Properties

Label 1338.2.e.i
Level $1338$
Weight $2$
Character orbit 1338.e
Analytic conductor $10.684$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,14,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 25 x^{12} - 30 x^{11} + 502 x^{10} - 434 x^{9} + 3060 x^{8} - 1136 x^{7} + 13014 x^{6} + \cdots + 961 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_{6} q^{3} + q^{4} - \beta_{11} q^{5} + \beta_{6} q^{6} + \beta_{10} q^{7} + q^{8} + (\beta_{6} - 1) q^{9} - \beta_{11} q^{10} + ( - \beta_{6} - \beta_{2} + 1) q^{11} + \beta_{6} q^{12}+ \cdots + (\beta_{6} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 14 q^{2} + 7 q^{3} + 14 q^{4} + 3 q^{5} + 7 q^{6} + 4 q^{7} + 14 q^{8} - 7 q^{9} + 3 q^{10} + 7 q^{11} + 7 q^{12} - 12 q^{13} + 4 q^{14} + 6 q^{15} + 14 q^{16} + 6 q^{17} - 7 q^{18} - 6 q^{19} + 3 q^{20}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{14} + 25 x^{12} - 30 x^{11} + 502 x^{10} - 434 x^{9} + 3060 x^{8} - 1136 x^{7} + 13014 x^{6} + \cdots + 961 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 11470254167885 \nu^{13} - 59106738542239 \nu^{12} + 363720839343838 \nu^{11} + \cdots + 35\!\cdots\!75 ) / 13\!\cdots\!64 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 17\!\cdots\!67 \nu^{13} + \cdots + 26\!\cdots\!73 ) / 22\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 45\!\cdots\!29 \nu^{13} + \cdots + 77\!\cdots\!27 ) / 44\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 374253871098011 \nu^{13} + \cdots - 29\!\cdots\!27 ) / 24\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 11\!\cdots\!25 \nu^{13} + 355577879204435 \nu^{12} + \cdots - 60\!\cdots\!07 ) / 41\!\cdots\!84 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 59\!\cdots\!13 \nu^{13} + \cdots + 40\!\cdots\!69 ) / 17\!\cdots\!34 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 22\!\cdots\!95 \nu^{13} + \cdots - 13\!\cdots\!07 ) / 44\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 74\!\cdots\!33 \nu^{13} + \cdots + 87\!\cdots\!65 ) / 74\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 75\!\cdots\!03 \nu^{13} + \cdots - 61\!\cdots\!47 ) / 44\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 23\!\cdots\!97 \nu^{13} + \cdots - 53\!\cdots\!83 ) / 13\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 25\!\cdots\!29 \nu^{13} + \cdots - 11\!\cdots\!31 ) / 45\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 54\!\cdots\!31 \nu^{13} + \cdots + 24\!\cdots\!23 ) / 68\!\cdots\!36 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{12} + 2\beta_{11} + \beta_{9} + \beta_{7} + 6\beta_{6} + \beta_{4} - \beta_{3} - 2\beta_{2} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{10} - 7\beta_{8} - \beta_{5} - \beta_{4} + 18\beta_{2} - 18\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{13} + 19 \beta_{12} - 46 \beta_{11} + 46 \beta_{8} - 18 \beta_{7} - 87 \beta_{6} + \cdots + 56 \beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 47 \beta_{13} - 10 \beta_{12} + 187 \beta_{11} - 47 \beta_{10} + 10 \beta_{9} + 40 \beta_{7} + \cdots - 137 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 58\beta_{10} - 356\beta_{9} - 1016\beta_{8} - 588\beta_{5} - 344\beta_{4} + 1362\beta_{2} - 1362\beta _1 + 1577 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 944 \beta_{13} + 476 \beta_{12} - 4386 \beta_{11} + 4386 \beta_{8} - 1088 \beta_{7} + \cdots + 7803 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 1914 \beta_{13} - 6833 \beta_{12} + 22374 \beta_{11} - 1914 \beta_{10} + 6833 \beta_{9} + 7047 \beta_{7} + \cdots - 31322 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 18870 \beta_{10} - 14858 \beta_{9} - 99953 \beta_{8} - 37303 \beta_{5} - 26467 \beta_{4} + 169158 \beta_{2} + \cdots + 101245 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 52161 \beta_{13} + 135867 \beta_{12} - 494442 \beta_{11} + 494442 \beta_{8} - 149952 \beta_{7} + \cdots + 729378 \beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 386535 \beta_{13} - 395004 \beta_{12} + 2256027 \beta_{11} - 386535 \beta_{10} + 395004 \beta_{9} + \cdots - 2432607 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 1301460 \beta_{10} - 2793412 \beta_{9} - 10965692 \beta_{8} - 5329924 \beta_{5} - 3254872 \beta_{4} + \cdots + 13891053 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 8123336 \beta_{13} + 9728508 \beta_{12} - 50697844 \beta_{11} + 50697844 \beta_{8} + \cdots + 81859773 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(-1 + \beta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
931.1
−1.08263 + 1.87517i
−0.263750 + 0.456829i
−0.192978 + 0.334247i
−2.36302 + 4.09287i
1.86875 3.23677i
1.21330 2.10149i
0.820326 1.42085i
−1.08263 1.87517i
−0.263750 0.456829i
−0.192978 0.334247i
−2.36302 4.09287i
1.86875 + 3.23677i
1.21330 + 2.10149i
0.820326 + 1.42085i
1.00000 0.500000 0.866025i 1.00000 −1.74285 3.01870i 0.500000 0.866025i −1.56262 1.00000 −0.500000 0.866025i −1.74285 3.01870i
931.2 1.00000 0.500000 0.866025i 1.00000 −1.68314 2.91528i 0.500000 0.866025i 5.02862 1.00000 −0.500000 0.866025i −1.68314 2.91528i
931.3 1.00000 0.500000 0.866025i 1.00000 −0.0934804 0.161913i 0.500000 0.866025i −4.42316 1.00000 −0.500000 0.866025i −0.0934804 0.161913i
931.4 1.00000 0.500000 0.866025i 1.00000 0.869556 + 1.50612i 0.500000 0.866025i 2.51758 1.00000 −0.500000 0.866025i 0.869556 + 1.50612i
931.5 1.00000 0.500000 0.866025i 1.00000 0.887260 + 1.53678i 0.500000 0.866025i −3.74585 1.00000 −0.500000 0.866025i 0.887260 + 1.53678i
931.6 1.00000 0.500000 0.866025i 1.00000 1.58141 + 2.73907i 0.500000 0.866025i 0.755100 1.00000 −0.500000 0.866025i 1.58141 + 2.73907i
931.7 1.00000 0.500000 0.866025i 1.00000 1.68125 + 2.91200i 0.500000 0.866025i 3.43032 1.00000 −0.500000 0.866025i 1.68125 + 2.91200i
1075.1 1.00000 0.500000 + 0.866025i 1.00000 −1.74285 + 3.01870i 0.500000 + 0.866025i −1.56262 1.00000 −0.500000 + 0.866025i −1.74285 + 3.01870i
1075.2 1.00000 0.500000 + 0.866025i 1.00000 −1.68314 + 2.91528i 0.500000 + 0.866025i 5.02862 1.00000 −0.500000 + 0.866025i −1.68314 + 2.91528i
1075.3 1.00000 0.500000 + 0.866025i 1.00000 −0.0934804 + 0.161913i 0.500000 + 0.866025i −4.42316 1.00000 −0.500000 + 0.866025i −0.0934804 + 0.161913i
1075.4 1.00000 0.500000 + 0.866025i 1.00000 0.869556 1.50612i 0.500000 + 0.866025i 2.51758 1.00000 −0.500000 + 0.866025i 0.869556 1.50612i
1075.5 1.00000 0.500000 + 0.866025i 1.00000 0.887260 1.53678i 0.500000 + 0.866025i −3.74585 1.00000 −0.500000 + 0.866025i 0.887260 1.53678i
1075.6 1.00000 0.500000 + 0.866025i 1.00000 1.58141 2.73907i 0.500000 + 0.866025i 0.755100 1.00000 −0.500000 + 0.866025i 1.58141 2.73907i
1075.7 1.00000 0.500000 + 0.866025i 1.00000 1.68125 2.91200i 0.500000 + 0.866025i 3.43032 1.00000 −0.500000 + 0.866025i 1.68125 2.91200i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 931.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
223.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1338.2.e.i 14
223.c even 3 1 inner 1338.2.e.i 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1338.2.e.i 14 1.a even 1 1 trivial
1338.2.e.i 14 223.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1338, [\chi])\):

\( T_{5}^{14} - 3 T_{5}^{13} + 30 T_{5}^{12} - 81 T_{5}^{11} + 574 T_{5}^{10} - 1451 T_{5}^{9} + \cdots + 5184 \) Copy content Toggle raw display
\( T_{7}^{7} - 2T_{7}^{6} - 38T_{7}^{5} + 65T_{7}^{4} + 397T_{7}^{3} - 596T_{7}^{2} - 916T_{7} + 849 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{14} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{7} \) Copy content Toggle raw display
$5$ \( T^{14} - 3 T^{13} + \cdots + 5184 \) Copy content Toggle raw display
$7$ \( (T^{7} - 2 T^{6} + \cdots + 849)^{2} \) Copy content Toggle raw display
$11$ \( T^{14} - 7 T^{13} + \cdots + 2916 \) Copy content Toggle raw display
$13$ \( (T^{7} + 6 T^{6} + \cdots + 11520)^{2} \) Copy content Toggle raw display
$17$ \( (T^{7} - 3 T^{6} + \cdots + 4339)^{2} \) Copy content Toggle raw display
$19$ \( T^{14} + 6 T^{13} + \cdots + 1742400 \) Copy content Toggle raw display
$23$ \( T^{14} + 14 T^{13} + \cdots + 98485776 \) Copy content Toggle raw display
$29$ \( T^{14} + 7 T^{13} + \cdots + 9216 \) Copy content Toggle raw display
$31$ \( T^{14} + \cdots + 42751351696 \) Copy content Toggle raw display
$37$ \( T^{14} + \cdots + 18507969936 \) Copy content Toggle raw display
$41$ \( (T^{7} - 5 T^{6} + \cdots - 2220)^{2} \) Copy content Toggle raw display
$43$ \( T^{14} + \cdots + 115476516 \) Copy content Toggle raw display
$47$ \( T^{14} + \cdots + 2342172816 \) Copy content Toggle raw display
$53$ \( T^{14} + \cdots + 3463087104 \) Copy content Toggle raw display
$59$ \( (T^{7} + 3 T^{6} + \cdots - 19014)^{2} \) Copy content Toggle raw display
$61$ \( T^{14} + \cdots + 3899519078400 \) Copy content Toggle raw display
$67$ \( T^{14} + \cdots + 27318139524 \) Copy content Toggle raw display
$71$ \( T^{14} - 31 T^{13} + \cdots + 6533136 \) Copy content Toggle raw display
$73$ \( T^{14} + \cdots + 236338783342596 \) Copy content Toggle raw display
$79$ \( T^{14} + \cdots + 1744428109824 \) Copy content Toggle raw display
$83$ \( T^{14} + \cdots + 1192883364864 \) Copy content Toggle raw display
$89$ \( T^{14} + \cdots + 7952146202025 \) Copy content Toggle raw display
$97$ \( T^{14} + \cdots + 40339926282384 \) Copy content Toggle raw display
show more
show less