L(s) = 1 | + 2-s + (0.5 + 0.866i)3-s + 4-s + (0.887 − 1.53i)5-s + (0.5 + 0.866i)6-s − 3.74·7-s + 8-s + (−0.499 + 0.866i)9-s + (0.887 − 1.53i)10-s + (2.36 − 4.10i)11-s + (0.5 + 0.866i)12-s + 2.39·13-s − 3.74·14-s + 1.77·15-s + 16-s + 4.75·17-s + ⋯ |
L(s) = 1 | + 0.707·2-s + (0.288 + 0.499i)3-s + 0.5·4-s + (0.396 − 0.687i)5-s + (0.204 + 0.353i)6-s − 1.41·7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (0.280 − 0.485i)10-s + (0.714 − 1.23i)11-s + (0.144 + 0.249i)12-s + 0.662·13-s − 1.00·14-s + 0.458·15-s + 0.250·16-s + 1.15·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.909 + 0.415i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.850589325\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.850589325\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 223 | \( 1 + (-0.344 + 14.9i)T \) |
good | 5 | \( 1 + (-0.887 + 1.53i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 3.74T + 7T^{2} \) |
| 11 | \( 1 + (-2.36 + 4.10i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.39T + 13T^{2} \) |
| 17 | \( 1 - 4.75T + 17T^{2} \) |
| 19 | \( 1 + (-1.21 - 2.10i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.36 + 7.55i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.36 + 2.37i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.90 - 5.02i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.83 + 8.38i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 0.632T + 41T^{2} \) |
| 43 | \( 1 + (-3.14 - 5.45i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.30 + 9.18i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.401 - 0.696i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 0.772T + 59T^{2} \) |
| 61 | \( 1 + (2.78 + 4.82i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.20 + 3.82i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.965 - 1.67i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (8.22 - 14.2i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.71 - 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.19 - 14.1i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (7.04 + 12.2i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (6.85 - 11.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.617415006959794384021021241693, −8.800502110827945271440335254162, −8.143925015849372814187698619998, −6.80127430246252888236425421854, −5.97757270996070163387887922125, −5.57582054343624408050957891503, −4.20968913239822422599566713431, −3.55531829626207913583425895240, −2.73256561401960417325053801614, −1.00790062268989365370244675447,
1.47106677811560570660229232664, 2.75148973259559424784817337585, 3.39620854930495144077652322501, 4.38935072957198022018806350038, 5.90295239529174388685262990060, 6.22908447545736102799721504710, 7.12598777300843490189503784739, 7.65167802065565968503732022888, 9.036608446154786717972951469708, 9.851890550760136608289602606620