.840617i \(0.682192\pi\)
\(614\) 4128.09 7150.07i 0.271329 0.469956i
\(615\) 0 0
\(616\) −9785.58 16949.1i −0.640052 1.10860i
\(617\) 4679.57 + 8105.25i 0.305336 + 0.528857i 0.977336 0.211694i \(-0.0678979\pi\)
−0.672000 + 0.740551i \(0.734565\pi\)
\(618\) 0 0
\(619\) 12742.3 22070.3i 0.827392 1.43308i −0.0726861 0.997355i \(-0.523157\pi\)
0.900078 0.435729i \(-0.143510\pi\)
\(620\) 299.862 0.0194238
\(621\) 0 0
\(622\) −8214.25 −0.529520
\(623\) −27430.2 + 47510.4i −1.76399 + 3.05532i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) −3134.65 5429.38i −0.200137 0.346648i
\(627\) 0 0
\(628\) 341.897 592.183i 0.0217248 0.0376285i
\(629\) −11940.6 −0.756919
\(630\) 0 0
\(631\) −21733.8 −1.37117 −0.685585 0.727993i \(-0.740454\pi\)
−0.685585 + 0.727993i \(0.740454\pi\)
\(632\) 10177.0 17627.1i 0.640539 1.10945i
\(633\) 0 0
\(634\) 3716.35 + 6436.91i 0.232800 + 0.403222i
\(635\) −4320.55 7483.41i −0.270009 0.467669i
\(636\) 0 0
\(637\) 8081.32 13997.3i 0.502659 0.870631i
\(638\) 3431.12 0.212914
\(639\) 0 0
\(640\) 5863.52 0.362150
\(641\) −10162.4 + 17601.8i −0.626195 + 1.08460i 0.362113 + 0.932134i \(0.382055\pi\)
−0.988308 + 0.152468i \(0.951278\pi\)
\(642\) 0 0
\(643\) −3363.72 5826.13i −0.206302 0.357325i 0.744245 0.667907i \(-0.232810\pi\)
−0.950547 + 0.310581i \(0.899476\pi\)
\(644\) −10727.2 18580.0i −0.656382 1.13689i
\(645\) 0 0
\(646\) −1076.94 + 1865.32i −0.0655910 + 0.113607i
\(647\) −6724.69 −0.408616 −0.204308 0.978907i \(-0.565494\pi\)
−0.204308 + 0.978907i \(0.565494\pi\)
\(648\) 0 0
\(649\) −418.110 −0.0252885
\(650\) −382.503 + 662.515i −0.0230816 + 0.0399784i
\(651\) 0 0
\(652\) −3904.25 6762.35i −0.234512 0.406187i
\(653\) −15398.2 26670.4i −0.922782 1.59831i −0.795089 0.606492i \(-0.792576\pi\)
−0.127693 0.991814i \(-0.540757\pi\)
\(654\) 0 0
\(655\) 1597.75 2767.39i 0.0953120 0.165085i
\(656\) 4836.75 0.287871
\(657\) 0 0
\(658\) 12701.2 0.752498
\(659\) 8267.16 14319.1i 0.488684 0.846426i −0.511231 0.859443i \(-0.670810\pi\)
0.999915 + 0.0130174i \(0.00414369\pi\)
\(660\) 0 0
\(661\) −968.527 1677.54i −0.0569914 0.0987121i 0.836122 0.548543i \(-0.184817\pi\)
−0.893114 + 0.449831i \(0.851484\pi\)
\(662\) 7356.30 + 12741.5i 0.431889 + 0.748054i
\(663\) 0 0
\(664\) −5551.42 + 9615.35i −0.324453 + 0.561970i
\(665\) 8063.57 0.470213
\(666\) 0 0
\(667\) 9198.16 0.533964
\(668\) 5611.10 9718.72i 0.325000 0.562917i
\(669\) 0 0
\(670\) 851.404 + 1474.68i 0.0490935 + 0.0850324i
\(671\) −821.013 1422.04i −0.0472352 0.0818138i
\(672\) 0 0
\(673\) 230.294 398.881i 0.0131905 0.0228465i −0.859355 0.511380i \(-0.829135\pi\)
0.872545 + 0.488533i \(0.162468\pi\)
\(674\) −8555.80 −0.488957
\(675\) 0 0
\(676\) 10057.3 0.572217
\(677\) 14529.8 25166.4i 0.824854 1.42869i −0.0771775 0.997017i \(-0.524591\pi\)
0.902031 0.431671i \(-0.142076\pi\)
\(678\) 0 0
\(679\) −13729.1 23779.5i −0.775956 1.34400i
\(680\) 1547.31 + 2680.02i 0.0872597 + 0.151138i
\(681\) 0 0
\(682\) −228.820 + 396.327i −0.0128474 + 0.0222524i
\(683\) −14366.9 −0.804881 −0.402440 0.915446i \(-0.631838\pi\)
−0.402440 + 0.915446i \(0.631838\pi\)
\(684\) 0 0
\(685\) 14179.7 0.790918
\(686\) 13074.3 22645.4i 0.727667 1.26036i
\(687\) 0 0
\(688\) −1851.21 3206.38i −0.102582 0.177678i
\(689\) −5940.28 10288.9i −0.328457 0.568904i
\(690\) 0 0
\(691\) 6353.97 11005.4i 0.349807 0.605883i −0.636408 0.771352i \(-0.719581\pi\)
0.986215 + 0.165469i \(0.0529139\pi\)
\(692\) 14965.0 0.822087
\(693\) 0 0
\(694\) −6119.97 −0.334742
\(695\) −437.491 + 757.756i −0.0238776 + 0.0413573i
\(696\) 0 0
\(697\) 6458.22 + 11186.0i 0.350965 + 0.607889i
\(698\) −4914.02 8511.33i −0.266473 0.461545i
\(699\) 0 0
\(700\) 2368.73 4102.76i 0.127899 0.221528i
\(701\) −5959.06 −0.321071 −0.160535 0.987030i \(-0.551322\pi\)
−0.160535 + 0.987030i \(0.551322\pi\)
\(702\) 0 0
\(703\) 19311.4 1.03605
\(704\) −2778.40 + 4812.32i −0.148743 + 0.257630i
\(705\) 0 0
\(706\) −269.186 466.243i −0.0143498 0.0248545i
\(707\) 10034.5 + 17380.2i 0.533785 + 0.924542i
\(708\) 0 0
\(709\) −225.912 + 391.292i −0.0119666 + 0.0207268i −0.871947 0.489601i \(-0.837143\pi\)
0.859980 + 0.510328i \(0.170476\pi\)
\(710\) 513.706 0.0271536
\(711\) 0 0
\(712\) 34050.6 1.79228
\(713\) −613.421 + 1062.48i −0.0322199 + 0.0558065i
\(714\) 0 0
\(715\) 1310.37 + 2269.64i 0.0685388 + 0.118713i
\(716\) 2077.34 + 3598.05i 0.108427 + 0.187801i
\(717\) 0 0
\(718\) −8203.47 + 14208.8i −0.426394 + 0.738536i
\(719\) 13488.4 0.699627 0.349814 0.936819i \(-0.386245\pi\)
0.349814 + 0.936819i \(0.386245\pi\)
\(720\) 0 0
\(721\) −28099.7 −1.45144
\(722\) −3643.30 + 6310.39i −0.187797 + 0.325275i
\(723\) 0 0
\(724\) −3138.26 5435.62i −0.161094 0.279024i
\(725\) 1015.55 + 1758.98i 0.0520228 + 0.0901061i
\(726\) 0 0
\(727\) −14591.6 + 25273.3i −0.744389 + 1.28932i 0.206090 + 0.978533i \(0.433926\pi\)
−0.950480 + 0.310787i \(0.899407\pi\)
\(728\) −14180.7 −0.721938
\(729\) 0 0
\(730\) −5588.46 −0.283340
\(731\) 4943.60 8562.57i 0.250131 0.433239i
\(732\) 0 0
\(733\) −6256.24 10836.1i −0.315252 0.546032i 0.664239 0.747520i \(-0.268756\pi\)
−0.979491 + 0.201488i \(0.935422\pi\)
\(734\) −4061.92 7035.45i −0.204262 0.353792i
\(735\) 0 0
\(736\) −10593.6 + 18348.7i −0.530553 + 0.918945i
\(737\) 5833.46 0.291558
\(738\) 0 0
\(739\) −32248.2 −1.60524 −0.802619 0.596492i \(-0.796561\pi\)
−0.802619 + 0.596492i \(0.796561\pi\)
\(740\) 5672.84 9825.64i 0.281808 0.488105i
\(741\) 0 0
\(742\) −16388.1 28384.9i −0.810815 1.40437i
\(743\) 9244.50 + 16011.9i 0.456457 + 0.790607i 0.998771 0.0495691i \(-0.0157848\pi\)
−0.542313 + 0.840176i \(0.682451\pi\)
\(744\) 0 0
\(745\) 2558.83 4432.02i 0.125837 0.217955i
\(746\) −3299.12 −0.161916
\(747\) 0 0
\(748\) 4335.12 0.211908
\(749\) −23254.5 + 40278.0i −1.13445 + 1.96492i
\(750\) 0 0
\(751\) 1026.10 + 1777.26i 0.0498575 + 0.0863558i 0.889877 0.456200i \(-0.150790\pi\)
−0.840020 + 0.542556i \(0.817457\pi\)
\(752\) 1288.18 + 2231.19i 0.0624668 + 0.108196i
\(753\) 0 0
\(754\) 1243.04 2153.01i 0.0600384 0.103990i
\(755\) −4369.98 −0.210649
\(756\) 0 0
\(757\) 10118.9 0.485834 0.242917 0.970047i \(-0.421896\pi\)
0.242917 + 0.970047i \(0.421896\pi\)
\(758\) 8826.65 15288.2i 0.422953 0.732576i
\(759\) 0 0
\(760\) −2502.44 4334.36i −0.119438 0.206873i
\(761\) 13652.0 + 23646.0i 0.650309 + 1.12637i 0.983048 + 0.183349i \(0.0586938\pi\)
−0.332739 + 0.943019i \(0.607973\pi\)
\(762\) 0 0
\(763\) −8380.10 + 14514.8i −0.397615 + 0.688689i
\(764\) −2962.34 −0.140280
\(765\) 0 0
\(766\) 10669.4 0.503264
\(767\) −151.475 + 262.362i −0.00713096 + 0.0123512i
\(768\) 0 0
\(769\) 11236.9 + 19462.9i 0.526935 + 0.912679i 0.999507 + 0.0313867i \(0.00999234\pi\)
−0.472572 + 0.881292i \(0.656674\pi\)
\(770\) 3615.06 + 6261.48i 0.169192 + 0.293049i
\(771\) 0 0
\(772\) 7259.94 12574.6i 0.338460 0.586230i
\(773\) 35405.6 1.64741 0.823707 0.567015i \(-0.191902\pi\)
0.823707 + 0.567015i \(0.191902\pi\)
\(774\) 0 0
\(775\) −270.906 −0.0125564
\(776\) −8521.35 + 14759.4i −0.394200 + 0.682774i
\(777\) 0 0
\(778\) −5534.52 9586.07i −0.255041 0.441744i
\(779\) −10444.8 18090.9i −0.480390 0.832060i
\(780\) 0 0
\(781\) 879.923 1524.07i 0.0403151 0.0698278i
\(782\) −5177.34 −0.236754
\(783\) 0 0
\(784\) 9044.71 0.412022
\(785\) −308.881 + 534.998i −0.0140439 + 0.0243247i
\(786\) 0 0
\(787\) 6090.02 + 10548.2i 0.275840 + 0.477769i 0.970347 0.241718i \(-0.0777107\pi\)
−0.694507 + 0.719486i \(0.744377\pi\)
\(788\) −8174.59 14158.8i −0.369553 0.640085i
\(789\) 0 0
\(790\) −3759.68 + 6511.95i −0.169321 + 0.293272i
\(791\) −27311.8 −1.22768
\(792\) 0 0
\(793\) −1189.76 −0.0532783
\(794\) 2364.23 4094.97i 0.105672 0.183029i
\(795\) 0 0
\(796\) 7303.65 + 12650.3i 0.325215 + 0.563289i
\(797\) 1146.54 + 1985.86i 0.0509567 + 0.0882596i 0.890379 0.455221i \(-0.150440\pi\)
−0.839422 + 0.543480i \(0.817106\pi\)
\(798\) 0 0
\(799\) −3440.05 + 5958.35i −0.152316 + 0.263819i
\(800\) −4678.48 −0.206762
\(801\) 0 0
\(802\) −6544.86 −0.288164
\(803\) −9572.43 + 16579.9i −0.420677 + 0.728634i
\(804\) 0 0
\(805\) 9691.29 + 16785.8i 0.424314 + 0.734934i
\(806\) 165.796 + 287.167i 0.00724554 + 0.0125496i
\(807\) 0 0
\(808\) 6228.19 10787.5i 0.271172 0.469684i
\(809\) 25264.0 1.09794 0.548972 0.835841i \(-0.315019\pi\)
0.548972 + 0.835841i \(0.315019\pi\)
\(810\) 0 0
\(811\) 18781.2 0.813190 0.406595 0.913608i \(-0.366716\pi\)
0.406595 + 0.913608i \(0.366716\pi\)
\(812\) −7697.78 + 13333.0i −0.332684 + 0.576225i
\(813\) 0 0
\(814\) 8657.68 + 14995.5i 0.372790 + 0.645692i
\(815\) 3527.23 + 6109.33i 0.151599 + 0.262577i
\(816\) 0 0
\(817\) −7995.23 + 13848.1i −0.342372 + 0.593005i
\(818\) 19793.0 0.846023
\(819\) 0 0
\(820\) −12272.9 −0.522669
\(821\) 15787.4 27344.6i 0.671114 1.16240i −0.306474 0.951879i \(-0.599149\pi\)
0.977588 0.210525i \(-0.0675174\pi\)
\(822\) 0 0
\(823\) 473.129 + 819.484i 0.0200392 + 0.0347089i 0.875871 0.482545i \(-0.160288\pi\)
−0.855832 + 0.517254i \(0.826954\pi\)
\(824\) 8720.45 + 15104.3i 0.368679 + 0.638570i
\(825\) 0 0
\(826\) −417.889 + 723.806i −0.0176032 + 0.0304896i
\(827\) −35044.7 −1.47355 −0.736774 0.676139i \(-0.763652\pi\)
−0.736774 + 0.676139i \(0.763652\pi\)
\(828\) 0 0
\(829\) 31029.2 1.29999 0.649993 0.759940i \(-0.274772\pi\)
0.649993 + 0.759940i \(0.274772\pi\)
\(830\) 2050.85 3552.18i 0.0857663 0.148552i
\(831\) 0 0
\(832\) 2013.14 + 3486.86i 0.0838860 + 0.145295i
\(833\) 12076.8 + 20917.7i 0.502327 + 0.870055i
\(834\) 0 0
\(835\) −5069.26 + 8780.21i −0.210094 + 0.363894i
\(836\) −7011.13 −0.290054
\(837\) 0 0
\(838\) −8077.90 −0.332991
\(839\) −10599.9 + 18359.6i −0.436175 + 0.755477i −0.997391 0.0721924i \(-0.977000\pi\)
0.561216 + 0.827669i \(0.310334\pi\)
\(840\) 0 0
\(841\) 8894.22 + 15405.2i 0.364681 + 0.631647i
\(842\) −2645.86 4582.76i −0.108292 0.187568i
\(843\) 0 0
\(844\) −5508.58 + 9541.14i −0.224660 + 0.389123i
\(845\) −9086.08 −0.369906
\(846\) 0 0
\(847\) −20804.3 −0.843971
\(848\) 3324.22 5757.71i 0.134616 0.233161i
\(849\) 0 0
\(850\) −571.619 990.073i −0.0230663 0.0399520i
\(851\) 23209.5 + 40200.1i 0.934915 + 1.61932i
\(852\) 0 0
\(853\) −5489.93 + 9508.84i −0.220365 + 0.381684i −0.954919 0.296867i \(-0.904058\pi\)
0.734554 + 0.678551i \(0.237392\pi\)
\(854\) −3282.32 −0.131521
\(855\) 0 0
\(856\) 28867.2 1.15264
\(857\) 22407.2 38810.4i 0.893133 1.54695i 0.0570348 0.998372i \(-0.481835\pi\)
0.836098 0.548580i \(-0.184831\pi\)
\(858\) 0 0
\(859\) −18693.1 32377.4i −0.742492 1.28603i −0.951358 0.308089i \(-0.900311\pi\)
0.208866 0.977944i \(-0.433023\pi\)
\(860\) 4697.30 + 8135.96i 0.186252 + 0.322598i
\(861\) 0 0
\(862\) −11736.0 + 20327.3i −0.463722 + 0.803191i
\(863\) 30536.3 1.20448 0.602241 0.798314i \(-0.294275\pi\)
0.602241 + 0.798314i \(0.294275\pi\)
\(864\) 0 0
\(865\) −13519.9 −0.531433
\(866\) −11000.2 + 19052.9i −0.431643 + 0.747627i
\(867\) 0 0
\(868\) −1026.72 1778.34i −0.0401489 0.0695399i
\(869\) 12879.8 + 22308.6i 0.502784 + 0.870847i
\(870\) 0 0
\(871\) 2113.37 3660.47i 0.0822146 0.142400i
\(872\) 10402.7 0.403991
\(873\) 0 0
\(874\) 8373.25 0.324061
\(875\) −2139.99 + 3706.57i −0.0826797 + 0.143205i
\(876\) 0 0
\(877\) −17163.7 29728.4i −0.660864 1.14465i −0.980389 0.197072i \(-0.936857\pi\)
0.319525 0.947578i \(-0.396477\pi\)
\(878\) −3754.52 6503.02i −0.144315 0.249962i
\(879\) 0 0
\(880\) −733.294 + 1270.10i −0.0280901 + 0.0486535i
\(881\) 18009.6 0.688718 0.344359 0.938838i \(-0.388096\pi\)
0.344359 + 0.938838i \(0.388096\pi\)
\(882\) 0 0
\(883\) −29074.4 −1.10808 −0.554039 0.832491i \(-0.686914\pi\)
−0.554039 + 0.832491i \(0.686914\pi\)
\(884\) 1570.55 2720.27i 0.0597548 0.103498i
\(885\) 0 0
\(886\) −3748.10 6491.90i −0.142122 0.246162i
\(887\) −16451.3 28494.5i −0.622752 1.07864i −0.988971 0.148109i \(-0.952681\pi\)
0.366220 0.930528i \(-0.380652\pi\)
\(888\) 0 0
\(889\) −29586.9 + 51246.1i −1.11621 + 1.93334i
\(890\) −12579.3 −0.473772
\(891\) 0 0
\(892\) 3735.20 0.140206
\(893\) 5563.56 9636.36i 0.208485 0.361107i
\(894\) 0 0
\(895\) −1876.74 3250.60i −0.0700920 0.121403i
\(896\) −20076.6 34773.7i −0.748562 1.29655i
\(897\) 0 0
\(898\) 671.902 1163.77i 0.0249684 0.0432466i
\(899\) 880.377 0.0326610
\(900\) 0 0
\(901\) 17754.5 0.656479
\(902\) 9365.24 16221.1i 0.345708 0.598783i
\(903\) 0 0
\(904\) 8475.93 + 14680.7i 0.311842 + 0.540127i
\(905\) 2835.21 + 4910.72i 0.104139 + 0.180373i
\(906\) 0 0
\(907\) 407.908 706.517i 0.0149331 0.0258649i −0.858462 0.512877i \(-0.828580\pi\)
0.873395 + 0.487012i \(0.161913\pi\)
\(908\) 10470.4 0.382677
\(909\) 0 0
\(910\) 5238.73 0.190838
\(911\) 7921.41 13720.3i 0.288088 0.498983i −0.685265 0.728293i \(-0.740314\pi\)
0.973353 + 0.229311i \(0.0736472\pi\)
\(912\) 0 0
\(913\) −7025.77 12169.0i −0.254676 0.441112i
\(914\) −10534.5 18246.3i −0.381237 0.660322i
\(915\) 0 0
\(916\) 9432.11 16336.9i 0.340225 0.589286i
\(917\) −21882.7 −0.788037
\(918\) 0 0
\(919\) 23848.4 0.856025 0.428013 0.903773i \(-0.359214\pi\)
0.428013 + 0.903773i \(0.359214\pi\)
\(920\) 6015.17 10418.6i 0.215559 0.373359i
\(921\) 0 0
\(922\) 12472.2 + 21602.4i 0.445498 + 0.771624i
\(923\) −637.566 1104.30i −0.0227364 0.0393807i
\(924\) 0 0
\(925\) −5125.03 + 8876.81i −0.182173 + 0.315533i
\(926\) −10302.7 −0.365625
\(927\) 0 0
\(928\) 15203.9 0.537816
\(929\) −19796.0 + 34287.7i −0.699123 + 1.21092i 0.269647 + 0.962959i \(0.413093\pi\)
−0.968771 + 0.247958i \(0.920240\pi\)
\(930\) 0 0
\(931\) −19531.7 33830.0i −0.687569 1.19090i
\(932\) 7864.07 + 13621.0i 0.276391 + 0.478723i
\(933\) 0 0
\(934\) 5332.72 9236.54i 0.186822 0.323585i
\(935\) −3916.49 −0.136987
\(936\) 0 0
\(937\) 10255.0 0.357540 0.178770 0.983891i \(-0.442788\pi\)
0.178770 + 0.983891i \(0.442788\pi\)
\(938\) 5830.38 10098.5i 0.202952 0.351523i
\(939\) 0 0
\(940\) −3268.66 5661.49i −0.113417 0.196444i
\(941\) −11947.2 20693.1i −0.413886 0.716871i 0.581425 0.813600i \(-0.302495\pi\)
−0.995311 + 0.0967289i \(0.969162\pi\)
\(942\) 0 0
\(943\) 25106.4 43485.5i 0.866995 1.50168i
\(944\) −169.533 −0.00584514
\(945\) 0 0
\(946\) −14337.7 −0.492768
\(947\) −18128.6 + 31399.7i −0.622072 + 1.07746i 0.367028 + 0.930210i \(0.380375\pi\)
−0.989099 + 0.147250i \(0.952958\pi\)
\(948\) 0 0
\(949\) 6935.89 + 12013.3i 0.237248 + 0.410926i
\(950\) 924.472 + 1601.23i 0.0315725 + 0.0546851i
\(951\) 0 0
\(952\) 10595.9 18352.6i 0.360730 0.624803i
\(953\) 46736.7 1.58861 0.794307 0.607516i \(-0.207834\pi\)
0.794307 + 0.607516i \(0.207834\pi\)
\(954\) 0 0
\(955\) 2676.27 0.0906830
\(956\) −4481.81 + 7762.72i −0.151623 + 0.262620i
\(957\) 0 0
\(958\) −13859.0 24004.6i −0.467396 0.809553i
\(959\) −48551.0 84092.9i −1.63482 2.83160i
\(960\) 0 0
\(961\) 14836.8 25698.1i 0.498029 0.862612i
\(962\) 12546.2 0.420484
\(963\) 0 0
\(964\) −147.774 −0.00493721
\(965\) −6558.87 + 11360.3i −0.218795 + 0.378965i
\(966\) 0 0
\(967\) −22178.5 38414.3i −0.737552 1.27748i −0.953595 0.301094i \(-0.902648\pi\)
0.216043 0.976384i \(-0.430685\pi\)
\(968\) 6456.39 + 11182.8i 0.214376 + 0.371310i
\(969\) 0 0
\(970\) 3148.03 5452.54i 0.104203 0.180485i
\(971\) 650.540 0.0215003 0.0107502 0.999942i \(-0.496578\pi\)
0.0107502 + 0.999942i \(0.496578\pi\)
\(972\) 0 0
\(973\) 5991.83 0.197420
\(974\) −4175.31 + 7231.85i −0.137357 + 0.237909i
\(975\) 0 0
\(976\) −332.899 576.598i −0.0109179 0.0189103i
\(977\) 25837.5 + 44751.9i 0.846075 + 1.46544i 0.884684 + 0.466190i \(0.154374\pi\)
−0.0386096 + 0.999254i \(0.512293\pi\)
\(978\) 0 0
\(979\) −21546.9 + 37320.3i −0.703414 + 1.21835i
\(980\) −22950.3 −0.748082
\(981\) 0 0
\(982\) 17068.1 0.554649
\(983\) 11759.5 20368.0i 0.381556 0.660874i −0.609729 0.792610i \(-0.708722\pi\)
0.991285 + 0.131736i \(0.0420551\pi\)
\(984\) 0 0
\(985\) 7385.20 + 12791.5i 0.238895 + 0.413779i
\(986\) 1857.62 + 3217.49i 0.0599987 + 0.103921i
\(987\) 0 0
\(988\) −2540.03 + 4399.46i −0.0817905 + 0.141665i
\(989\) −38436.6 −1.23581
\(990\) 0 0
\(991\) −27732.9 −0.888966 −0.444483 0.895787i \(-0.646613\pi\)
−0.444483 + 0.895787i \(0.646613\pi\)
\(992\) −1013.94 + 1756.20i −0.0324523 + 0.0562090i
\(993\) 0 0
\(994\) −1758.92 3046.53i −0.0561262 0.0972135i
\(995\) −6598.36 11428.7i −0.210233 0.364135i
\(996\) 0 0
\(997\) 17163.9 29728.7i 0.545221 0.944351i −0.453372 0.891322i \(-0.649779\pi\)
0.998593 0.0530293i \(-0.0168877\pi\)
\(998\) −16283.9 −0.516489
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.4.e.c.46.5 14
3.2 odd 2 45.4.e.c.16.3 14
9.2 odd 6 405.4.a.m.1.5 7
9.4 even 3 inner 135.4.e.c.91.5 14
9.5 odd 6 45.4.e.c.31.3 yes 14
9.7 even 3 405.4.a.n.1.3 7
15.2 even 4 225.4.k.d.124.6 28
15.8 even 4 225.4.k.d.124.9 28
15.14 odd 2 225.4.e.d.151.5 14
45.14 odd 6 225.4.e.d.76.5 14
45.23 even 12 225.4.k.d.49.6 28
45.29 odd 6 2025.4.a.bb.1.3 7
45.32 even 12 225.4.k.d.49.9 28
45.34 even 6 2025.4.a.ba.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.c.16.3 14 3.2 odd 2
45.4.e.c.31.3 yes 14 9.5 odd 6
135.4.e.c.46.5 14 1.1 even 1 trivial
135.4.e.c.91.5 14 9.4 even 3 inner
225.4.e.d.76.5 14 45.14 odd 6
225.4.e.d.151.5 14 15.14 odd 2
225.4.k.d.49.6 28 45.23 even 12
225.4.k.d.49.9 28 45.32 even 12
225.4.k.d.124.6 28 15.2 even 4
225.4.k.d.124.9 28 15.8 even 4
405.4.a.m.1.5 7 9.2 odd 6
405.4.a.n.1.3 7 9.7 even 3
2025.4.a.ba.1.5 7 45.34 even 6
2025.4.a.bb.1.3 7 45.29 odd 6