gp: [N,k,chi] = [1338,2,Mod(931,1338)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1338, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1338.931");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [14,-14,-7]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 13 1,\beta_1,\ldots,\beta_{13} 1 , β 1 , … , β 1 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 14 − 3 x 13 + 21 x 12 − 26 x 11 + 217 x 10 − 335 x 9 + 1058 x 8 − 1539 x 7 + 3657 x 6 + ⋯ + 64 x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 x 1 4 − 3 x 1 3 + 2 1 x 1 2 − 2 6 x 1 1 + 2 1 7 x 1 0 − 3 3 5 x 9 + 1 0 5 8 x 8 − 1 5 3 9 x 7 + 3 6 5 7 x 6 + ⋯ + 6 4
x^14 - 3*x^13 + 21*x^12 - 26*x^11 + 217*x^10 - 335*x^9 + 1058*x^8 - 1539*x^7 + 3657*x^6 - 4850*x^5 + 6077*x^4 - 4079*x^3 + 2145*x^2 - 424*x + 64
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 11894749487 ν 13 + 11997206394614 ν 12 − 24406514622697 ν 11 + ⋯ + 10 ⋯ 24 ) / 13 ⋯ 40 ( - 11894749487 \nu^{13} + 11997206394614 \nu^{12} - 24406514622697 \nu^{11} + \cdots + 10\!\cdots\!24 ) / 13\!\cdots\!40 ( − 1 1 8 9 4 7 4 9 4 8 7 ν 1 3 + 1 1 9 9 7 2 0 6 3 9 4 6 1 4 ν 1 2 − 2 4 4 0 6 5 1 4 6 2 2 6 9 7 ν 1 1 + ⋯ + 1 0 ⋯ 2 4 ) / 1 3 ⋯ 4 0
(-11894749487*v^13 + 11997206394614*v^12 - 24406514622697*v^11 + 215510754211781*v^10 - 83198051801854*v^9 + 2309593901045095*v^8 - 1764430077927247*v^7 + 8595132173648858*v^6 - 9127536054917249*v^5 + 26743712122788693*v^4 - 24730970354727258*v^3 + 24662140518925195*v^2 - 5806126659900156*v + 1088400461648224) / 1392462481258640
β 3 \beta_{3} β 3 = = =
( 350931206586 ν 13 − 6904011733432 ν 12 + 21257463451161 ν 11 + ⋯ − 885309025339752 ) / 696231240629320 ( 350931206586 \nu^{13} - 6904011733432 \nu^{12} + 21257463451161 \nu^{11} + \cdots - 885309025339752 ) / 696231240629320 ( 3 5 0 9 3 1 2 0 6 5 8 6 ν 1 3 − 6 9 0 4 0 1 1 7 3 3 4 3 2 ν 1 2 + 2 1 2 5 7 4 6 3 4 5 1 1 6 1 ν 1 1 + ⋯ − 8 8 5 3 0 9 0 2 5 3 3 9 7 5 2 ) / 6 9 6 2 3 1 2 4 0 6 2 9 3 2 0
(350931206586*v^13 - 6904011733432*v^12 + 21257463451161*v^11 - 121315860224413*v^10 + 151311935447312*v^9 - 1298106312981095*v^8 + 1533606949092771*v^7 - 5596542707297524*v^6 + 6401928345706617*v^5 - 17928557307023369*v^4 + 17695552123554044*v^3 - 20621064977106315*v^2 + 4643536195126073*v - 885309025339752) / 696231240629320
β 4 \beta_{4} β 4 = = =
( 189474898455 ν 13 − 463582346296 ν 12 + 3685048861779 ν 11 + ⋯ − 60764624075456 ) / 278492496251728 ( 189474898455 \nu^{13} - 463582346296 \nu^{12} + 3685048861779 \nu^{11} + \cdots - 60764624075456 ) / 278492496251728 ( 1 8 9 4 7 4 8 9 8 4 5 5 ν 1 3 − 4 6 3 5 8 2 3 4 6 2 9 6 ν 1 2 + 3 6 8 5 0 4 8 8 6 1 7 7 9 ν 1 1 + ⋯ − 6 0 7 6 4 6 2 4 0 7 5 4 5 6 ) / 2 7 8 4 9 2 4 9 6 2 5 1 7 2 8
(189474898455*v^13 - 463582346296*v^12 + 3685048861779*v^11 - 2702456401977*v^10 + 38666679959772*v^9 - 39934604338893*v^8 + 170212464169515*v^7 - 174426866518540*v^6 + 549304924782195*v^5 - 530283378568401*v^4 + 764532018399744*v^3 - 133985593395585*v^2 + 25403128628904*v - 60764624075456) / 278492496251728
β 5 \beta_{5} β 5 = = =
( 6246816528 ν 13 − 33217355135 ν 12 + 184158310914 ν 11 − 412537041360 ν 10 + ⋯ + 16264758749588 ) / 6568219251220 ( 6246816528 \nu^{13} - 33217355135 \nu^{12} + 184158310914 \nu^{11} - 412537041360 \nu^{10} + \cdots + 16264758749588 ) / 6568219251220 ( 6 2 4 6 8 1 6 5 2 8 ν 1 3 − 3 3 2 1 7 3 5 5 1 3 5 ν 1 2 + 1 8 4 1 5 8 3 1 0 9 1 4 ν 1 1 − 4 1 2 5 3 7 0 4 1 3 6 0 ν 1 0 + ⋯ + 1 6 2 6 4 7 5 8 7 4 9 5 8 8 ) / 6 5 6 8 2 1 9 2 5 1 2 2 0
(6246816528*v^13 - 33217355135*v^12 + 184158310914*v^11 - 412537041360*v^10 + 1786216893945*v^9 - 4081354680366*v^8 + 13406398042440*v^7 - 13084614124015*v^6 + 46833354919818*v^5 - 49176887935464*v^4 + 93770386735557*v^3 - 14042267999166*v^2 + 2707729915056*v + 16264758749588) / 6568219251220
β 6 \beta_{6} β 6 = = =
( − 949447251179 ν 13 + 2658866855082 ν 12 − 19474809928463 ν 11 + ⋯ + 377162505870992 ) / 278492496251728 ( - 949447251179 \nu^{13} + 2658866855082 \nu^{12} - 19474809928463 \nu^{11} + \cdots + 377162505870992 ) / 278492496251728 ( − 9 4 9 4 4 7 2 5 1 1 7 9 ν 1 3 + 2 6 5 8 8 6 6 8 5 5 0 8 2 ν 1 2 − 1 9 4 7 4 8 0 9 9 2 8 4 6 3 ν 1 1 + ⋯ + 3 7 7 1 6 2 5 0 5 8 7 0 9 9 2 ) / 2 7 8 4 9 2 4 9 6 2 5 1 7 2 8
(-949447251179*v^13 + 2658866855082*v^12 - 19474809928463*v^11 + 21000579668875*v^10 - 203327597103866*v^9 + 279398149185193*v^8 - 964580587408489*v^7 + 1290986855394966*v^6 - 3297701731043063*v^5 + 4055514243435955*v^4 - 5239507566846382*v^3 + 3108263319159397*v^2 - 1902578760383370*v + 377162505870992) / 278492496251728
β 7 \beta_{7} β 7 = = =
( 1395976196505 ν 13 − 719193611638 ν 12 + 21931501225525 ν 11 + ⋯ − 244505943863184 ) / 278492496251728 ( 1395976196505 \nu^{13} - 719193611638 \nu^{12} + 21931501225525 \nu^{11} + \cdots - 244505943863184 ) / 278492496251728 ( 1 3 9 5 9 7 6 1 9 6 5 0 5 ν 1 3 − 7 1 9 1 9 3 6 1 1 6 3 8 ν 1 2 + 2 1 9 3 1 5 0 1 2 2 5 5 2 5 ν 1 1 + ⋯ − 2 4 4 5 0 5 9 4 3 8 6 3 1 8 4 ) / 2 7 8 4 9 2 4 9 6 2 5 1 7 2 8
(1395976196505*v^13 - 719193611638*v^12 + 21931501225525*v^11 + 27224381281763*v^10 + 273802796310614*v^9 + 207714465088525*v^8 + 919807890024447*v^7 + 477266700021110*v^6 + 2437148583492429*v^5 + 1478489338504507*v^4 + 769509742561826*v^3 + 2137474369475113*v^2 + 1147058066046506*v - 244505943863184) / 278492496251728
β 8 \beta_{8} β 8 = = =
( − 1036379390686 ν 13 + 3332402644721 ν 12 − 20794130582684 ν 11 + ⋯ + 61664514482432 ) / 139246248125864 ( - 1036379390686 \nu^{13} + 3332402644721 \nu^{12} - 20794130582684 \nu^{11} + \cdots + 61664514482432 ) / 139246248125864 ( − 1 0 3 6 3 7 9 3 9 0 6 8 6 ν 1 3 + 3 3 3 2 4 0 2 6 4 4 7 2 1 ν 1 2 − 2 0 7 9 4 1 3 0 5 8 2 6 8 4 ν 1 1 + ⋯ + 6 1 6 6 4 5 1 4 4 8 2 4 3 2 ) / 1 3 9 2 4 6 2 4 8 1 2 5 8 6 4
(-1036379390686*v^13 + 3332402644721*v^12 - 20794130582684*v^11 + 28174209806367*v^10 - 200781847303543*v^9 + 382424695483184*v^8 - 852933088208929*v^7 + 1572601533573733*v^6 - 2905912654030664*v^5 + 4596163471051783*v^4 - 3531075766228591*v^3 + 1992392622465916*v^2 + 399835051295785*v + 61664514482432) / 139246248125864
β 9 \beta_{9} β 9 = = =
( − 12797071853307 ν 13 + 26839180428930 ν 12 − 233311679199641 ν 11 + ⋯ − 105899575046112 ) / 13 ⋯ 40 ( - 12797071853307 \nu^{13} + 26839180428930 \nu^{12} - 233311679199641 \nu^{11} + \cdots - 105899575046112 ) / 13\!\cdots\!40 ( − 1 2 7 9 7 0 7 1 8 5 3 3 0 7 ν 1 3 + 2 6 8 3 9 1 8 0 4 2 8 9 3 0 ν 1 2 − 2 3 3 3 1 1 6 7 9 1 9 9 6 4 1 ν 1 1 + ⋯ − 1 0 5 8 9 9 5 7 5 0 4 6 1 1 2 ) / 1 3 ⋯ 4 0
(-12797071853307*v^13 + 26839180428930*v^12 - 233311679199641*v^11 + 102133303512565*v^10 - 2486774968848610*v^9 + 2010002208180279*v^8 - 9558762428439735*v^7 + 9925500211676150*v^6 - 29960809309674817*v^5 + 27937754603183941*v^4 - 29339643953955198*v^3 + 6657112793657579*v^2 - 1250884596139064*v - 105899575046112) / 1392462481258640
β 10 \beta_{10} β 1 0 = = =
( − 12850361416241 ν 13 + 31425427358742 ν 12 − 258563923346661 ν 11 + ⋯ + 51 ⋯ 92 ) / 13 ⋯ 40 ( - 12850361416241 \nu^{13} + 31425427358742 \nu^{12} - 258563923346661 \nu^{11} + \cdots + 51\!\cdots\!92 ) / 13\!\cdots\!40 ( − 1 2 8 5 0 3 6 1 4 1 6 2 4 1 ν 1 3 + 3 1 4 2 5 4 2 7 3 5 8 7 4 2 ν 1 2 − 2 5 8 5 6 3 9 2 3 3 4 6 6 6 1 ν 1 1 + ⋯ + 5 1 ⋯ 9 2 ) / 1 3 ⋯ 4 0
(-12850361416241*v^13 + 31425427358742*v^12 - 258563923346661*v^11 + 217450734440333*v^10 - 2800066187058262*v^9 + 3035530788101555*v^8 - 13061219146902511*v^7 + 16102772863287594*v^6 - 43163623021429677*v^5 + 51716475524995989*v^4 - 69238639688662434*v^3 + 50339993114605335*v^2 - 25892882229319138*v + 5147586898419792) / 1392462481258640
β 11 \beta_{11} β 1 1 = = =
( 17832450286167 ν 13 − 41279618248560 ν 12 + 338530185393711 ν 11 + ⋯ + 111353198434832 ) / 13 ⋯ 40 ( 17832450286167 \nu^{13} - 41279618248560 \nu^{12} + 338530185393711 \nu^{11} + \cdots + 111353198434832 ) / 13\!\cdots\!40 ( 1 7 8 3 2 4 5 0 2 8 6 1 6 7 ν 1 3 − 4 1 2 7 9 6 1 8 2 4 8 5 6 0 ν 1 2 + 3 3 8 5 3 0 1 8 5 3 9 3 7 1 1 ν 1 1 + ⋯ + 1 1 1 3 5 3 1 9 8 4 3 4 8 3 2 ) / 1 3 ⋯ 4 0
(17832450286167*v^13 - 41279618248560*v^12 + 338530185393711*v^11 - 211561632073785*v^10 + 3574344627223180*v^9 - 3392765046416529*v^8 + 14988590442957435*v^7 - 15272156774290100*v^6 + 47898753978872127*v^5 - 45715619619224481*v^4 + 54311606244845648*v^3 - 11337014821699749*v^2 + 2143451050993224*v + 111353198434832) / 1392462481258640
β 12 \beta_{12} β 1 2 = = =
( − 12224969221067 ν 13 + 46138450619264 ν 12 − 276895844868297 ν 11 + ⋯ + 61 ⋯ 64 ) / 696231240629320 ( - 12224969221067 \nu^{13} + 46138450619264 \nu^{12} - 276895844868297 \nu^{11} + \cdots + 61\!\cdots\!64 ) / 696231240629320 ( − 1 2 2 2 4 9 6 9 2 2 1 0 6 7 ν 1 3 + 4 6 1 3 8 4 5 0 6 1 9 2 6 4 ν 1 2 − 2 7 6 8 9 5 8 4 4 8 6 8 2 9 7 ν 1 1 + ⋯ + 6 1 ⋯ 6 4 ) / 6 9 6 2 3 1 2 4 0 6 2 9 3 2 0
(-12224969221067*v^13 + 46138450619264*v^12 - 276895844868297*v^11 + 491578483191241*v^10 - 2734505925146564*v^9 + 5945380128318555*v^8 - 14473079330662507*v^7 + 26031444486559028*v^6 - 52186968011203529*v^5 + 81994341411367153*v^4 - 95554881886497448*v^3 + 72501657966690695*v^2 - 31328834029868276*v + 6144040579551264) / 696231240629320
β 13 \beta_{13} β 1 3 = = =
( 31153733884819 ν 13 − 69588418706370 ν 12 + 582961319382617 ν 11 + ⋯ + 71 ⋯ 44 ) / 13 ⋯ 40 ( 31153733884819 \nu^{13} - 69588418706370 \nu^{12} + 582961319382617 \nu^{11} + \cdots + 71\!\cdots\!44 ) / 13\!\cdots\!40 ( 3 1 1 5 3 7 3 3 8 8 4 8 1 9 ν 1 3 − 6 9 5 8 8 4 1 8 7 0 6 3 7 0 ν 1 2 + 5 8 2 9 6 1 3 1 9 3 8 2 6 1 7 ν 1 1 + ⋯ + 7 1 ⋯ 4 4 ) / 1 3 ⋯ 4 0
(31153733884819*v^13 - 69588418706370*v^12 + 582961319382617*v^11 - 325941800611165*v^10 + 6178817029289450*v^9 - 5554027146576183*v^8 + 25133227882415695*v^7 - 25915680880304950*v^6 + 79802912683238689*v^5 - 75587908919964877*v^4 + 86845662785812646*v^3 - 18506767776884043*v^2 + 3492199311479608*v + 7118933212268544) / 1392462481258640
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 12 − 5 β 6 + β 3 − β 2 \beta_{12} - 5\beta_{6} + \beta_{3} - \beta_{2} β 1 2 − 5 β 6 + β 3 − β 2
b12 - 5*b6 + b3 - b2
ν 3 \nu^{3} ν 3 = = =
2 β 13 − 2 β 11 + 4 β 9 − β 8 + β 7 − β 5 + 9 β 4 − 4 2\beta_{13} - 2\beta_{11} + 4\beta_{9} - \beta_{8} + \beta_{7} - \beta_{5} + 9\beta_{4} - 4 2 β 1 3 − 2 β 1 1 + 4 β 9 − β 8 + β 7 − β 5 + 9 β 4 − 4
2*b13 - 2*b11 + 4*b9 - b8 + b7 - b5 + 9*b4 - 4
ν 4 \nu^{4} ν 4 = = =
12 β 13 − 12 β 12 − 16 β 11 − β 10 + 16 β 9 − 6 β 8 + 51 β 6 + ⋯ − 51 12 \beta_{13} - 12 \beta_{12} - 16 \beta_{11} - \beta_{10} + 16 \beta_{9} - 6 \beta_{8} + 51 \beta_{6} + \cdots - 51 1 2 β 1 3 − 1 2 β 1 2 − 1 6 β 1 1 − β 1 0 + 1 6 β 9 − 6 β 8 + 5 1 β 6 + ⋯ − 5 1
12*b13 - 12*b12 - 16*b11 - b10 + 16*b9 - 6*b8 + 51*b6 + b5 - 16*b3 + 16*b2 - 11*b1 - 51
ν 5 \nu^{5} ν 5 = = =
− 40 β 12 + 13 β 10 − 21 β 7 + 112 β 6 − 108 β 4 − 42 β 3 + 74 β 2 − 108 β 1 -40\beta_{12} + 13\beta_{10} - 21\beta_{7} + 112\beta_{6} - 108\beta_{4} - 42\beta_{3} + 74\beta_{2} - 108\beta_1 − 4 0 β 1 2 + 1 3 β 1 0 − 2 1 β 7 + 1 1 2 β 6 − 1 0 8 β 4 − 4 2 β 3 + 7 4 β 2 − 1 0 8 β 1
-40*b12 + 13*b10 - 21*b7 + 112*b6 - 108*b4 - 42*b3 + 74*b2 - 108*b1
ν 6 \nu^{6} ν 6 = = =
− 177 β 13 + 237 β 11 − 267 β 9 + 108 β 8 − 108 β 7 − 5 β 5 − 263 β 4 + 678 -177\beta_{13} + 237\beta_{11} - 267\beta_{9} + 108\beta_{8} - 108\beta_{7} - 5\beta_{5} - 263\beta_{4} + 678 − 1 7 7 β 1 3 + 2 3 7 β 1 1 − 2 6 7 β 9 + 1 0 8 β 8 − 1 0 8 β 7 − 5 β 5 − 2 6 3 β 4 + 6 7 8
-177*b13 + 237*b11 - 267*b9 + 108*b8 - 108*b7 - 5*b5 - 263*b4 + 678
ν 7 \nu^{7} ν 7 = = =
− 682 β 13 + 682 β 12 + 762 β 11 − 152 β 10 − 1196 β 9 + 370 β 8 + ⋯ + 2140 - 682 \beta_{13} + 682 \beta_{12} + 762 \beta_{11} - 152 \beta_{10} - 1196 \beta_{9} + 370 \beta_{8} + \cdots + 2140 − 6 8 2 β 1 3 + 6 8 2 β 1 2 + 7 6 2 β 1 1 − 1 5 2 β 1 0 − 1 1 9 6 β 9 + 3 7 0 β 8 + ⋯ + 2 1 4 0
-682*b13 + 682*b12 + 762*b11 - 152*b10 - 1196*b9 + 370*b8 - 2140*b6 + 152*b5 + 762*b3 - 1196*b2 + 1511*b1 + 2140
ν 8 \nu^{8} ν 8 = = =
2803 β 12 − 96 β 10 + 1718 β 7 − 10131 β 6 + 4876 β 4 + 3621 β 3 + ⋯ + 4876 β 1 2803 \beta_{12} - 96 \beta_{10} + 1718 \beta_{7} - 10131 \beta_{6} + 4876 \beta_{4} + 3621 \beta_{3} + \cdots + 4876 \beta_1 2 8 0 3 β 1 2 − 9 6 β 1 0 + 1 7 1 8 β 7 − 1 0 1 3 1 β 6 + 4 8 7 6 β 4 + 3 6 2 1 β 3 + ⋯ + 4 8 7 6 β 1
2803*b12 - 96*b10 + 1718*b7 - 10131*b6 + 4876*b4 + 3621*b3 - 4457*b2 + 4876*b1
ν 9 \nu^{9} ν 9 = = =
11204 β 13 − 13050 β 11 + 19090 β 9 − 6271 β 8 + 6271 β 7 − 1871 β 5 + ⋯ − 36876 11204 \beta_{13} - 13050 \beta_{11} + 19090 \beta_{9} - 6271 \beta_{8} + 6271 \beta_{7} - 1871 \beta_{5} + \cdots - 36876 1 1 2 0 4 β 1 3 − 1 3 0 5 0 β 1 1 + 1 9 0 9 0 β 9 − 6 2 7 1 β 8 + 6 2 7 1 β 7 − 1 8 7 1 β 5 + ⋯ − 3 6 8 7 6
11204*b13 - 13050*b11 + 19090*b9 - 6271*b8 + 6271*b7 - 1871*b5 + 22883*b4 - 36876
ν 10 \nu^{10} ν 1 0 = = =
45266 β 13 − 45266 β 12 − 56894 β 11 + 3293 β 10 + 73664 β 9 + ⋯ − 158925 45266 \beta_{13} - 45266 \beta_{12} - 56894 \beta_{11} + 3293 \beta_{10} + 73664 \beta_{9} + \cdots - 158925 4 5 2 6 6 β 1 3 − 4 5 2 6 6 β 1 2 − 5 6 8 9 4 β 1 1 + 3 2 9 3 β 1 0 + 7 3 6 6 4 β 9 + ⋯ − 1 5 8 9 2 5
45266*b13 - 45266*b12 - 56894*b11 + 3293*b10 + 73664*b9 - 27232*b8 + 158925*b6 - 3293*b5 - 56894*b3 + 73664*b2 - 83513*b1 - 158925
ν 11 \nu^{11} ν 1 1 = = =
− 182380 β 12 + 25203 β 10 − 104189 β 7 + 613172 β 6 − 359952 β 4 + ⋯ − 359952 β 1 - 182380 \beta_{12} + 25203 \beta_{10} - 104189 \beta_{7} + 613172 \beta_{6} - 359952 \beta_{4} + \cdots - 359952 \beta_1 − 1 8 2 3 8 0 β 1 2 + 2 5 2 0 3 β 1 0 − 1 0 4 1 8 9 β 7 + 6 1 3 1 7 2 β 6 − 3 5 9 9 5 2 β 4 + ⋯ − 3 5 9 9 5 2 β 1
-182380*b12 + 25203*b10 - 104189*b7 + 613172*b6 - 359952*b4 - 217364*b3 + 306352*b2 - 359952*b1
ν 12 \nu^{12} ν 1 2 = = =
− 734493 β 13 + 908871 β 11 − 1207803 β 9 + 435744 β 8 − 435744 β 7 + ⋯ + 2543422 - 734493 \beta_{13} + 908871 \beta_{11} - 1207803 \beta_{9} + 435744 \beta_{8} - 435744 \beta_{7} + \cdots + 2543422 − 7 3 4 4 9 3 β 1 3 + 9 0 8 8 7 1 β 1 1 − 1 2 0 7 8 0 3 β 9 + 4 3 5 7 4 4 β 8 − 4 3 5 7 4 4 β 7 + ⋯ + 2 5 4 3 4 2 2
-734493*b13 + 908871*b11 - 1207803*b9 + 435744*b8 - 435744*b7 + 68189*b5 - 1387457*b4 + 2543422
ν 13 \nu^{13} ν 1 3 = = =
− 2962632 β 13 + 2962632 β 12 + 3572320 β 11 − 367372 β 10 − 4942928 β 9 + ⋯ + 10057012 - 2962632 \beta_{13} + 2962632 \beta_{12} + 3572320 \beta_{11} - 367372 \beta_{10} - 4942928 \beta_{9} + \cdots + 10057012 − 2 9 6 2 6 3 2 β 1 3 + 2 9 6 2 6 3 2 β 1 2 + 3 5 7 2 3 2 0 β 1 1 − 3 6 7 3 7 2 β 1 0 − 4 9 4 2 9 2 8 β 9 + ⋯ + 1 0 0 5 7 0 1 2
-2962632*b13 + 2962632*b12 + 3572320*b11 - 367372*b10 - 4942928*b9 + 1711736*b8 - 10057012*b6 + 367372*b5 + 3572320*b3 - 4942928*b2 + 5761961*b1 + 10057012
Character values
We give the values of χ \chi χ on generators for ( Z / 1338 Z ) × \left(\mathbb{Z}/1338\mathbb{Z}\right)^\times ( Z / 1 3 3 8 Z ) × .
n n n
893 893 8 9 3
895 895 8 9 5
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 + β 6 -1 + \beta_{6} − 1 + β 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1338 , [ χ ] ) S_{2}^{\mathrm{new}}(1338, [\chi]) S 2 n e w ( 1 3 3 8 , [ χ ] ) :
T 5 14 + 4 T 5 13 + 32 T 5 12 + 98 T 5 11 + 613 T 5 10 + 1716 T 5 9 + ⋯ + 1849 T_{5}^{14} + 4 T_{5}^{13} + 32 T_{5}^{12} + 98 T_{5}^{11} + 613 T_{5}^{10} + 1716 T_{5}^{9} + \cdots + 1849 T 5 1 4 + 4 T 5 1 3 + 3 2 T 5 1 2 + 9 8 T 5 1 1 + 6 1 3 T 5 1 0 + 1 7 1 6 T 5 9 + ⋯ + 1 8 4 9
T5^14 + 4*T5^13 + 32*T5^12 + 98*T5^11 + 613*T5^10 + 1716*T5^9 + 5593*T5^8 + 7990*T5^7 + 14853*T5^6 + 10444*T5^5 + 23889*T5^4 + 11514*T5^3 + 15172*T5^2 - 3956*T5 + 1849
T 7 7 − 6 T 7 6 − 20 T 7 5 + 179 T 7 4 − 123 T 7 3 − 928 T 7 2 + 1330 T 7 + 223 T_{7}^{7} - 6T_{7}^{6} - 20T_{7}^{5} + 179T_{7}^{4} - 123T_{7}^{3} - 928T_{7}^{2} + 1330T_{7} + 223 T 7 7 − 6 T 7 6 − 2 0 T 7 5 + 1 7 9 T 7 4 − 1 2 3 T 7 3 − 9 2 8 T 7 2 + 1 3 3 0 T 7 + 2 2 3
T7^7 - 6*T7^6 - 20*T7^5 + 179*T7^4 - 123*T7^3 - 928*T7^2 + 1330*T7 + 223
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T + 1 ) 14 (T + 1)^{14} ( T + 1 ) 1 4
(T + 1)^14
3 3 3
( T 2 + T + 1 ) 7 (T^{2} + T + 1)^{7} ( T 2 + T + 1 ) 7
(T^2 + T + 1)^7
5 5 5
T 14 + 4 T 13 + ⋯ + 1849 T^{14} + 4 T^{13} + \cdots + 1849 T 1 4 + 4 T 1 3 + ⋯ + 1 8 4 9
T^14 + 4*T^13 + 32*T^12 + 98*T^11 + 613*T^10 + 1716*T^9 + 5593*T^8 + 7990*T^7 + 14853*T^6 + 10444*T^5 + 23889*T^4 + 11514*T^3 + 15172*T^2 - 3956*T + 1849
7 7 7
( T 7 − 6 T 6 + ⋯ + 223 ) 2 (T^{7} - 6 T^{6} + \cdots + 223)^{2} ( T 7 − 6 T 6 + ⋯ + 2 2 3 ) 2
(T^7 - 6*T^6 - 20*T^5 + 179*T^4 - 123*T^3 - 928*T^2 + 1330*T + 223)^2
11 11 1 1
T 14 + 10 T 13 + ⋯ + 46225 T^{14} + 10 T^{13} + \cdots + 46225 T 1 4 + 1 0 T 1 3 + ⋯ + 4 6 2 2 5
T^14 + 10*T^13 + 93*T^12 + 336*T^11 + 1478*T^10 + 1602*T^9 + 12676*T^8 + 4330*T^7 + 79666*T^6 - 79660*T^5 + 268502*T^4 - 91234*T^3 + 126639*T^2 + 18920*T + 46225
13 13 1 3
( T 7 + 2 T 6 + ⋯ − 8104 ) 2 (T^{7} + 2 T^{6} + \cdots - 8104)^{2} ( T 7 + 2 T 6 + ⋯ − 8 1 0 4 ) 2
(T^7 + 2*T^6 - 61*T^5 - 156*T^4 + 983*T^3 + 2978*T^2 - 2043*T - 8104)^2
17 17 1 7
( T 7 − 4 T 6 + ⋯ − 1004 ) 2 (T^{7} - 4 T^{6} + \cdots - 1004)^{2} ( T 7 − 4 T 6 + ⋯ − 1 0 0 4 ) 2
(T^7 - 4*T^6 - 60*T^5 + 270*T^4 + 502*T^3 - 2936*T^2 + 3355*T - 1004)^2
19 19 1 9
T 14 + ⋯ + 3268180224 T^{14} + \cdots + 3268180224 T 1 4 + ⋯ + 3 2 6 8 1 8 0 2 2 4
T^14 + 8*T^13 + 143*T^12 + 656*T^11 + 9824*T^10 + 38182*T^9 + 413655*T^8 + 790168*T^7 + 8521909*T^6 + 7403274*T^5 + 137394352*T^4 + 19602024*T^3 + 875246256*T^2 + 736095168*T + 3268180224
23 23 2 3
T 14 + 8 T 13 + ⋯ + 27520516 T^{14} + 8 T^{13} + \cdots + 27520516 T 1 4 + 8 T 1 3 + ⋯ + 2 7 5 2 0 5 1 6
T^14 + 8*T^13 + 97*T^12 + 324*T^11 + 3230*T^10 + 9258*T^9 + 72193*T^8 + 135232*T^7 + 859718*T^6 + 1453270*T^5 + 6816925*T^4 + 5512312*T^3 + 16646897*T^2 - 5901750*T + 27520516
29 29 2 9
T 14 + ⋯ + 2509509025 T^{14} + \cdots + 2509509025 T 1 4 + ⋯ + 2 5 0 9 5 0 9 0 2 5
T^14 + 6*T^13 + 201*T^12 + 568*T^11 + 23854*T^10 + 51574*T^9 + 1534280*T^8 - 603426*T^7 + 57267966*T^6 - 70829468*T^5 + 1558765766*T^4 - 3571679774*T^3 + 18972447531*T^2 - 7076219320*T + 2509509025
31 31 3 1
T 14 + 10 T 13 + ⋯ + 256 T^{14} + 10 T^{13} + \cdots + 256 T 1 4 + 1 0 T 1 3 + ⋯ + 2 5 6
T^14 + 10*T^13 + 161*T^12 + 510*T^11 + 8647*T^10 + 21136*T^9 + 350146*T^8 - 321864*T^7 + 709072*T^6 + 303840*T^5 + 201672*T^4 + 19744*T^3 + 7312*T^2 + 64*T + 256
37 37 3 7
T 14 − 15 T 13 + ⋯ + 33686416 T^{14} - 15 T^{13} + \cdots + 33686416 T 1 4 − 1 5 T 1 3 + ⋯ + 3 3 6 8 6 4 1 6
T^14 - 15*T^13 + 182*T^12 - 1177*T^11 + 7216*T^10 - 29567*T^9 + 145432*T^8 - 479991*T^7 + 1754984*T^6 - 3566297*T^5 + 9134654*T^4 - 14323491*T^3 + 31418245*T^2 - 31602780*T + 33686416
41 41 4 1
( T 7 − 12 T 6 + ⋯ − 97744 ) 2 (T^{7} - 12 T^{6} + \cdots - 97744)^{2} ( T 7 − 1 2 T 6 + ⋯ − 9 7 7 4 4 ) 2
(T^7 - 12*T^6 - 127*T^5 + 1092*T^4 + 6563*T^3 - 10054*T^2 - 84444*T - 97744)^2
43 43 4 3
T 14 + 14 T 13 + ⋯ + 2696164 T^{14} + 14 T^{13} + \cdots + 2696164 T 1 4 + 1 4 T 1 3 + ⋯ + 2 6 9 6 1 6 4
T^14 + 14*T^13 + 230*T^12 + 984*T^11 + 11110*T^10 + 25620*T^9 + 404666*T^8 + 212400*T^7 + 5675118*T^6 - 13668584*T^5 + 69731042*T^4 - 89054400*T^3 + 132418625*T^2 + 17902726*T + 2696164
47 47 4 7
T 14 + 10 T 13 + ⋯ + 16384 T^{14} + 10 T^{13} + \cdots + 16384 T 1 4 + 1 0 T 1 3 + ⋯ + 1 6 3 8 4
T^14 + 10*T^13 + 140*T^12 + 56*T^11 + 2701*T^10 - 16182*T^9 + 118148*T^8 - 397780*T^7 + 1030545*T^6 - 1618366*T^5 + 1884432*T^4 - 1234200*T^3 + 575248*T^2 - 114176*T + 16384
53 53 5 3
T 14 + 9 T 13 + ⋯ + 4225 T^{14} + 9 T^{13} + \cdots + 4225 T 1 4 + 9 T 1 3 + ⋯ + 4 2 2 5
T^14 + 9*T^13 + 171*T^12 - 2*T^11 + 9850*T^10 + 5380*T^9 + 307922*T^8 - 220218*T^7 + 4830408*T^6 + 6281410*T^5 + 7200410*T^4 + 2735332*T^3 + 896841*T^2 - 54535*T + 4225
59 59 5 9
( T 7 + 10 T 6 + ⋯ + 4979 ) 2 (T^{7} + 10 T^{6} + \cdots + 4979)^{2} ( T 7 + 1 0 T 6 + ⋯ + 4 9 7 9 ) 2
(T^7 + 10*T^6 - 99*T^5 - 663*T^4 + 3777*T^3 + 3145*T^2 - 10900*T + 4979)^2
61 61 6 1
T 14 + ⋯ + 43622537629696 T^{14} + \cdots + 43622537629696 T 1 4 + ⋯ + 4 3 6 2 2 5 3 7 6 2 9 6 9 6
T^14 + 20*T^13 + 610*T^12 + 6824*T^11 + 151416*T^10 + 1426896*T^9 + 24304120*T^8 + 149885856*T^7 + 1982483248*T^6 + 8219664896*T^5 + 111337532992*T^4 + 238486926336*T^3 + 2819275546880*T^2 - 3416814865408*T + 43622537629696
67 67 6 7
T 14 + 13 T 13 + ⋯ + 7193124 T^{14} + 13 T^{13} + \cdots + 7193124 T 1 4 + 1 3 T 1 3 + ⋯ + 7 1 9 3 1 2 4
T^14 + 13*T^13 + 165*T^12 + 814*T^11 + 5511*T^10 + 15209*T^9 + 120694*T^8 + 232729*T^7 + 1214857*T^6 + 1490788*T^5 + 8039197*T^4 + 7257921*T^3 + 21897963*T^2 - 10323018*T + 7193124
71 71 7 1
T 14 + ⋯ + 2418278976 T^{14} + \cdots + 2418278976 T 1 4 + ⋯ + 2 4 1 8 2 7 8 9 7 6
T^14 + 26*T^13 + 617*T^12 + 6266*T^11 + 73202*T^10 + 345010*T^9 + 4815027*T^8 + 15738574*T^7 + 199908841*T^6 + 94175184*T^5 + 4456488352*T^4 + 7746351600*T^3 + 11493003456*T^2 + 5889317760*T + 2418278976
73 73 7 3
T 14 + ⋯ + 842740900 T^{14} + \cdots + 842740900 T 1 4 + ⋯ + 8 4 2 7 4 0 9 0 0
T^14 - 7*T^13 + 196*T^12 - 1431*T^11 + 28024*T^10 - 182481*T^9 + 1741724*T^8 - 7320455*T^7 + 54850676*T^6 - 230400965*T^5 + 939601516*T^4 - 2026673983*T^3 + 3479388259*T^2 - 1930001490*T + 842740900
79 79 7 9
T 14 + ⋯ + 200001256225 T^{14} + \cdots + 200001256225 T 1 4 + ⋯ + 2 0 0 0 0 1 2 5 6 2 2 5
T^14 - 36*T^13 + 939*T^12 - 15230*T^11 + 212330*T^10 - 2340102*T^9 + 24701486*T^8 - 215863260*T^7 + 1650386836*T^6 - 9476313946*T^5 + 42903068918*T^4 - 130965903466*T^3 + 286384669081*T^2 - 284564693360*T + 200001256225
83 83 8 3
T 14 + ⋯ + 1444650148096 T^{14} + \cdots + 1444650148096 T 1 4 + ⋯ + 1 4 4 4 6 5 0 1 4 8 0 9 6
T^14 - 27*T^13 + 660*T^12 - 8263*T^11 + 109685*T^10 - 881492*T^9 + 9887616*T^8 - 59164668*T^7 + 565865588*T^6 - 1622418912*T^5 + 16961475040*T^4 - 12759380368*T^3 + 438072593232*T^2 + 675098604736*T + 1444650148096
89 89 8 9
T 14 + ⋯ + 1005650944 T^{14} + \cdots + 1005650944 T 1 4 + ⋯ + 1 0 0 5 6 5 0 9 4 4
T^14 + 33*T^13 + 729*T^12 + 9718*T^11 + 98815*T^10 + 679289*T^9 + 3885054*T^8 + 16171839*T^7 + 77608271*T^6 + 271649546*T^5 + 808120777*T^4 + 1557428551*T^3 + 2275930961*T^2 + 1823344864*T + 1005650944
97 97 9 7
T 14 + ⋯ + 720170896 T^{14} + \cdots + 720170896 T 1 4 + ⋯ + 7 2 0 1 7 0 8 9 6
T^14 + 19*T^13 + 366*T^12 + 1799*T^11 + 18045*T^10 + 17634*T^9 + 661475*T^8 + 26149*T^7 + 10200662*T^6 - 9288955*T^5 + 115424675*T^4 - 58510782*T^3 + 341721464*T^2 + 128973816*T + 720170896
show more
show less