Properties

Label 225.4.k.d.49.9
Level $225$
Weight $4$
Character 225.49
Analytic conductor $13.275$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,4,Mod(49,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.49"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 225.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.2754297513\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.9
Character \(\chi\) \(=\) 225.49
Dual form 225.4.k.d.124.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35984 - 0.785104i) q^{2} +(3.43441 + 3.89934i) q^{3} +(-2.76722 + 4.79297i) q^{4} +(7.73164 + 2.60611i) q^{6} +(29.6525 - 17.1199i) q^{7} +21.2519i q^{8} +(-3.40971 + 26.7838i) q^{9} +(13.4480 + 23.2926i) q^{11} +(-28.1932 + 5.67066i) q^{12} +(-16.8771 - 9.74401i) q^{13} +(26.8818 - 46.5607i) q^{14} +(-5.45281 - 9.44454i) q^{16} +29.1232i q^{17} +(16.3915 + 39.0987i) q^{18} -47.1006 q^{19} +(168.595 + 56.8286i) q^{21} +(36.5743 + 21.1162i) q^{22} +(98.0485 + 56.6083i) q^{23} +(-82.8684 + 72.9877i) q^{24} -30.6003 q^{26} +(-116.150 + 78.6910i) q^{27} +189.498i q^{28} +(40.6219 + 70.3593i) q^{29} +(5.41811 - 9.38445i) q^{31} +(-162.067 - 93.5697i) q^{32} +(-44.6399 + 132.435i) q^{33} +(22.8648 + 39.6029i) q^{34} +(-118.939 - 90.4594i) q^{36} +410.002i q^{37} +(-64.0493 + 36.9789i) q^{38} +(-19.9677 - 99.2746i) q^{39} +(221.755 - 384.091i) q^{41} +(273.879 - 55.0869i) q^{42} +(-294.012 + 169.748i) q^{43} -148.854 q^{44} +177.774 q^{46} +(204.591 - 118.121i) q^{47} +(18.1003 - 53.6988i) q^{48} +(414.681 - 718.249i) q^{49} +(-113.561 + 100.021i) q^{51} +(93.4055 - 53.9277i) q^{52} -609.634i q^{53} +(-96.1643 + 198.197i) q^{54} +(363.830 + 630.173i) q^{56} +(-161.763 - 183.661i) q^{57} +(110.479 + 63.7849i) q^{58} +(7.77272 - 13.4627i) q^{59} +(-30.5255 - 52.8717i) q^{61} -17.0151i q^{62} +(357.430 + 852.582i) q^{63} -206.603 q^{64} +(43.2718 + 215.137i) q^{66} +(-187.832 - 108.445i) q^{67} +(-139.587 - 80.5903i) q^{68} +(116.003 + 576.740i) q^{69} +65.4315 q^{71} +(-569.208 - 72.4627i) q^{72} -711.811i q^{73} +(321.895 + 557.538i) q^{74} +(130.338 - 225.752i) q^{76} +(797.534 + 460.457i) q^{77} +(-105.094 - 119.321i) q^{78} +(-478.876 - 829.438i) q^{79} +(-705.748 - 182.650i) q^{81} -696.404i q^{82} +(452.446 - 261.220i) q^{83} +(-738.918 + 650.814i) q^{84} +(-266.540 + 461.660i) q^{86} +(-134.842 + 400.041i) q^{87} +(-495.012 + 285.796i) q^{88} +1602.24 q^{89} -667.266 q^{91} +(-542.644 + 313.296i) q^{92} +(55.2011 - 11.1029i) q^{93} +(185.474 - 321.251i) q^{94} +(-191.745 - 953.312i) q^{96} +(694.499 - 400.969i) q^{97} -1302.27i q^{98} +(-669.719 + 280.768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 72 q^{4} - 62 q^{6} - 34 q^{9} + 46 q^{11} + 42 q^{14} - 648 q^{16} - 1116 q^{19} + 360 q^{21} - 96 q^{24} + 1432 q^{26} + 592 q^{29} - 488 q^{31} + 250 q^{34} - 4798 q^{36} - 1268 q^{39} - 94 q^{41}+ \cdots - 4640 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/225\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35984 0.785104i 0.480776 0.277576i −0.239964 0.970782i \(-0.577136\pi\)
0.720740 + 0.693206i \(0.243802\pi\)
\(3\) 3.43441 + 3.89934i 0.660952 + 0.750428i
\(4\) −2.76722 + 4.79297i −0.345903 + 0.599121i
\(5\) 0 0
\(6\) 7.73164 + 2.60611i 0.526071 + 0.177324i
\(7\) 29.6525 17.1199i 1.60109 0.924387i 0.609815 0.792544i \(-0.291244\pi\)
0.991271 0.131844i \(-0.0420897\pi\)
\(8\) 21.2519i 0.939210i
\(9\) −3.40971 + 26.7838i −0.126285 + 0.991994i
\(10\) 0 0
\(11\) 13.4480 + 23.2926i 0.368611 + 0.638453i 0.989349 0.145565i \(-0.0465000\pi\)
−0.620737 + 0.784019i \(0.713167\pi\)
\(12\) −28.1932 + 5.67066i −0.678223 + 0.136415i
\(13\) −16.8771 9.74401i −0.360067 0.207885i 0.309043 0.951048i \(-0.399991\pi\)
−0.669110 + 0.743163i \(0.733325\pi\)
\(14\) 26.8818 46.5607i 0.513176 0.888847i
\(15\) 0 0
\(16\) −5.45281 9.44454i −0.0852001 0.147571i
\(17\) 29.1232i 0.415495i 0.978182 + 0.207747i \(0.0666132\pi\)
−0.978182 + 0.207747i \(0.933387\pi\)
\(18\) 16.3915 + 39.0987i 0.214639 + 0.511981i
\(19\) −47.1006 −0.568717 −0.284358 0.958718i \(-0.591781\pi\)
−0.284358 + 0.958718i \(0.591781\pi\)
\(20\) 0 0
\(21\) 168.595 + 56.8286i 1.75193 + 0.590525i
\(22\) 36.5743 + 21.1162i 0.354439 + 0.204636i
\(23\) 98.0485 + 56.6083i 0.888892 + 0.513202i 0.873580 0.486680i \(-0.161792\pi\)
0.0153124 + 0.999883i \(0.495126\pi\)
\(24\) −82.8684 + 72.9877i −0.704810 + 0.620773i
\(25\) 0 0
\(26\) −30.6003 −0.230816
\(27\) −116.150 + 78.6910i −0.827889 + 0.560892i
\(28\) 189.498i 1.27899i
\(29\) 40.6219 + 70.3593i 0.260114 + 0.450531i 0.966272 0.257524i \(-0.0829065\pi\)
−0.706158 + 0.708054i \(0.749573\pi\)
\(30\) 0 0
\(31\) 5.41811 9.38445i 0.0313910 0.0543708i −0.849903 0.526939i \(-0.823340\pi\)
0.881294 + 0.472568i \(0.156673\pi\)
\(32\) −162.067 93.5697i −0.895304 0.516904i
\(33\) −44.6399 + 132.435i −0.235479 + 0.698603i
\(34\) 22.8648 + 39.6029i 0.115332 + 0.199760i
\(35\) 0 0
\(36\) −118.939 90.4594i −0.550642 0.418794i
\(37\) 410.002i 1.82173i 0.412706 + 0.910864i \(0.364584\pi\)
−0.412706 + 0.910864i \(0.635416\pi\)
\(38\) −64.0493 + 36.9789i −0.273426 + 0.157862i
\(39\) −19.9677 99.2746i −0.0819843 0.407606i
\(40\) 0 0
\(41\) 221.755 384.091i 0.844691 1.46305i −0.0411978 0.999151i \(-0.513117\pi\)
0.885889 0.463897i \(-0.153549\pi\)
\(42\) 273.879 55.0869i 1.00620 0.202383i
\(43\) −294.012 + 169.748i −1.04271 + 0.602007i −0.920599 0.390510i \(-0.872299\pi\)
−0.122108 + 0.992517i \(0.538965\pi\)
\(44\) −148.854 −0.510015
\(45\) 0 0
\(46\) 177.774 0.569811
\(47\) 204.591 118.121i 0.634950 0.366589i −0.147716 0.989030i \(-0.547192\pi\)
0.782667 + 0.622441i \(0.213859\pi\)
\(48\) 18.1003 53.6988i 0.0544283 0.161474i
\(49\) 414.681 718.249i 1.20898 2.09402i
\(50\) 0 0
\(51\) −113.561 + 100.021i −0.311799 + 0.274622i
\(52\) 93.4055 53.9277i 0.249096 0.143816i
\(53\) 609.634i 1.57999i −0.613111 0.789997i \(-0.710082\pi\)
0.613111 0.789997i \(-0.289918\pi\)
\(54\) −96.1643 + 198.197i −0.242339 + 0.499466i
\(55\) 0 0
\(56\) 363.830 + 630.173i 0.868194 + 1.50376i
\(57\) −161.763 183.661i −0.375894 0.426781i
\(58\) 110.479 + 63.7849i 0.250113 + 0.144403i
\(59\) 7.77272 13.4627i 0.0171512 0.0297068i −0.857322 0.514780i \(-0.827874\pi\)
0.874474 + 0.485073i \(0.161207\pi\)
\(60\) 0 0
\(61\) −30.5255 52.8717i −0.0640719 0.110976i 0.832210 0.554461i \(-0.187075\pi\)
−0.896282 + 0.443485i \(0.853742\pi\)
\(62\) 17.0151i 0.0348536i
\(63\) 357.430 + 852.582i 0.714793 + 1.70500i
\(64\) −206.603 −0.403521
\(65\) 0 0
\(66\) 43.2718 + 215.137i 0.0807029 + 0.401235i
\(67\) −187.832 108.445i −0.342497 0.197741i 0.318879 0.947796i \(-0.396694\pi\)
−0.661376 + 0.750055i \(0.730027\pi\)
\(68\) −139.587 80.5903i −0.248932 0.143721i
\(69\) 116.003 + 576.740i 0.202394 + 1.00625i
\(70\) 0 0
\(71\) 65.4315 0.109370 0.0546852 0.998504i \(-0.482584\pi\)
0.0546852 + 0.998504i \(0.482584\pi\)
\(72\) −569.208 72.4627i −0.931691 0.118609i
\(73\) 711.811i 1.14125i −0.821211 0.570624i \(-0.806701\pi\)
0.821211 0.570624i \(-0.193299\pi\)
\(74\) 321.895 + 557.538i 0.505669 + 0.875844i
\(75\) 0 0
\(76\) 130.338 225.752i 0.196721 0.340730i
\(77\) 797.534 + 460.457i 1.18036 + 0.681479i
\(78\) −105.094 119.321i −0.152558 0.173211i
\(79\) −478.876 829.438i −0.681997 1.18125i −0.974370 0.224949i \(-0.927778\pi\)
0.292373 0.956304i \(-0.405555\pi\)
\(80\) 0 0
\(81\) −705.748 182.650i −0.968104 0.250549i
\(82\) 696.404i 0.937865i
\(83\) 452.446 261.220i 0.598343 0.345453i −0.170047 0.985436i \(-0.554392\pi\)
0.768389 + 0.639983i \(0.221058\pi\)
\(84\) −738.918 + 650.814i −0.959792 + 0.845352i
\(85\) 0 0
\(86\) −266.540 + 461.660i −0.334206 + 0.578862i
\(87\) −134.842 + 400.041i −0.166168 + 0.492976i
\(88\) −495.012 + 285.796i −0.599642 + 0.346204i
\(89\) 1602.24 1.90828 0.954141 0.299359i \(-0.0967728\pi\)
0.954141 + 0.299359i \(0.0967728\pi\)
\(90\) 0 0
\(91\) −667.266 −0.768664
\(92\) −542.644 + 313.296i −0.614941 + 0.355036i
\(93\) 55.2011 11.1029i 0.0615494 0.0123798i
\(94\) 185.474 321.251i 0.203513 0.352494i
\(95\) 0 0
\(96\) −191.745 953.312i −0.203854 1.01351i
\(97\) 694.499 400.969i 0.726966 0.419714i −0.0903455 0.995910i \(-0.528797\pi\)
0.817311 + 0.576197i \(0.195464\pi\)
\(98\) 1302.27i 1.34234i
\(99\) −669.719 + 280.768i −0.679892 + 0.285033i
\(100\) 0 0
\(101\) −293.065 507.604i −0.288724 0.500084i 0.684782 0.728748i \(-0.259898\pi\)
−0.973505 + 0.228664i \(0.926564\pi\)
\(102\) −75.8984 + 225.170i −0.0736770 + 0.218580i
\(103\) −710.725 410.337i −0.679901 0.392541i 0.119917 0.992784i \(-0.461737\pi\)
−0.799818 + 0.600243i \(0.795071\pi\)
\(104\) 207.079 358.671i 0.195248 0.338179i
\(105\) 0 0
\(106\) −478.626 829.005i −0.438569 0.759623i
\(107\) 1358.33i 1.22724i −0.789600 0.613621i \(-0.789712\pi\)
0.789600 0.613621i \(-0.210288\pi\)
\(108\) −55.7517 774.457i −0.0496732 0.690020i
\(109\) −489.495 −0.430139 −0.215069 0.976599i \(-0.568998\pi\)
−0.215069 + 0.976599i \(0.568998\pi\)
\(110\) 0 0
\(111\) −1598.74 + 1408.11i −1.36708 + 1.20407i
\(112\) −323.379 186.703i −0.272825 0.157516i
\(113\) 690.797 + 398.832i 0.575086 + 0.332026i 0.759178 0.650883i \(-0.225601\pi\)
−0.184092 + 0.982909i \(0.558935\pi\)
\(114\) −364.165 122.750i −0.299185 0.100847i
\(115\) 0 0
\(116\) −449.640 −0.359897
\(117\) 318.528 418.810i 0.251692 0.330932i
\(118\) 24.4096i 0.0190431i
\(119\) 498.586 + 863.576i 0.384078 + 0.665243i
\(120\) 0 0
\(121\) 303.803 526.202i 0.228251 0.395343i
\(122\) −83.0196 47.9314i −0.0616085 0.0355697i
\(123\) 2259.30 454.427i 1.65621 0.333124i
\(124\) 29.9862 + 51.9377i 0.0217165 + 0.0376141i
\(125\) 0 0
\(126\) 1155.41 + 878.756i 0.816924 + 0.621316i
\(127\) 1728.22i 1.20752i 0.797167 + 0.603759i \(0.206331\pi\)
−0.797167 + 0.603759i \(0.793669\pi\)
\(128\) 1015.59 586.352i 0.701301 0.404896i
\(129\) −1671.66 563.469i −1.14094 0.384579i
\(130\) 0 0
\(131\) −319.551 + 553.478i −0.213124 + 0.369142i −0.952691 0.303942i \(-0.901697\pi\)
0.739566 + 0.673084i \(0.235031\pi\)
\(132\) −511.226 580.434i −0.337095 0.382729i
\(133\) −1396.65 + 806.357i −0.910564 + 0.525715i
\(134\) −340.562 −0.219553
\(135\) 0 0
\(136\) −618.923 −0.390237
\(137\) −2456.00 + 1417.97i −1.53161 + 0.884274i −0.532319 + 0.846544i \(0.678679\pi\)
−0.999288 + 0.0377300i \(0.987987\pi\)
\(138\) 610.548 + 693.201i 0.376618 + 0.427603i
\(139\) 87.4981 151.551i 0.0533920 0.0924777i −0.838094 0.545526i \(-0.816330\pi\)
0.891486 + 0.453048i \(0.149663\pi\)
\(140\) 0 0
\(141\) 1163.24 + 392.096i 0.694770 + 0.234187i
\(142\) 88.9764 51.3706i 0.0525827 0.0303586i
\(143\) 524.150i 0.306515i
\(144\) 271.554 113.844i 0.157149 0.0658820i
\(145\) 0 0
\(146\) −558.846 967.949i −0.316784 0.548685i
\(147\) 4224.88 849.776i 2.37049 0.476791i
\(148\) −1965.13 1134.57i −1.09144 0.630141i
\(149\) 511.766 886.405i 0.281379 0.487363i −0.690345 0.723480i \(-0.742541\pi\)
0.971725 + 0.236117i \(0.0758748\pi\)
\(150\) 0 0
\(151\) 436.998 + 756.902i 0.235512 + 0.407920i 0.959421 0.281976i \(-0.0909898\pi\)
−0.723909 + 0.689895i \(0.757656\pi\)
\(152\) 1000.98i 0.534145i
\(153\) −780.031 99.3015i −0.412168 0.0524709i
\(154\) 1446.03 0.756650
\(155\) 0 0
\(156\) 531.075 + 179.010i 0.272564 + 0.0918736i
\(157\) −107.000 61.7762i −0.0543917 0.0314031i 0.472558 0.881300i \(-0.343331\pi\)
−0.526949 + 0.849897i \(0.676664\pi\)
\(158\) −1302.39 751.936i −0.655776 0.378613i
\(159\) 2377.17 2093.73i 1.18567 1.04430i
\(160\) 0 0
\(161\) 3876.51 1.89759
\(162\) −1103.10 + 305.711i −0.534988 + 0.148265i
\(163\) 1410.89i 0.677972i 0.940791 + 0.338986i \(0.110084\pi\)
−0.940791 + 0.338986i \(0.889916\pi\)
\(164\) 1227.29 + 2125.73i 0.584362 + 1.01214i
\(165\) 0 0
\(166\) 410.170 710.435i 0.191779 0.332172i
\(167\) 1756.04 + 1013.85i 0.813692 + 0.469786i 0.848236 0.529618i \(-0.177665\pi\)
−0.0345441 + 0.999403i \(0.510998\pi\)
\(168\) −1207.72 + 3582.97i −0.554627 + 1.64543i
\(169\) −908.608 1573.76i −0.413568 0.716320i
\(170\) 0 0
\(171\) 160.599 1261.53i 0.0718206 0.564164i
\(172\) 1878.92i 0.832944i
\(173\) −2341.71 + 1351.99i −1.02912 + 0.594160i −0.916731 0.399505i \(-0.869182\pi\)
−0.112384 + 0.993665i \(0.535849\pi\)
\(174\) 130.710 + 649.858i 0.0569487 + 0.283135i
\(175\) 0 0
\(176\) 146.659 254.020i 0.0628115 0.108793i
\(177\) 79.1905 15.9281i 0.0336289 0.00676399i
\(178\) 2178.79 1257.93i 0.917456 0.529694i
\(179\) 750.694 0.313461 0.156730 0.987641i \(-0.449905\pi\)
0.156730 + 0.987641i \(0.449905\pi\)
\(180\) 0 0
\(181\) −1134.08 −0.465722 −0.232861 0.972510i \(-0.574809\pi\)
−0.232861 + 0.972510i \(0.574809\pi\)
\(182\) −907.375 + 523.873i −0.369556 + 0.213363i
\(183\) 101.328 300.612i 0.0409309 0.121431i
\(184\) −1203.03 + 2083.72i −0.482005 + 0.834857i
\(185\) 0 0
\(186\) 66.3478 58.4369i 0.0261551 0.0230366i
\(187\) −678.355 + 391.649i −0.265274 + 0.153156i
\(188\) 1307.46i 0.507216i
\(189\) −2096.95 + 4321.85i −0.807040 + 1.66333i
\(190\) 0 0
\(191\) 267.627 + 463.544i 0.101387 + 0.175607i 0.912256 0.409620i \(-0.134339\pi\)
−0.810870 + 0.585227i \(0.801005\pi\)
\(192\) −709.558 805.615i −0.266708 0.302814i
\(193\) 2272.06 + 1311.77i 0.847391 + 0.489241i 0.859770 0.510682i \(-0.170607\pi\)
−0.0123786 + 0.999923i \(0.503940\pi\)
\(194\) 629.605 1090.51i 0.233005 0.403577i
\(195\) 0 0
\(196\) 2295.03 + 3975.11i 0.836382 + 1.44866i
\(197\) 2954.08i 1.06837i 0.845367 + 0.534186i \(0.179382\pi\)
−0.845367 + 0.534186i \(0.820618\pi\)
\(198\) −690.279 + 907.599i −0.247758 + 0.325759i
\(199\) −2639.35 −0.940192 −0.470096 0.882615i \(-0.655781\pi\)
−0.470096 + 0.882615i \(0.655781\pi\)
\(200\) 0 0
\(201\) −222.228 1104.86i −0.0779838 0.387717i
\(202\) −797.044 460.174i −0.277623 0.160286i
\(203\) 2409.09 + 1390.89i 0.832929 + 0.480892i
\(204\) −165.148 821.076i −0.0566797 0.281798i
\(205\) 0 0
\(206\) −1288.63 −0.435841
\(207\) −1850.50 + 2433.10i −0.621348 + 0.816966i
\(208\) 212.529i 0.0708473i
\(209\) −633.409 1097.10i −0.209635 0.363099i
\(210\) 0 0
\(211\) 995.327 1723.96i 0.324745 0.562474i −0.656716 0.754138i \(-0.728055\pi\)
0.981461 + 0.191664i \(0.0613883\pi\)
\(212\) 2921.96 + 1686.99i 0.946607 + 0.546524i
\(213\) 224.718 + 255.140i 0.0722885 + 0.0820746i
\(214\) −1066.43 1847.12i −0.340654 0.590029i
\(215\) 0 0
\(216\) −1672.33 2468.40i −0.526796 0.777562i
\(217\) 371.030i 0.116070i
\(218\) −665.635 + 384.305i −0.206800 + 0.119396i
\(219\) 2775.59 2444.65i 0.856425 0.754310i
\(220\) 0 0
\(221\) 283.777 491.516i 0.0863751 0.149606i
\(222\) −1068.51 + 3169.99i −0.323035 + 0.958359i
\(223\) 584.481 337.450i 0.175515 0.101333i −0.409669 0.912234i \(-0.634356\pi\)
0.585184 + 0.810901i \(0.301022\pi\)
\(224\) −6407.61 −1.91128
\(225\) 0 0
\(226\) 1252.50 0.368650
\(227\) 1638.39 945.926i 0.479048 0.276579i −0.240972 0.970532i \(-0.577466\pi\)
0.720020 + 0.693954i \(0.244133\pi\)
\(228\) 1327.92 267.092i 0.385717 0.0775815i
\(229\) 1704.26 2951.86i 0.491792 0.851810i −0.508163 0.861261i \(-0.669675\pi\)
0.999955 + 0.00945146i \(0.00300854\pi\)
\(230\) 0 0
\(231\) 943.580 + 4691.25i 0.268758 + 1.33620i
\(232\) −1495.27 + 863.294i −0.423143 + 0.244302i
\(233\) 2841.86i 0.799041i 0.916724 + 0.399521i \(0.130823\pi\)
−0.916724 + 0.399521i \(0.869177\pi\)
\(234\) 104.338 819.593i 0.0291486 0.228968i
\(235\) 0 0
\(236\) 43.0177 + 74.5088i 0.0118653 + 0.0205513i
\(237\) 1589.60 4715.93i 0.435679 1.29254i
\(238\) 1356.00 + 782.884i 0.369311 + 0.213222i
\(239\) 809.803 1402.62i 0.219171 0.379615i −0.735384 0.677651i \(-0.762998\pi\)
0.954555 + 0.298036i \(0.0963315\pi\)
\(240\) 0 0
\(241\) −13.3504 23.1235i −0.00356835 0.00618057i 0.864236 0.503087i \(-0.167803\pi\)
−0.867804 + 0.496907i \(0.834469\pi\)
\(242\) 954.068i 0.253429i
\(243\) −1711.61 3379.24i −0.451851 0.892093i
\(244\) 337.883 0.0886506
\(245\) 0 0
\(246\) 2715.52 2391.73i 0.703801 0.619884i
\(247\) 794.923 + 458.949i 0.204776 + 0.118228i
\(248\) 199.437 + 115.145i 0.0510657 + 0.0294828i
\(249\) 2572.47 + 867.107i 0.654714 + 0.220685i
\(250\) 0 0
\(251\) −427.354 −0.107467 −0.0537337 0.998555i \(-0.517112\pi\)
−0.0537337 + 0.998555i \(0.517112\pi\)
\(252\) −5075.49 646.133i −1.26875 0.161518i
\(253\) 3045.07i 0.756689i
\(254\) 1356.83 + 2350.10i 0.335178 + 0.580546i
\(255\) 0 0
\(256\) 1747.11 3026.08i 0.426540 0.738789i
\(257\) −3326.88 1920.77i −0.807490 0.466204i 0.0385936 0.999255i \(-0.487712\pi\)
−0.846083 + 0.533051i \(0.821046\pi\)
\(258\) −2715.58 + 546.200i −0.655288 + 0.131802i
\(259\) 7019.19 + 12157.6i 1.68398 + 2.91674i
\(260\) 0 0
\(261\) −2023.00 + 848.107i −0.479772 + 0.201136i
\(262\) 1003.52i 0.236633i
\(263\) 691.845 399.437i 0.162209 0.0936514i −0.416698 0.909045i \(-0.636813\pi\)
0.578907 + 0.815394i \(0.303479\pi\)
\(264\) −2814.49 948.684i −0.656135 0.221165i
\(265\) 0 0
\(266\) −1266.15 + 2193.03i −0.291852 + 0.505502i
\(267\) 5502.74 + 6247.68i 1.26128 + 1.43203i
\(268\) 1039.54 600.181i 0.236941 0.136798i
\(269\) −7934.42 −1.79840 −0.899201 0.437536i \(-0.855851\pi\)
−0.899201 + 0.437536i \(0.855851\pi\)
\(270\) 0 0
\(271\) −2309.09 −0.517592 −0.258796 0.965932i \(-0.583326\pi\)
−0.258796 + 0.965932i \(0.583326\pi\)
\(272\) 275.055 158.803i 0.0613150 0.0354002i
\(273\) −2291.66 2601.90i −0.508050 0.576828i
\(274\) −2226.51 + 3856.43i −0.490907 + 0.850276i
\(275\) 0 0
\(276\) −3085.31 1039.97i −0.672875 0.226807i
\(277\) 659.307 380.651i 0.143011 0.0825672i −0.426787 0.904352i \(-0.640355\pi\)
0.569798 + 0.821785i \(0.307021\pi\)
\(278\) 274.781i 0.0592815i
\(279\) 232.877 + 177.116i 0.0499713 + 0.0380059i
\(280\) 0 0
\(281\) 643.638 + 1114.81i 0.136641 + 0.236670i 0.926223 0.376975i \(-0.123036\pi\)
−0.789582 + 0.613645i \(0.789703\pi\)
\(282\) 1889.66 380.079i 0.399034 0.0802601i
\(283\) −2361.22 1363.25i −0.495972 0.286350i 0.231076 0.972936i \(-0.425775\pi\)
−0.727049 + 0.686586i \(0.759109\pi\)
\(284\) −181.064 + 313.611i −0.0378315 + 0.0655261i
\(285\) 0 0
\(286\) −411.512 712.760i −0.0850813 0.147365i
\(287\) 15185.7i 3.12329i
\(288\) 3058.76 4021.74i 0.625830 0.822859i
\(289\) 4064.84 0.827364
\(290\) 0 0
\(291\) 3948.71 + 1331.00i 0.795454 + 0.268125i
\(292\) 3411.69 + 1969.74i 0.683746 + 0.394761i
\(293\) −83.4622 48.1869i −0.0166414 0.00960789i 0.491656 0.870789i \(-0.336392\pi\)
−0.508298 + 0.861181i \(0.669725\pi\)
\(294\) 5078.00 4472.53i 1.00733 0.887223i
\(295\) 0 0
\(296\) −8713.33 −1.71099
\(297\) −3394.90 1647.19i −0.663273 0.321817i
\(298\) 1607.16i 0.312417i
\(299\) −1103.18 1910.77i −0.213374 0.369575i
\(300\) 0 0
\(301\) −5812.13 + 10066.9i −1.11298 + 1.92773i
\(302\) 1188.50 + 686.178i 0.226458 + 0.130745i
\(303\) 972.815 2886.08i 0.184445 0.547198i
\(304\) 256.831 + 444.844i 0.0484547 + 0.0839261i
\(305\) 0 0
\(306\) −1138.68 + 477.372i −0.212726 + 0.0891814i
\(307\) 5258.02i 0.977495i 0.872425 + 0.488747i \(0.162546\pi\)
−0.872425 + 0.488747i \(0.837454\pi\)
\(308\) −4413.91 + 2548.37i −0.816577 + 0.471451i
\(309\) −840.874 4180.62i −0.154808 0.769668i
\(310\) 0 0
\(311\) 2615.66 4530.45i 0.476914 0.826039i −0.522736 0.852495i \(-0.675089\pi\)
0.999650 + 0.0264555i \(0.00842202\pi\)
\(312\) 2109.77 424.351i 0.382828 0.0770005i
\(313\) 3457.74 1996.33i 0.624419 0.360509i −0.154168 0.988045i \(-0.549270\pi\)
0.778588 + 0.627536i \(0.215936\pi\)
\(314\) −194.003 −0.0348670
\(315\) 0 0
\(316\) 5300.63 0.943619
\(317\) −4099.40 + 2366.79i −0.726325 + 0.419344i −0.817076 0.576529i \(-0.804407\pi\)
0.0907509 + 0.995874i \(0.471073\pi\)
\(318\) 1588.78 4713.47i 0.280170 0.831189i
\(319\) −1092.57 + 1892.38i −0.191762 + 0.332141i
\(320\) 0 0
\(321\) 5296.60 4665.07i 0.920958 0.811148i
\(322\) 5271.44 3043.47i 0.912317 0.526726i
\(323\) 1371.72i 0.236299i
\(324\) 2828.40 2877.19i 0.484979 0.493346i
\(325\) 0 0
\(326\) 1107.70 + 1918.59i 0.188189 + 0.325953i
\(327\) −1681.12 1908.71i −0.284301 0.322788i
\(328\) 8162.67 + 4712.72i 1.37411 + 0.793343i
\(329\) 4044.43 7005.15i 0.677740 1.17388i
\(330\) 0 0
\(331\) −4684.92 8114.52i −0.777965 1.34747i −0.933113 0.359583i \(-0.882919\pi\)
0.155148 0.987891i \(-0.450415\pi\)
\(332\) 2891.42i 0.477973i
\(333\) −10981.4 1397.99i −1.80714 0.230058i
\(334\) 3183.92 0.521605
\(335\) 0 0
\(336\) −382.597 1902.18i −0.0621201 0.308846i
\(337\) −4718.83 2724.41i −0.762762 0.440381i 0.0675246 0.997718i \(-0.478490\pi\)
−0.830287 + 0.557337i \(0.811823\pi\)
\(338\) −2471.13 1426.71i −0.397667 0.229593i
\(339\) 817.296 + 4063.40i 0.130942 + 0.651014i
\(340\) 0 0
\(341\) 291.451 0.0462843
\(342\) −772.047 1841.57i −0.122069 0.291172i
\(343\) 16653.0i 2.62150i
\(344\) −3607.47 6248.31i −0.565411 0.979321i
\(345\) 0 0
\(346\) −2122.90 + 3676.98i −0.329850 + 0.571316i
\(347\) 3375.38 + 1948.77i 0.522189 + 0.301486i 0.737830 0.674987i \(-0.235851\pi\)
−0.215641 + 0.976473i \(0.569184\pi\)
\(348\) −1544.25 1753.30i −0.237874 0.270077i
\(349\) −3129.53 5420.51i −0.480000 0.831384i 0.519737 0.854326i \(-0.326030\pi\)
−0.999737 + 0.0229422i \(0.992697\pi\)
\(350\) 0 0
\(351\) 2727.04 196.314i 0.414697 0.0298532i
\(352\) 5033.30i 0.762147i
\(353\) −296.931 + 171.433i −0.0447706 + 0.0258483i −0.522218 0.852812i \(-0.674895\pi\)
0.477448 + 0.878660i \(0.341562\pi\)
\(354\) 95.1813 83.8324i 0.0142905 0.0125866i
\(355\) 0 0
\(356\) −4433.75 + 7679.48i −0.660080 + 1.14329i
\(357\) −1655.03 + 4910.03i −0.245360 + 0.727917i
\(358\) 1020.82 589.373i 0.150705 0.0870093i
\(359\) −10448.9 −1.53613 −0.768066 0.640371i \(-0.778781\pi\)
−0.768066 + 0.640371i \(0.778781\pi\)
\(360\) 0 0
\(361\) −4640.53 −0.676561
\(362\) −1542.17 + 890.373i −0.223908 + 0.129273i
\(363\) 3095.22 622.561i 0.447540 0.0900164i
\(364\) 1846.47 3198.18i 0.265883 0.460523i
\(365\) 0 0
\(366\) −98.2222 488.337i −0.0140278 0.0697426i
\(367\) −4480.58 + 2586.87i −0.637288 + 0.367938i −0.783569 0.621305i \(-0.786603\pi\)
0.146281 + 0.989243i \(0.453270\pi\)
\(368\) 1234.70i 0.174900i
\(369\) 9531.32 + 7249.09i 1.34466 + 1.02269i
\(370\) 0 0
\(371\) −10436.9 18077.2i −1.46053 2.52970i
\(372\) −99.5378 + 295.302i −0.0138731 + 0.0411577i
\(373\) 1819.58 + 1050.53i 0.252585 + 0.145830i 0.620947 0.783852i \(-0.286748\pi\)
−0.368362 + 0.929682i \(0.620081\pi\)
\(374\) −614.970 + 1065.16i −0.0850250 + 0.147268i
\(375\) 0 0
\(376\) 2510.29 + 4347.95i 0.344304 + 0.596352i
\(377\) 1583.28i 0.216295i
\(378\) 541.593 + 7523.36i 0.0736945 + 1.02370i
\(379\) −11242.6 −1.52374 −0.761868 0.647732i \(-0.775718\pi\)
−0.761868 + 0.647732i \(0.775718\pi\)
\(380\) 0 0
\(381\) −6738.92 + 5935.41i −0.906155 + 0.798111i
\(382\) 727.862 + 420.231i 0.0974886 + 0.0562851i
\(383\) 5884.53 + 3397.44i 0.785080 + 0.453266i 0.838227 0.545321i \(-0.183592\pi\)
−0.0531478 + 0.998587i \(0.516925\pi\)
\(384\) 5774.34 + 1946.37i 0.767372 + 0.258659i
\(385\) 0 0
\(386\) 4119.52 0.543207
\(387\) −3544.01 8453.56i −0.465509 1.11038i
\(388\) 4438.28i 0.580721i
\(389\) 3524.70 + 6104.96i 0.459407 + 0.795717i 0.998930 0.0462544i \(-0.0147285\pi\)
−0.539522 + 0.841971i \(0.681395\pi\)
\(390\) 0 0
\(391\) −1648.62 + 2855.49i −0.213233 + 0.369330i
\(392\) 15264.2 + 8812.77i 1.96673 + 1.13549i
\(393\) −3255.67 + 654.832i −0.417879 + 0.0840506i
\(394\) 2319.26 + 4017.08i 0.296555 + 0.513648i
\(395\) 0 0
\(396\) 507.550 3986.89i 0.0644074 0.505931i
\(397\) 3011.36i 0.380694i 0.981717 + 0.190347i \(0.0609614\pi\)
−0.981717 + 0.190347i \(0.939039\pi\)
\(398\) −3589.09 + 2072.16i −0.452022 + 0.260975i
\(399\) −7940.93 2676.66i −0.996350 0.335841i
\(400\) 0 0
\(401\) 2084.07 3609.72i 0.259535 0.449528i −0.706582 0.707631i \(-0.749764\pi\)
0.966118 + 0.258103i \(0.0830973\pi\)
\(402\) −1169.63 1327.97i −0.145114 0.164758i
\(403\) −182.884 + 105.588i −0.0226058 + 0.0130514i
\(404\) 3243.91 0.399481
\(405\) 0 0
\(406\) 4367.96 0.533937
\(407\) −9550.03 + 5513.71i −1.16309 + 0.671510i
\(408\) −2125.63 2413.39i −0.257928 0.292845i
\(409\) −6302.68 + 10916.6i −0.761974 + 1.31978i 0.179858 + 0.983693i \(0.442436\pi\)
−0.941832 + 0.336085i \(0.890897\pi\)
\(410\) 0 0
\(411\) −13964.1 4706.88i −1.67590 0.564899i
\(412\) 3933.47 2270.99i 0.470359 0.271562i
\(413\) 532.272i 0.0634175i
\(414\) −606.156 + 4761.46i −0.0719588 + 0.565249i
\(415\) 0 0
\(416\) 1823.49 + 3158.37i 0.214913 + 0.372240i
\(417\) 891.454 179.303i 0.104687 0.0210564i
\(418\) −1722.67 994.584i −0.201575 0.116380i
\(419\) −2572.24 + 4455.24i −0.299909 + 0.519458i −0.976115 0.217255i \(-0.930290\pi\)
0.676206 + 0.736713i \(0.263623\pi\)
\(420\) 0 0
\(421\) 1685.03 + 2918.56i 0.195068 + 0.337867i 0.946923 0.321461i \(-0.104174\pi\)
−0.751855 + 0.659329i \(0.770841\pi\)
\(422\) 3125.74i 0.360566i
\(423\) 2466.13 + 5882.49i 0.283469 + 0.676162i
\(424\) 12955.9 1.48395
\(425\) 0 0
\(426\) 505.893 + 170.522i 0.0575366 + 0.0193939i
\(427\) −1810.31 1045.19i −0.205169 0.118454i
\(428\) 6510.45 + 3758.81i 0.735267 + 0.424507i
\(429\) 2043.84 1800.14i 0.230017 0.202592i
\(430\) 0 0
\(431\) 14948.3 1.67061 0.835306 0.549785i \(-0.185290\pi\)
0.835306 + 0.549785i \(0.185290\pi\)
\(432\) 1376.54 + 667.893i 0.153308 + 0.0743843i
\(433\) 14011.1i 1.55504i 0.628858 + 0.777520i \(0.283523\pi\)
−0.628858 + 0.777520i \(0.716477\pi\)
\(434\) −291.297 504.542i −0.0322182 0.0558036i
\(435\) 0 0
\(436\) 1354.54 2346.13i 0.148786 0.257705i
\(437\) −4618.14 2666.29i −0.505528 0.291867i
\(438\) 1855.06 5503.46i 0.202370 0.600378i
\(439\) −2391.10 4141.50i −0.259956 0.450257i 0.706274 0.707939i \(-0.250375\pi\)
−0.966230 + 0.257681i \(0.917041\pi\)
\(440\) 0 0
\(441\) 17823.5 + 13555.8i 1.92458 + 1.46375i
\(442\) 891.178i 0.0959027i
\(443\) −4134.42 + 2387.01i −0.443413 + 0.256005i −0.705044 0.709163i \(-0.749073\pi\)
0.261631 + 0.965168i \(0.415740\pi\)
\(444\) −2324.99 11559.3i −0.248511 1.23554i
\(445\) 0 0
\(446\) 529.867 917.757i 0.0562555 0.0974374i
\(447\) 5214.01 1048.72i 0.551709 0.110969i
\(448\) −6126.30 + 3537.02i −0.646072 + 0.373010i
\(449\) 855.812 0.0899516 0.0449758 0.998988i \(-0.485679\pi\)
0.0449758 + 0.998988i \(0.485679\pi\)
\(450\) 0 0
\(451\) 11928.7 1.24545
\(452\) −3823.18 + 2207.31i −0.397848 + 0.229697i
\(453\) −1450.59 + 4303.51i −0.150452 + 0.446350i
\(454\) 1485.30 2572.62i 0.153543 0.265945i
\(455\) 0 0
\(456\) 3903.15 3437.76i 0.400837 0.353044i
\(457\) −11620.3 + 6708.99i −1.18944 + 0.686725i −0.958180 0.286166i \(-0.907619\pi\)
−0.231263 + 0.972891i \(0.574286\pi\)
\(458\) 5352.08i 0.546040i
\(459\) −2291.73 3382.65i −0.233048 0.343984i
\(460\) 0 0
\(461\) 7942.99 + 13757.7i 0.802477 + 1.38993i 0.917981 + 0.396625i \(0.129819\pi\)
−0.115503 + 0.993307i \(0.536848\pi\)
\(462\) 4966.24 + 5638.55i 0.500109 + 0.567812i
\(463\) 5682.32 + 3280.69i 0.570367 + 0.329302i 0.757296 0.653072i \(-0.226520\pi\)
−0.186929 + 0.982373i \(0.559853\pi\)
\(464\) 443.007 767.311i 0.0443235 0.0767705i
\(465\) 0 0
\(466\) 2231.16 + 3864.48i 0.221795 + 0.384160i
\(467\) 6792.37i 0.673048i −0.941675 0.336524i \(-0.890749\pi\)
0.941675 0.336524i \(-0.109251\pi\)
\(468\) 1125.91 + 2685.64i 0.111207 + 0.265264i
\(469\) −7426.25 −0.731156
\(470\) 0 0
\(471\) −126.593 629.392i −0.0123845 0.0615730i
\(472\) 286.109 + 165.185i 0.0279009 + 0.0161086i
\(473\) −7907.74 4565.54i −0.768707 0.443813i
\(474\) −1540.89 7660.92i −0.149315 0.742358i
\(475\) 0 0
\(476\) −5518.79 −0.531415
\(477\) 16328.3 + 2078.67i 1.56734 + 0.199530i
\(478\) 2543.12i 0.243346i
\(479\) 8826.24 + 15287.5i 0.841923 + 1.45825i 0.888267 + 0.459328i \(0.151910\pi\)
−0.0463438 + 0.998926i \(0.514757\pi\)
\(480\) 0 0
\(481\) 3995.07 6919.66i 0.378710 0.655945i
\(482\) −36.3088 20.9629i −0.00343116 0.00198098i
\(483\) 13313.5 + 15115.8i 1.25422 + 1.42401i
\(484\) 1681.38 + 2912.23i 0.157906 + 0.273501i
\(485\) 0 0
\(486\) −4980.58 3251.44i −0.464863 0.303474i
\(487\) 5318.16i 0.494844i −0.968908 0.247422i \(-0.920417\pi\)
0.968908 0.247422i \(-0.0795833\pi\)
\(488\) 1123.62 648.724i 0.104230 0.0601770i
\(489\) −5501.54 + 4845.57i −0.508769 + 0.448107i
\(490\) 0 0
\(491\) −5434.98 + 9413.66i −0.499546 + 0.865239i −1.00000 0.000523887i \(-0.999833\pi\)
0.500454 + 0.865763i \(0.333167\pi\)
\(492\) −4073.93 + 12086.3i −0.373307 + 1.10750i
\(493\) −2049.09 + 1183.04i −0.187193 + 0.108076i
\(494\) 1441.29 0.131269
\(495\) 0 0
\(496\) −118.176 −0.0106981
\(497\) 1940.21 1120.18i 0.175111 0.101101i
\(498\) 4178.92 840.531i 0.376028 0.0756328i
\(499\) 5185.25 8981.12i 0.465178 0.805711i −0.534032 0.845464i \(-0.679324\pi\)
0.999210 + 0.0397529i \(0.0126571\pi\)
\(500\) 0 0
\(501\) 2077.61 + 10329.4i 0.185271 + 0.921123i
\(502\) −581.133 + 335.517i −0.0516678 + 0.0298304i
\(503\) 12396.4i 1.09886i 0.835538 + 0.549432i \(0.185156\pi\)
−0.835538 + 0.549432i \(0.814844\pi\)
\(504\) −18119.0 + 7596.07i −1.60136 + 0.671341i
\(505\) 0 0
\(506\) 2390.70 + 4140.82i 0.210039 + 0.363798i
\(507\) 3016.08 8947.89i 0.264199 0.783806i
\(508\) −8283.30 4782.37i −0.723449 0.417684i
\(509\) 2780.52 4816.00i 0.242130 0.419382i −0.719190 0.694813i \(-0.755487\pi\)
0.961321 + 0.275431i \(0.0888205\pi\)
\(510\) 0 0
\(511\) −12186.1 21107.0i −1.05496 1.82724i
\(512\) 3894.99i 0.336203i
\(513\) 5470.72 3706.39i 0.470834 0.318989i
\(514\) −6032.03 −0.517629
\(515\) 0 0
\(516\) 7326.55 6452.98i 0.625065 0.550536i
\(517\) 5502.68 + 3176.97i 0.468100 + 0.270258i
\(518\) 19090.0 + 11021.6i 1.61924 + 0.934868i
\(519\) −13314.2 4487.85i −1.12607 0.379566i
\(520\) 0 0
\(521\) −2613.39 −0.219760 −0.109880 0.993945i \(-0.535047\pi\)
−0.109880 + 0.993945i \(0.535047\pi\)
\(522\) −2085.11 + 2741.56i −0.174833 + 0.229875i
\(523\) 2927.73i 0.244781i 0.992482 + 0.122391i \(0.0390561\pi\)
−0.992482 + 0.122391i \(0.960944\pi\)
\(524\) −1768.53 3063.19i −0.147440 0.255374i
\(525\) 0 0
\(526\) 627.199 1086.34i 0.0519908 0.0900508i
\(527\) 273.305 + 157.793i 0.0225908 + 0.0130428i
\(528\) 1494.20 300.537i 0.123156 0.0247712i
\(529\) 325.506 + 563.793i 0.0267532 + 0.0463379i
\(530\) 0 0
\(531\) 334.081 + 254.087i 0.0273030 + 0.0207654i
\(532\) 8925.48i 0.727384i
\(533\) −7485.18 + 4321.57i −0.608291 + 0.351197i
\(534\) 12387.9 + 4175.62i 1.00389 + 0.338383i
\(535\) 0 0
\(536\) 2304.66 3991.78i 0.185720 0.321677i
\(537\) 2578.19 + 2927.21i 0.207183 + 0.235230i
\(538\) −10789.5 + 6229.35i −0.864629 + 0.499194i
\(539\) 22306.5 1.78258
\(540\) 0 0
\(541\) −4023.02 −0.319710 −0.159855 0.987140i \(-0.551103\pi\)
−0.159855 + 0.987140i \(0.551103\pi\)
\(542\) −3140.00 + 1812.88i −0.248846 + 0.143671i
\(543\) −3894.90 4422.17i −0.307820 0.349491i
\(544\) 2725.05 4719.92i 0.214771 0.371994i
\(545\) 0 0
\(546\) −5159.06 1738.97i −0.404372 0.136302i
\(547\) 2862.68 1652.77i 0.223765 0.129191i −0.383927 0.923363i \(-0.625429\pi\)
0.607692 + 0.794172i \(0.292095\pi\)
\(548\) 15695.4i 1.22349i
\(549\) 1520.19 637.312i 0.118179 0.0495443i
\(550\) 0 0
\(551\) −1913.32 3313.96i −0.147931 0.256224i
\(552\) −12256.8 + 2465.29i −0.945082 + 0.190090i
\(553\) −28399.8 16396.6i −2.18387 1.26086i
\(554\) 597.702 1035.25i 0.0458374 0.0793927i
\(555\) 0 0
\(556\) 484.253 + 838.752i 0.0369369 + 0.0639766i
\(557\) 6472.87i 0.492396i 0.969220 + 0.246198i \(0.0791813\pi\)
−0.969220 + 0.246198i \(0.920819\pi\)
\(558\) 455.731 + 58.0166i 0.0345746 + 0.00440150i
\(559\) 6616.10 0.500593
\(560\) 0 0
\(561\) −3856.92 1300.06i −0.290266 0.0978404i
\(562\) 1750.49 + 1010.65i 0.131388 + 0.0758569i
\(563\) −17801.4 10277.6i −1.33257 0.769362i −0.346881 0.937909i \(-0.612759\pi\)
−0.985694 + 0.168547i \(0.946093\pi\)
\(564\) −5098.25 + 4490.37i −0.380629 + 0.335246i
\(565\) 0 0
\(566\) −4281.18 −0.317936
\(567\) −24054.2 + 6666.29i −1.78162 + 0.493753i
\(568\) 1390.54i 0.102722i
\(569\) 635.311 + 1100.39i 0.0468078 + 0.0810735i 0.888480 0.458915i \(-0.151762\pi\)
−0.841672 + 0.539989i \(0.818429\pi\)
\(570\) 0 0
\(571\) 8376.66 14508.8i 0.613927 1.06335i −0.376645 0.926358i \(-0.622922\pi\)
0.990572 0.136995i \(-0.0437444\pi\)
\(572\) 2512.23 + 1450.44i 0.183639 + 0.106024i
\(573\) −888.376 + 2635.57i −0.0647686 + 0.192151i
\(574\) −11922.4 20650.1i −0.866951 1.50160i
\(575\) 0 0
\(576\) 704.455 5533.62i 0.0509588 0.400291i
\(577\) 7800.01i 0.562770i −0.959595 0.281385i \(-0.909206\pi\)
0.959595 0.281385i \(-0.0907939\pi\)
\(578\) 5527.53 3191.32i 0.397777 0.229657i
\(579\) 2688.12 + 13364.7i 0.192944 + 0.959271i
\(580\) 0 0
\(581\) 8944.12 15491.7i 0.638665 1.10620i
\(582\) 6414.58 1290.20i 0.456861 0.0918912i
\(583\) 14200.0 8198.35i 1.00875 0.582403i
\(584\) 15127.3 1.07187
\(585\) 0 0
\(586\) −151.327 −0.0106677
\(587\) −2051.83 + 1184.62i −0.144273 + 0.0832958i −0.570399 0.821368i \(-0.693211\pi\)
0.426126 + 0.904664i \(0.359878\pi\)
\(588\) −7618.24 + 22601.2i −0.534304 + 1.58514i
\(589\) −255.196 + 442.013i −0.0178526 + 0.0309216i
\(590\) 0 0
\(591\) −11519.0 + 10145.5i −0.801737 + 0.706143i
\(592\) 3872.28 2235.66i 0.268834 0.155212i
\(593\) 11974.3i 0.829218i −0.910000 0.414609i \(-0.863918\pi\)
0.910000 0.414609i \(-0.136082\pi\)
\(594\) −5909.74 + 425.431i −0.408215 + 0.0293866i
\(595\) 0 0
\(596\) 2832.34 + 4905.76i 0.194660 + 0.337160i
\(597\) −9064.59 10291.7i −0.621422 0.705547i
\(598\) −3000.31 1732.23i −0.205170 0.118455i
\(599\) 11099.7 19225.3i 0.757134 1.31139i −0.187173 0.982327i \(-0.559932\pi\)
0.944307 0.329067i \(-0.106734\pi\)
\(600\) 0 0
\(601\) 5749.47 + 9958.38i 0.390226 + 0.675891i 0.992479 0.122414i \(-0.0390635\pi\)
−0.602253 + 0.798305i \(0.705730\pi\)
\(602\) 18252.5i 1.23574i
\(603\) 3545.02 4661.09i 0.239410 0.314783i
\(604\) −4837.08 −0.325858
\(605\) 0 0
\(606\) −943.000 4688.37i −0.0632125 0.314277i
\(607\) 13226.8 + 7636.51i 0.884448 + 0.510636i 0.872122 0.489288i \(-0.162743\pi\)
0.0123257 + 0.999924i \(0.496077\pi\)
\(608\) 7633.47 + 4407.19i 0.509175 + 0.293972i
\(609\) 2850.24 + 14170.7i 0.189651 + 0.942900i
\(610\) 0 0
\(611\) −4603.88 −0.304833
\(612\) 2634.47 3463.87i 0.174007 0.228789i
\(613\) 16440.8i 1.08326i 0.840617 + 0.541630i \(0.182192\pi\)
−0.840617 + 0.541630i \(0.817808\pi\)
\(614\) 4128.09 + 7150.07i 0.271329 + 0.469956i
\(615\) 0 0
\(616\) −9785.58 + 16949.1i −0.640052 + 1.10860i
\(617\) −8105.25 4679.57i −0.528857 0.305336i 0.211694 0.977336i \(-0.432102\pi\)
−0.740551 + 0.672000i \(0.765435\pi\)
\(618\) −4425.68 5024.81i −0.288070 0.327067i
\(619\) −12742.3 22070.3i −0.827392 1.43308i −0.900078 0.435729i \(-0.856490\pi\)
0.0726861 0.997355i \(-0.476843\pi\)
\(620\) 0 0
\(621\) −15842.9 + 1140.50i −1.02376 + 0.0736982i
\(622\) 8214.25i 0.529520i
\(623\) 47510.4 27430.2i 3.05532 1.76399i
\(624\) −828.723 + 729.911i −0.0531658 + 0.0468266i
\(625\) 0 0
\(626\) 3134.65 5429.38i 0.200137 0.346648i
\(627\) 2102.57 6237.75i 0.133921 0.397307i
\(628\) 592.183 341.897i 0.0376285 0.0217248i
\(629\) −11940.6 −0.756919
\(630\) 0 0
\(631\) −21733.8 −1.37117 −0.685585 0.727993i \(-0.740454\pi\)
−0.685585 + 0.727993i \(0.740454\pi\)
\(632\) 17627.1 10177.0i 1.10945 0.640539i
\(633\) 10140.6 2039.65i 0.636737 0.128071i
\(634\) −3716.35 + 6436.91i −0.232800 + 0.403222i
\(635\) 0 0
\(636\) 3457.03 + 17187.5i 0.215535 + 1.07159i
\(637\) −13997.3 + 8081.32i −0.870631 + 0.502659i
\(638\) 3431.12i 0.212914i
\(639\) −223.102 + 1752.51i −0.0138119 + 0.108495i
\(640\) 0 0
\(641\) 10162.4 + 17601.8i 0.626195 + 1.08460i 0.988308 + 0.152468i \(0.0487220\pi\)
−0.362113 + 0.932134i \(0.617945\pi\)
\(642\) 3539.97 10502.1i 0.217619 0.645617i
\(643\) 5826.13 + 3363.72i 0.357325 + 0.206302i 0.667907 0.744245i \(-0.267190\pi\)
−0.310581 + 0.950547i \(0.600524\pi\)
\(644\) −10727.2 + 18580.0i −0.656382 + 1.13689i
\(645\) 0 0
\(646\) −1076.94 1865.32i −0.0655910 0.113607i
\(647\) 6724.69i 0.408616i 0.978907 + 0.204308i \(0.0654945\pi\)
−0.978907 + 0.204308i \(0.934506\pi\)
\(648\) 3881.66 14998.5i 0.235318 0.909253i
\(649\) 418.110 0.0252885
\(650\) 0 0
\(651\) 1446.77 1274.27i 0.0871021 0.0767166i
\(652\) −6762.35 3904.25i −0.406187 0.234512i
\(653\) −26670.4 15398.2i −1.59831 0.922782i −0.991814 0.127693i \(-0.959243\pi\)
−0.606492 0.795089i \(-0.707424\pi\)
\(654\) −3784.60 1275.68i −0.226283 0.0762737i
\(655\) 0 0
\(656\) −4836.75 −0.287871
\(657\) 19065.0 + 2427.07i 1.13211 + 0.144123i
\(658\) 12701.2i 0.752498i
\(659\) 8267.16 + 14319.1i 0.488684 + 0.846426i 0.999915 0.0130174i \(-0.00414369\pi\)
−0.511231 + 0.859443i \(0.670810\pi\)
\(660\) 0 0
\(661\) −968.527 + 1677.54i −0.0569914 + 0.0987121i −0.893114 0.449831i \(-0.851484\pi\)
0.836122 + 0.548543i \(0.184817\pi\)
\(662\) −12741.5 7356.30i −0.748054 0.431889i
\(663\) 2891.19 581.523i 0.169358 0.0340641i
\(664\) 5551.42 + 9615.35i 0.324453 + 0.561970i
\(665\) 0 0
\(666\) −16030.6 + 6720.53i −0.932691 + 0.391014i
\(667\) 9198.16i 0.533964i
\(668\) −9718.72 + 5611.10i −0.562917 + 0.325000i
\(669\) 3323.18 + 1120.15i 0.192050 + 0.0647346i
\(670\) 0 0
\(671\) 821.013 1422.04i 0.0472352 0.0818138i
\(672\) −22006.3 24985.5i −1.26326 1.43428i
\(673\) 398.881 230.294i 0.0228465 0.0131905i −0.488533 0.872545i \(-0.662468\pi\)
0.511380 + 0.859355i \(0.329135\pi\)
\(674\) −8555.80 −0.488957
\(675\) 0 0
\(676\) 10057.3 0.572217
\(677\) 25166.4 14529.8i 1.42869 0.824854i 0.431671 0.902031i \(-0.357924\pi\)
0.997017 + 0.0771775i \(0.0245908\pi\)
\(678\) 4301.59 + 4883.92i 0.243660 + 0.276646i
\(679\) 13729.1 23779.5i 0.775956 1.34400i
\(680\) 0 0
\(681\) 9315.39 + 3139.95i 0.524180 + 0.176686i
\(682\) 396.327 228.820i 0.0222524 0.0128474i
\(683\) 14366.9i 0.804881i −0.915446 0.402440i \(-0.868162\pi\)
0.915446 0.402440i \(-0.131838\pi\)
\(684\) 5602.08 + 4260.69i 0.313159 + 0.238175i
\(685\) 0 0
\(686\) −13074.3 22645.4i −0.727667 1.26036i
\(687\) 17363.4 3492.41i 0.964273 0.193950i
\(688\) 3206.38 + 1851.21i 0.177678 + 0.102582i
\(689\) −5940.28 + 10288.9i −0.328457 + 0.568904i
\(690\) 0 0
\(691\) 6353.97 + 11005.4i 0.349807 + 0.605883i 0.986215 0.165469i \(-0.0529139\pi\)
−0.636408 + 0.771352i \(0.719581\pi\)
\(692\) 14965.0i 0.822087i
\(693\) −15052.1 + 19791.0i −0.825085 + 1.08485i
\(694\) 6119.97 0.334742
\(695\) 0 0
\(696\) −8501.63 2865.66i −0.463008 0.156067i
\(697\) 11186.0 + 6458.22i 0.607889 + 0.350965i
\(698\) −8511.33 4914.02i −0.461545 0.266473i
\(699\) −11081.4 + 9760.11i −0.599623 + 0.528128i
\(700\) 0 0
\(701\) 5959.06 0.321071 0.160535 0.987030i \(-0.448678\pi\)
0.160535 + 0.987030i \(0.448678\pi\)
\(702\) 3554.21 2407.97i 0.191090 0.129463i
\(703\) 19311.4i 1.03605i
\(704\) −2778.40 4812.32i −0.148743 0.257630i
\(705\) 0 0
\(706\) −269.186 + 466.243i −0.0143498 + 0.0248545i
\(707\) −17380.2 10034.5i −0.924542 0.533785i
\(708\) −142.795 + 423.634i −0.00757989 + 0.0224875i
\(709\) 225.912 + 391.292i 0.0119666 + 0.0207268i 0.871947 0.489601i \(-0.162857\pi\)
−0.859980 + 0.510328i \(0.829524\pi\)
\(710\) 0 0
\(711\) 23848.4 9998.00i 1.25792 0.527362i
\(712\) 34050.6i 1.79228i
\(713\) 1062.48 613.421i 0.0558065 0.0322199i
\(714\) 1604.31 + 7976.23i 0.0840892 + 0.418071i
\(715\) 0 0
\(716\) −2077.34 + 3598.05i −0.108427 + 0.187801i
\(717\) 8250.48 1659.47i 0.429735 0.0864352i
\(718\) −14208.8 + 8203.47i −0.738536 + 0.426394i
\(719\) 13488.4 0.699627 0.349814 0.936819i \(-0.386245\pi\)
0.349814 + 0.936819i \(0.386245\pi\)
\(720\) 0 0
\(721\) −28099.7 −1.45144
\(722\) −6310.39 + 3643.30i −0.325275 + 0.187797i
\(723\) 44.3159 131.473i 0.00227957 0.00676285i
\(724\) 3138.26 5435.62i 0.161094 0.279024i
\(725\) 0 0
\(726\) 3720.23 3276.66i 0.190180 0.167504i
\(727\) 25273.3 14591.6i 1.28932 0.744389i 0.310787 0.950480i \(-0.399407\pi\)
0.978533 + 0.206090i \(0.0660741\pi\)
\(728\) 14180.7i 0.721938i
\(729\) 7298.46 18279.9i 0.370800 0.928713i
\(730\) 0 0
\(731\) −4943.60 8562.57i −0.250131 0.433239i
\(732\) 1160.43 + 1317.52i 0.0585938 + 0.0665259i
\(733\) 10836.1 + 6256.24i 0.546032 + 0.315252i 0.747520 0.664239i \(-0.231244\pi\)
−0.201488 + 0.979491i \(0.564578\pi\)
\(734\) −4061.92 + 7035.45i −0.204262 + 0.353792i
\(735\) 0 0
\(736\) −10593.6 18348.7i −0.530553 0.918945i
\(737\) 5833.46i 0.291558i
\(738\) 18652.4 + 2374.53i 0.930357 + 0.118439i
\(739\) 32248.2 1.60524 0.802619 0.596492i \(-0.203439\pi\)
0.802619 + 0.596492i \(0.203439\pi\)
\(740\) 0 0
\(741\) 940.490 + 4675.89i 0.0466259 + 0.231813i
\(742\) −28384.9 16388.1i −1.40437 0.810815i
\(743\) 16011.9 + 9244.50i 0.790607 + 0.456457i 0.840176 0.542313i \(-0.182451\pi\)
−0.0495691 + 0.998771i \(0.515785\pi\)
\(744\) 235.959 + 1173.13i 0.0116272 + 0.0578078i
\(745\) 0 0
\(746\) 3299.12 0.161916
\(747\) 5453.77 + 13008.9i 0.267126 + 0.637178i
\(748\) 4335.12i 0.211908i
\(749\) −23254.5 40278.0i −1.13445 1.96492i
\(750\) 0 0
\(751\) 1026.10 1777.26i 0.0498575 0.0863558i −0.840020 0.542556i \(-0.817457\pi\)
0.889877 + 0.456200i \(0.150790\pi\)
\(752\) −2231.19 1288.18i −0.108196 0.0624668i
\(753\) −1467.71 1666.40i −0.0710308 0.0806466i
\(754\) −1243.04 2153.01i −0.0600384 0.103990i
\(755\) 0 0
\(756\) −14911.8 22010.1i −0.717377 1.05886i
\(757\) 10118.9i 0.485834i 0.970047 + 0.242917i \(0.0781043\pi\)
−0.970047 + 0.242917i \(0.921896\pi\)
\(758\) −15288.2 + 8826.65i −0.732576 + 0.422953i
\(759\) −11873.8 + 10458.0i −0.567841 + 0.500135i
\(760\) 0 0
\(761\) −13652.0 + 23646.0i −0.650309 + 1.12637i 0.332739 + 0.943019i \(0.392027\pi\)
−0.983048 + 0.183349i \(0.941306\pi\)
\(762\) −4503.94 + 13362.0i −0.214121 + 0.635240i
\(763\) −14514.8 + 8380.10i −0.688689 + 0.397615i
\(764\) −2962.34 −0.140280
\(765\) 0 0
\(766\) 10669.4 0.503264
\(767\) −262.362 + 151.475i −0.0123512 + 0.00713096i
\(768\) 17800.0 3580.22i 0.836330 0.168216i
\(769\) −11236.9 + 19462.9i −0.526935 + 0.912679i 0.472572 + 0.881292i \(0.343326\pi\)
−0.999507 + 0.0313867i \(0.990008\pi\)
\(770\) 0 0
\(771\) −3936.10 19569.3i −0.183859 0.914102i
\(772\) −12574.6 + 7259.94i −0.586230 + 0.338460i
\(773\) 35405.6i 1.64741i 0.567015 + 0.823707i \(0.308098\pi\)
−0.567015 + 0.823707i \(0.691902\pi\)
\(774\) −11456.2 8713.08i −0.532022 0.404632i
\(775\) 0 0
\(776\) 8521.35 + 14759.4i 0.394200 + 0.682774i
\(777\) −23299.9 + 69124.4i −1.07578 + 3.19154i
\(778\) 9586.07 + 5534.52i 0.441744 + 0.255041i
\(779\) −10444.8 + 18090.9i −0.480390 + 0.832060i
\(780\) 0 0
\(781\) 879.923 + 1524.07i 0.0403151 + 0.0698278i
\(782\) 5177.34i 0.236754i
\(783\) −10254.9 4975.62i −0.468044 0.227093i
\(784\) −9044.71 −0.412022
\(785\) 0 0
\(786\) −3913.08 + 3446.50i −0.177576 + 0.156403i
\(787\) 10548.2 + 6090.02i 0.477769 + 0.275840i 0.719486 0.694507i \(-0.244377\pi\)
−0.241718 + 0.970347i \(0.577711\pi\)
\(788\) −14158.8 8174.59i −0.640085 0.369553i
\(789\) 3933.62 + 1325.91i 0.177491 + 0.0598272i
\(790\) 0 0
\(791\) 27311.8 1.22768
\(792\) −5966.86 14232.8i −0.267706 0.638562i
\(793\) 1189.76i 0.0532783i
\(794\) 2364.23 + 4094.97i 0.105672 + 0.183029i
\(795\) 0 0
\(796\) 7303.65 12650.3i 0.325215 0.563289i
\(797\) −1985.86 1146.54i −0.0882596 0.0509567i 0.455221 0.890379i \(-0.349560\pi\)
−0.543480 + 0.839422i \(0.682894\pi\)
\(798\) −12899.9 + 2594.63i −0.572243 + 0.115099i
\(799\) 3440.05 + 5958.35i 0.152316 + 0.263819i
\(800\) 0 0
\(801\) −5463.16 + 42914.1i −0.240988 + 1.89300i
\(802\) 6544.86i 0.288164i
\(803\) 16579.9 9572.43i 0.728634 0.420677i
\(804\) 5910.53 + 1992.27i 0.259264 + 0.0873905i
\(805\) 0 0
\(806\) −165.796 + 287.167i −0.00724554 + 0.0125496i
\(807\) −27250.0 30939.0i −1.18866 1.34957i
\(808\) 10787.5 6228.19i 0.469684 0.271172i
\(809\) 25264.0 1.09794 0.548972 0.835841i \(-0.315019\pi\)
0.548972 + 0.835841i \(0.315019\pi\)
\(810\) 0 0
\(811\) 18781.2 0.813190 0.406595 0.913608i \(-0.366716\pi\)
0.406595 + 0.913608i \(0.366716\pi\)
\(812\) −13333.0 + 7697.78i −0.576225 + 0.332684i
\(813\) −7930.37 9003.94i −0.342103 0.388416i
\(814\) −8657.68 + 14995.5i −0.372790 + 0.645692i
\(815\) 0 0
\(816\) 1563.88 + 527.139i 0.0670916 + 0.0226147i
\(817\) 13848.1 7995.23i 0.593005 0.342372i
\(818\) 19793.0i 0.846023i
\(819\) 2275.18 17871.9i 0.0970711 0.762510i
\(820\) 0 0
\(821\) −15787.4 27344.6i −0.671114 1.16240i −0.977588 0.210525i \(-0.932483\pi\)
0.306474 0.951879i \(-0.400851\pi\)
\(822\) −22684.3 + 4562.63i −0.962537 + 0.193601i
\(823\) −819.484 473.129i −0.0347089 0.0200392i 0.482545 0.875871i \(-0.339712\pi\)
−0.517254 + 0.855832i \(0.673046\pi\)
\(824\) 8720.45 15104.3i 0.368679 0.638570i
\(825\) 0 0
\(826\) −417.889 723.806i −0.0176032 0.0304896i
\(827\) 35044.7i 1.47355i 0.676139 + 0.736774i \(0.263652\pi\)
−0.676139 + 0.736774i \(0.736348\pi\)
\(828\) −6541.00 15602.3i −0.274536 0.654853i
\(829\) −31029.2 −1.29999 −0.649993 0.759940i \(-0.725228\pi\)
−0.649993 + 0.759940i \(0.725228\pi\)
\(830\) 0 0
\(831\) 3748.62 + 1263.55i 0.156484 + 0.0527463i
\(832\) 3486.86 + 2013.14i 0.145295 + 0.0838860i
\(833\) 20917.7 + 12076.8i 0.870055 + 0.502327i
\(834\) 1071.46 943.708i 0.0444865 0.0391822i
\(835\) 0 0
\(836\) 7011.13 0.290054
\(837\) 109.160 + 1516.36i 0.00450790 + 0.0626200i
\(838\) 8077.90i 0.332991i
\(839\) −10599.9 18359.6i −0.436175 0.755477i 0.561216 0.827669i \(-0.310334\pi\)
−0.997391 + 0.0721924i \(0.977000\pi\)
\(840\) 0 0
\(841\) 8894.22 15405.2i 0.364681 0.631647i
\(842\) 4582.76 + 2645.86i 0.187568 + 0.108292i
\(843\) −2136.52 + 6338.49i −0.0872904 + 0.258967i
\(844\) 5508.58 + 9541.14i 0.224660 + 0.389123i
\(845\) 0 0
\(846\) 7971.91 + 6063.08i 0.323972 + 0.246398i
\(847\) 20804.3i 0.843971i
\(848\) −5757.71 + 3324.22i −0.233161 + 0.134616i
\(849\) −2793.61 13889.2i −0.112929 0.561455i
\(850\) 0 0
\(851\) −23209.5 + 40200.1i −0.934915 + 1.61932i
\(852\) −1844.72 + 371.040i −0.0741774 + 0.0149197i
\(853\) −9508.84 + 5489.93i −0.381684 + 0.220365i −0.678551 0.734554i \(-0.737392\pi\)
0.296867 + 0.954919i \(0.404058\pi\)
\(854\) −3282.32 −0.131521
\(855\) 0 0
\(856\) 28867.2 1.15264
\(857\) 38810.4 22407.2i 1.54695 0.893133i 0.548580 0.836098i \(-0.315169\pi\)
0.998372 0.0570348i \(-0.0181646\pi\)
\(858\) 1365.99 4052.54i 0.0543523 0.161249i
\(859\) 18693.1 32377.4i 0.742492 1.28603i −0.208866 0.977944i \(-0.566977\pi\)
0.951358 0.308089i \(-0.0996895\pi\)
\(860\) 0 0
\(861\) 59214.2 52153.9i 2.34380 2.06434i
\(862\) 20327.3 11736.0i 0.803191 0.463722i
\(863\) 30536.3i 1.20448i 0.798314 + 0.602241i \(0.205725\pi\)
−0.798314 + 0.602241i \(0.794275\pi\)
\(864\) 26187.2 1885.16i 1.03114 0.0742299i
\(865\) 0 0
\(866\) 11000.2 + 19052.9i 0.431643 + 0.747627i
\(867\) 13960.3 + 15850.2i 0.546848 + 0.620877i
\(868\) 1778.34 + 1026.72i 0.0695399 + 0.0401489i
\(869\) 12879.8 22308.6i 0.502784 0.870847i
\(870\) 0 0
\(871\) 2113.37 + 3660.47i 0.0822146 + 0.142400i
\(872\) 10402.7i 0.403991i
\(873\) 8371.45 + 19968.5i 0.324548 + 0.774149i
\(874\) −8373.25 −0.324061
\(875\) 0 0
\(876\) 4036.44 + 20068.2i 0.155683 + 0.774021i
\(877\) −29728.4 17163.7i −1.14465 0.660864i −0.197072 0.980389i \(-0.563143\pi\)
−0.947578 + 0.319525i \(0.896477\pi\)
\(878\) −6503.02 3754.52i −0.249962 0.144315i
\(879\) −98.7460 490.941i −0.00378910 0.0188385i
\(880\) 0 0
\(881\) −18009.6 −0.688718 −0.344359 0.938838i \(-0.611904\pi\)
−0.344359 + 0.938838i \(0.611904\pi\)
\(882\) 34879.9 + 4440.37i 1.33159 + 0.169518i
\(883\) 29074.4i 1.10808i 0.832491 + 0.554039i \(0.186914\pi\)
−0.832491 + 0.554039i \(0.813086\pi\)
\(884\) 1570.55 + 2720.27i 0.0597548 + 0.103498i
\(885\) 0 0
\(886\) −3748.10 + 6491.90i −0.142122 + 0.246162i
\(887\) 28494.5 + 16451.3i 1.07864 + 0.622752i 0.930528 0.366220i \(-0.119348\pi\)
0.148109 + 0.988971i \(0.452681\pi\)
\(888\) −29925.1 33976.2i −1.13088 1.28397i
\(889\) 29586.9 + 51246.1i 1.11621 + 1.93334i
\(890\) 0 0
\(891\) −5236.50 18895.0i −0.196890 0.710444i
\(892\) 3735.20i 0.140206i
\(893\) −9636.36 + 5563.56i −0.361107 + 0.208485i
\(894\) 6266.86 5519.64i 0.234446 0.206493i
\(895\) 0 0
\(896\) 20076.6 34773.7i 0.748562 1.29655i
\(897\) 3661.96 10864.1i 0.136309 0.404393i
\(898\) 1163.77 671.902i 0.0432466 0.0249684i
\(899\) 880.377 0.0326610
\(900\) 0 0
\(901\) 17754.5 0.656479
\(902\) 16221.1 9365.24i 0.598783 0.345708i
\(903\) −59215.5 + 11910.4i −2.18225 + 0.438928i
\(904\) −8475.93 + 14680.7i −0.311842 + 0.540127i
\(905\) 0 0
\(906\) 1406.13 + 6990.96i 0.0515625 + 0.256357i
\(907\) −706.517 + 407.908i −0.0258649 + 0.0149331i −0.512877 0.858462i \(-0.671420\pi\)
0.487012 + 0.873395i \(0.338087\pi\)
\(908\) 10470.4i 0.382677i
\(909\) 14594.8 6118.63i 0.532542 0.223259i
\(910\) 0 0
\(911\) −7921.41 13720.3i −0.288088 0.498983i 0.685265 0.728293i \(-0.259686\pi\)
−0.973353 + 0.229311i \(0.926353\pi\)
\(912\) −852.536 + 2529.24i −0.0309543 + 0.0918329i
\(913\) 12169.0 + 7025.77i 0.441112 + 0.254676i
\(914\) −10534.5 + 18246.3i −0.381237 + 0.660322i
\(915\) 0 0
\(916\) 9432.11 + 16336.9i 0.340225 + 0.589286i
\(917\) 21882.7i 0.788037i
\(918\) −5772.12 2800.61i −0.207526 0.100691i
\(919\) −23848.4 −0.856025 −0.428013 0.903773i \(-0.640786\pi\)
−0.428013 + 0.903773i \(0.640786\pi\)
\(920\) 0 0
\(921\) −20502.8 + 18058.2i −0.733540 + 0.646077i
\(922\) 21602.4 + 12472.2i 0.771624 + 0.445498i
\(923\) −1104.30 637.566i −0.0393807 0.0227364i
\(924\) −25096.1 8459.19i −0.893508 0.301176i
\(925\) 0 0
\(926\) 10302.7 0.365625
\(927\) 13413.8 17636.8i 0.475260 0.624886i
\(928\) 15203.9i 0.537816i
\(929\) −19796.0 34287.7i −0.699123 1.21092i −0.968771 0.247958i \(-0.920240\pi\)
0.269647 0.962959i \(-0.413093\pi\)
\(930\) 0 0
\(931\) −19531.7 + 33830.0i −0.687569 + 1.19090i
\(932\) −13621.0 7864.07i −0.478723 0.276391i
\(933\) 26649.0 5360.07i 0.935100 0.188082i
\(934\) −5332.72 9236.54i −0.186822 0.323585i
\(935\) 0 0
\(936\) 8900.51 + 6769.33i 0.310814 + 0.236391i
\(937\) 10255.0i 0.357540i 0.983891 + 0.178770i \(0.0572118\pi\)
−0.983891 + 0.178770i \(0.942788\pi\)
\(938\) −10098.5 + 5830.38i −0.351523 + 0.202952i
\(939\) 19659.7 + 6626.71i 0.683247 + 0.230303i
\(940\) 0 0
\(941\) 11947.2 20693.1i 0.413886 0.716871i −0.581425 0.813600i \(-0.697505\pi\)
0.995311 + 0.0967289i \(0.0308380\pi\)
\(942\) −666.286 756.484i −0.0230454 0.0261652i
\(943\) 43485.5 25106.4i 1.50168 0.866995i
\(944\) −169.533 −0.00584514
\(945\) 0 0
\(946\) −14337.7 −0.492768
\(947\) −31399.7 + 18128.6i −1.07746 + 0.622072i −0.930210 0.367028i \(-0.880375\pi\)
−0.147250 + 0.989099i \(0.547042\pi\)
\(948\) 18204.5 + 20668.9i 0.623686 + 0.708118i
\(949\) −6935.89 + 12013.3i −0.237248 + 0.410926i
\(950\) 0 0
\(951\) −23307.9 7856.43i −0.794754 0.267889i
\(952\) −18352.6 + 10595.9i −0.624803 + 0.360730i
\(953\) 46736.7i 1.58861i 0.607516 + 0.794307i \(0.292166\pi\)
−0.607516 + 0.794307i \(0.707834\pi\)
\(954\) 23835.9 9992.78i 0.808927 0.339128i
\(955\) 0 0
\(956\) 4481.81 + 7762.72i 0.151623 + 0.262620i
\(957\) −11131.4 + 2238.92i −0.375994 + 0.0756259i
\(958\) 24004.6 + 13859.0i 0.809553 + 0.467396i
\(959\) −48551.0 + 84092.9i −1.63482 + 2.83160i
\(960\) 0 0
\(961\) 14836.8 + 25698.1i 0.498029 + 0.862612i
\(962\) 12546.2i 0.420484i
\(963\) 36381.4 + 4631.51i 1.21742 + 0.154983i
\(964\) 147.774 0.00493721
\(965\) 0 0
\(966\) 29971.8 + 10102.6i 0.998268 + 0.336488i
\(967\) −38414.3 22178.5i −1.27748 0.737552i −0.301094 0.953595i \(-0.597352\pi\)
−0.976384 + 0.216043i \(0.930685\pi\)
\(968\) 11182.8 + 6456.39i 0.371310 + 0.214376i
\(969\) 5348.80 4711.04i 0.177325 0.156182i
\(970\) 0 0
\(971\) −650.540 −0.0215003 −0.0107502 0.999942i \(-0.503422\pi\)
−0.0107502 + 0.999942i \(0.503422\pi\)
\(972\) 20933.0 + 1147.42i 0.690769 + 0.0378639i
\(973\) 5991.83i 0.197420i
\(974\) −4175.31 7231.85i −0.137357 0.237909i
\(975\) 0 0
\(976\) −332.899 + 576.598i −0.0109179 + 0.0189103i
\(977\) −44751.9 25837.5i −1.46544 0.846075i −0.466190 0.884684i \(-0.654374\pi\)
−0.999254 + 0.0386096i \(0.987707\pi\)
\(978\) −3676.94 + 10908.5i −0.120220 + 0.356662i
\(979\) 21546.9 + 37320.3i 0.703414 + 1.21835i
\(980\) 0 0
\(981\) 1669.03 13110.5i 0.0543202 0.426695i
\(982\) 17068.1i 0.554649i
\(983\) −20368.0 + 11759.5i −0.660874 + 0.381556i −0.792610 0.609729i \(-0.791278\pi\)
0.131736 + 0.991285i \(0.457945\pi\)
\(984\) 9657.43 + 48014.4i 0.312874 + 1.55553i
\(985\) 0 0
\(986\) −1857.62 + 3217.49i −0.0599987 + 0.103921i
\(987\) 41205.7 8287.95i 1.32887 0.267283i
\(988\) −4399.46 + 2540.03i −0.141665 + 0.0817905i
\(989\) −38436.6 −1.23581
\(990\) 0 0
\(991\) −27732.9 −0.888966 −0.444483 0.895787i \(-0.646613\pi\)
−0.444483 + 0.895787i \(0.646613\pi\)
\(992\) −1756.20 + 1013.94i −0.0562090 + 0.0324523i
\(993\) 15551.3 46136.6i 0.496986 1.47442i
\(994\) 1758.92 3046.53i 0.0561262 0.0972135i
\(995\) 0 0
\(996\) −11274.6 + 9930.30i −0.358685 + 0.315917i
\(997\) −29728.7 + 17163.9i −0.944351 + 0.545221i −0.891322 0.453372i \(-0.850221\pi\)
−0.0530293 + 0.998593i \(0.516888\pi\)
\(998\) 16283.9i 0.516489i
\(999\) −32263.5 47621.6i −1.02179 1.50819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.4.k.d.49.9 28
5.2 odd 4 225.4.e.d.76.5 14
5.3 odd 4 45.4.e.c.31.3 yes 14
5.4 even 2 inner 225.4.k.d.49.6 28
9.7 even 3 inner 225.4.k.d.124.6 28
15.8 even 4 135.4.e.c.91.5 14
45.7 odd 12 225.4.e.d.151.5 14
45.13 odd 12 405.4.a.m.1.5 7
45.22 odd 12 2025.4.a.bb.1.3 7
45.23 even 12 405.4.a.n.1.3 7
45.32 even 12 2025.4.a.ba.1.5 7
45.34 even 6 inner 225.4.k.d.124.9 28
45.38 even 12 135.4.e.c.46.5 14
45.43 odd 12 45.4.e.c.16.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.c.16.3 14 45.43 odd 12
45.4.e.c.31.3 yes 14 5.3 odd 4
135.4.e.c.46.5 14 45.38 even 12
135.4.e.c.91.5 14 15.8 even 4
225.4.e.d.76.5 14 5.2 odd 4
225.4.e.d.151.5 14 45.7 odd 12
225.4.k.d.49.6 28 5.4 even 2 inner
225.4.k.d.49.9 28 1.1 even 1 trivial
225.4.k.d.124.6 28 9.7 even 3 inner
225.4.k.d.124.9 28 45.34 even 6 inner
405.4.a.m.1.5 7 45.13 odd 12
405.4.a.n.1.3 7 45.23 even 12
2025.4.a.ba.1.5 7 45.32 even 12
2025.4.a.bb.1.3 7 45.22 odd 12