Defining parameters
Level: | \( N \) | \(=\) | \( 1338 = 2 \cdot 3 \cdot 223 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1338.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 223 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1338, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 456 | 76 | 380 |
Cusp forms | 440 | 76 | 364 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1338, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1338, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1338, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(223, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(446, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(669, [\chi])\)\(^{\oplus 2}\)