L(s) = 1 | + 2-s + (0.5 + 0.866i)3-s + 4-s + (−0.0934 + 0.161i)5-s + (0.5 + 0.866i)6-s − 4.42·7-s + 8-s + (−0.499 + 0.866i)9-s + (−0.0934 + 0.161i)10-s + (0.307 − 0.531i)11-s + (0.5 + 0.866i)12-s − 5.15·13-s − 4.42·14-s − 0.186·15-s + 16-s − 6.51·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.288 + 0.499i)3-s + 0.5·4-s + (−0.0418 + 0.0724i)5-s + (0.204 + 0.353i)6-s − 1.67·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.0295 + 0.0512i)10-s + (0.0925 − 0.160i)11-s + (0.144 + 0.249i)12-s − 1.43·13-s − 1.18·14-s − 0.0482·15-s + 0.250·16-s − 1.57·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2778182558\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2778182558\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 223 | \( 1 + (-8.43 - 12.3i)T \) |
good | 5 | \( 1 + (0.0934 - 0.161i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 4.42T + 7T^{2} \) |
| 11 | \( 1 + (-0.307 + 0.531i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.15T + 13T^{2} \) |
| 17 | \( 1 + 6.51T + 17T^{2} \) |
| 19 | \( 1 + (2.91 + 5.04i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.35 - 4.08i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.692 - 1.20i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.73 + 4.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.896 + 1.55i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 1.49T + 41T^{2} \) |
| 43 | \( 1 + (-0.554 - 0.960i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.88 - 8.46i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.75 + 3.03i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 10.5T + 59T^{2} \) |
| 61 | \( 1 + (2.76 + 4.79i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.462 - 0.801i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.828 - 1.43i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (7.01 - 12.1i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.22 - 9.04i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.93 - 3.34i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (3.98 + 6.90i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.73 - 3.00i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.822584769986825236137394930170, −9.452544280856439442361105454713, −8.634416281833657190084598367344, −7.14729555127576553592705772383, −6.90279380495284044699731551068, −5.83535412946210003458840182029, −4.86759664926780922883266459465, −4.03486847217609642937527097140, −3.04620658519201102405373386510, −2.39072901267242469026693463605,
0.07574317500034148423534403246, 2.15096490556722831106002462169, 2.88922814534718554324420955347, 3.93891882303239385309114384000, 4.85028281487149030832848907399, 6.06987489406801143903519683346, 6.72258874873487566321315031629, 7.16520134795096419972668500958, 8.400795741695932858764280715803, 9.161421786166725287942974328388