Properties

Label 1338.2.e.h
Level 13381338
Weight 22
Character orbit 1338.e
Analytic conductor 10.68410.684
Analytic rank 00
Dimension 1414
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1338,2,Mod(931,1338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1338, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1338.931"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1338=23223 1338 = 2 \cdot 3 \cdot 223
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1338.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-14,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.683983790410.6839837904
Analytic rank: 00
Dimension: 1414
Relative dimension: 77 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x143x13+21x1226x11+217x10335x9+1058x81539x7+3657x6++64 x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β131,\beta_1,\ldots,\beta_{13} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2β6q3+q4+(β9+β6+β21)q5+β6q6+(β9β5)q7q8+(β61)q9+(β9β6β2+1)q10++(β12β6++β1)q99+O(q100) q - q^{2} - \beta_{6} q^{3} + q^{4} + (\beta_{9} + \beta_{6} + \beta_{2} - 1) q^{5} + \beta_{6} q^{6} + (\beta_{9} - \beta_{5}) q^{7} - q^{8} + (\beta_{6} - 1) q^{9} + ( - \beta_{9} - \beta_{6} - \beta_{2} + 1) q^{10}+ \cdots + ( - \beta_{12} - \beta_{6} + \cdots + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 14q14q27q3+14q44q5+7q6+12q714q87q9+4q1010q117q124q1312q14+8q15+14q16+8q17+7q188q19+10q99+O(q100) 14 q - 14 q^{2} - 7 q^{3} + 14 q^{4} - 4 q^{5} + 7 q^{6} + 12 q^{7} - 14 q^{8} - 7 q^{9} + 4 q^{10} - 10 q^{11} - 7 q^{12} - 4 q^{13} - 12 q^{14} + 8 q^{15} + 14 q^{16} + 8 q^{17} + 7 q^{18} - 8 q^{19}+ \cdots - 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x143x13+21x1226x11+217x10335x9+1058x81539x7+3657x6++64 x^{14} - 3 x^{13} + 21 x^{12} - 26 x^{11} + 217 x^{10} - 335 x^{9} + 1058 x^{8} - 1539 x^{7} + 3657 x^{6} + \cdots + 64 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (11894749487ν13+11997206394614ν1224406514622697ν11++10 ⁣ ⁣24)/13 ⁣ ⁣40 ( - 11894749487 \nu^{13} + 11997206394614 \nu^{12} - 24406514622697 \nu^{11} + \cdots + 10\!\cdots\!24 ) / 13\!\cdots\!40 Copy content Toggle raw display
β3\beta_{3}== (350931206586ν136904011733432ν12+21257463451161ν11+885309025339752)/696231240629320 ( 350931206586 \nu^{13} - 6904011733432 \nu^{12} + 21257463451161 \nu^{11} + \cdots - 885309025339752 ) / 696231240629320 Copy content Toggle raw display
β4\beta_{4}== (189474898455ν13463582346296ν12+3685048861779ν11+60764624075456)/278492496251728 ( 189474898455 \nu^{13} - 463582346296 \nu^{12} + 3685048861779 \nu^{11} + \cdots - 60764624075456 ) / 278492496251728 Copy content Toggle raw display
β5\beta_{5}== (6246816528ν1333217355135ν12+184158310914ν11412537041360ν10++16264758749588)/6568219251220 ( 6246816528 \nu^{13} - 33217355135 \nu^{12} + 184158310914 \nu^{11} - 412537041360 \nu^{10} + \cdots + 16264758749588 ) / 6568219251220 Copy content Toggle raw display
β6\beta_{6}== (949447251179ν13+2658866855082ν1219474809928463ν11++377162505870992)/278492496251728 ( - 949447251179 \nu^{13} + 2658866855082 \nu^{12} - 19474809928463 \nu^{11} + \cdots + 377162505870992 ) / 278492496251728 Copy content Toggle raw display
β7\beta_{7}== (1395976196505ν13719193611638ν12+21931501225525ν11+244505943863184)/278492496251728 ( 1395976196505 \nu^{13} - 719193611638 \nu^{12} + 21931501225525 \nu^{11} + \cdots - 244505943863184 ) / 278492496251728 Copy content Toggle raw display
β8\beta_{8}== (1036379390686ν13+3332402644721ν1220794130582684ν11++61664514482432)/139246248125864 ( - 1036379390686 \nu^{13} + 3332402644721 \nu^{12} - 20794130582684 \nu^{11} + \cdots + 61664514482432 ) / 139246248125864 Copy content Toggle raw display
β9\beta_{9}== (12797071853307ν13+26839180428930ν12233311679199641ν11+105899575046112)/13 ⁣ ⁣40 ( - 12797071853307 \nu^{13} + 26839180428930 \nu^{12} - 233311679199641 \nu^{11} + \cdots - 105899575046112 ) / 13\!\cdots\!40 Copy content Toggle raw display
β10\beta_{10}== (12850361416241ν13+31425427358742ν12258563923346661ν11++51 ⁣ ⁣92)/13 ⁣ ⁣40 ( - 12850361416241 \nu^{13} + 31425427358742 \nu^{12} - 258563923346661 \nu^{11} + \cdots + 51\!\cdots\!92 ) / 13\!\cdots\!40 Copy content Toggle raw display
β11\beta_{11}== (17832450286167ν1341279618248560ν12+338530185393711ν11++111353198434832)/13 ⁣ ⁣40 ( 17832450286167 \nu^{13} - 41279618248560 \nu^{12} + 338530185393711 \nu^{11} + \cdots + 111353198434832 ) / 13\!\cdots\!40 Copy content Toggle raw display
β12\beta_{12}== (12224969221067ν13+46138450619264ν12276895844868297ν11++61 ⁣ ⁣64)/696231240629320 ( - 12224969221067 \nu^{13} + 46138450619264 \nu^{12} - 276895844868297 \nu^{11} + \cdots + 61\!\cdots\!64 ) / 696231240629320 Copy content Toggle raw display
β13\beta_{13}== (31153733884819ν1369588418706370ν12+582961319382617ν11++71 ⁣ ⁣44)/13 ⁣ ⁣40 ( 31153733884819 \nu^{13} - 69588418706370 \nu^{12} + 582961319382617 \nu^{11} + \cdots + 71\!\cdots\!44 ) / 13\!\cdots\!40 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β125β6+β3β2 \beta_{12} - 5\beta_{6} + \beta_{3} - \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β132β11+4β9β8+β7β5+9β44 2\beta_{13} - 2\beta_{11} + 4\beta_{9} - \beta_{8} + \beta_{7} - \beta_{5} + 9\beta_{4} - 4 Copy content Toggle raw display
ν4\nu^{4}== 12β1312β1216β11β10+16β96β8+51β6+51 12 \beta_{13} - 12 \beta_{12} - 16 \beta_{11} - \beta_{10} + 16 \beta_{9} - 6 \beta_{8} + 51 \beta_{6} + \cdots - 51 Copy content Toggle raw display
ν5\nu^{5}== 40β12+13β1021β7+112β6108β442β3+74β2108β1 -40\beta_{12} + 13\beta_{10} - 21\beta_{7} + 112\beta_{6} - 108\beta_{4} - 42\beta_{3} + 74\beta_{2} - 108\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 177β13+237β11267β9+108β8108β75β5263β4+678 -177\beta_{13} + 237\beta_{11} - 267\beta_{9} + 108\beta_{8} - 108\beta_{7} - 5\beta_{5} - 263\beta_{4} + 678 Copy content Toggle raw display
ν7\nu^{7}== 682β13+682β12+762β11152β101196β9+370β8++2140 - 682 \beta_{13} + 682 \beta_{12} + 762 \beta_{11} - 152 \beta_{10} - 1196 \beta_{9} + 370 \beta_{8} + \cdots + 2140 Copy content Toggle raw display
ν8\nu^{8}== 2803β1296β10+1718β710131β6+4876β4+3621β3++4876β1 2803 \beta_{12} - 96 \beta_{10} + 1718 \beta_{7} - 10131 \beta_{6} + 4876 \beta_{4} + 3621 \beta_{3} + \cdots + 4876 \beta_1 Copy content Toggle raw display
ν9\nu^{9}== 11204β1313050β11+19090β96271β8+6271β71871β5+36876 11204 \beta_{13} - 13050 \beta_{11} + 19090 \beta_{9} - 6271 \beta_{8} + 6271 \beta_{7} - 1871 \beta_{5} + \cdots - 36876 Copy content Toggle raw display
ν10\nu^{10}== 45266β1345266β1256894β11+3293β10+73664β9+158925 45266 \beta_{13} - 45266 \beta_{12} - 56894 \beta_{11} + 3293 \beta_{10} + 73664 \beta_{9} + \cdots - 158925 Copy content Toggle raw display
ν11\nu^{11}== 182380β12+25203β10104189β7+613172β6359952β4+359952β1 - 182380 \beta_{12} + 25203 \beta_{10} - 104189 \beta_{7} + 613172 \beta_{6} - 359952 \beta_{4} + \cdots - 359952 \beta_1 Copy content Toggle raw display
ν12\nu^{12}== 734493β13+908871β111207803β9+435744β8435744β7++2543422 - 734493 \beta_{13} + 908871 \beta_{11} - 1207803 \beta_{9} + 435744 \beta_{8} - 435744 \beta_{7} + \cdots + 2543422 Copy content Toggle raw display
ν13\nu^{13}== 2962632β13+2962632β12+3572320β11367372β104942928β9++10057012 - 2962632 \beta_{13} + 2962632 \beta_{12} + 3572320 \beta_{11} - 367372 \beta_{10} - 4942928 \beta_{9} + \cdots + 10057012 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1338Z)×\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times.

nn 893893 895895
χ(n)\chi(n) 11 1+β6-1 + \beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
931.1
2.01501 + 3.49010i
0.624124 + 1.08101i
−1.07400 1.86022i
0.111923 + 0.193856i
−1.35878 2.35347i
0.379092 + 0.656607i
0.802633 + 1.39020i
2.01501 3.49010i
0.624124 1.08101i
−1.07400 + 1.86022i
0.111923 0.193856i
−1.35878 + 2.35347i
0.379092 0.656607i
0.802633 1.39020i
−1.00000 −0.500000 + 0.866025i 1.00000 −1.93874 3.35799i 0.500000 0.866025i −0.151955 −1.00000 −0.500000 0.866025i 1.93874 + 3.35799i
931.2 −1.00000 −0.500000 + 0.866025i 1.00000 −1.39971 2.42437i 0.500000 0.866025i 4.17672 −1.00000 −0.500000 0.866025i 1.39971 + 2.42437i
931.3 −1.00000 −0.500000 + 0.866025i 1.00000 −1.03843 1.79861i 0.500000 0.866025i −4.79897 −1.00000 −0.500000 0.866025i 1.03843 + 1.79861i
931.4 −1.00000 −0.500000 + 0.866025i 1.00000 −0.545239 0.944381i 0.500000 0.866025i −2.51752 −1.00000 −0.500000 0.866025i 0.545239 + 0.944381i
931.5 −1.00000 −0.500000 + 0.866025i 1.00000 0.158723 + 0.274916i 0.500000 0.866025i 3.33321 −1.00000 −0.500000 0.866025i −0.158723 0.274916i
931.6 −1.00000 −0.500000 + 0.866025i 1.00000 0.652613 + 1.13036i 0.500000 0.866025i 3.36767 −1.00000 −0.500000 0.866025i −0.652613 1.13036i
931.7 −1.00000 −0.500000 + 0.866025i 1.00000 2.11078 + 3.65598i 0.500000 0.866025i 2.59085 −1.00000 −0.500000 0.866025i −2.11078 3.65598i
1075.1 −1.00000 −0.500000 0.866025i 1.00000 −1.93874 + 3.35799i 0.500000 + 0.866025i −0.151955 −1.00000 −0.500000 + 0.866025i 1.93874 3.35799i
1075.2 −1.00000 −0.500000 0.866025i 1.00000 −1.39971 + 2.42437i 0.500000 + 0.866025i 4.17672 −1.00000 −0.500000 + 0.866025i 1.39971 2.42437i
1075.3 −1.00000 −0.500000 0.866025i 1.00000 −1.03843 + 1.79861i 0.500000 + 0.866025i −4.79897 −1.00000 −0.500000 + 0.866025i 1.03843 1.79861i
1075.4 −1.00000 −0.500000 0.866025i 1.00000 −0.545239 + 0.944381i 0.500000 + 0.866025i −2.51752 −1.00000 −0.500000 + 0.866025i 0.545239 0.944381i
1075.5 −1.00000 −0.500000 0.866025i 1.00000 0.158723 0.274916i 0.500000 + 0.866025i 3.33321 −1.00000 −0.500000 + 0.866025i −0.158723 + 0.274916i
1075.6 −1.00000 −0.500000 0.866025i 1.00000 0.652613 1.13036i 0.500000 + 0.866025i 3.36767 −1.00000 −0.500000 + 0.866025i −0.652613 + 1.13036i
1075.7 −1.00000 −0.500000 0.866025i 1.00000 2.11078 3.65598i 0.500000 + 0.866025i 2.59085 −1.00000 −0.500000 + 0.866025i −2.11078 + 3.65598i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 931.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
223.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1338.2.e.h 14
223.c even 3 1 inner 1338.2.e.h 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1338.2.e.h 14 1.a even 1 1 trivial
1338.2.e.h 14 223.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1338,[χ])S_{2}^{\mathrm{new}}(1338, [\chi]):

T514+4T513+32T512+98T511+613T510+1716T59++1849 T_{5}^{14} + 4 T_{5}^{13} + 32 T_{5}^{12} + 98 T_{5}^{11} + 613 T_{5}^{10} + 1716 T_{5}^{9} + \cdots + 1849 Copy content Toggle raw display
T776T7620T75+179T74123T73928T72+1330T7+223 T_{7}^{7} - 6T_{7}^{6} - 20T_{7}^{5} + 179T_{7}^{4} - 123T_{7}^{3} - 928T_{7}^{2} + 1330T_{7} + 223 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)14 (T + 1)^{14} Copy content Toggle raw display
33 (T2+T+1)7 (T^{2} + T + 1)^{7} Copy content Toggle raw display
55 T14+4T13++1849 T^{14} + 4 T^{13} + \cdots + 1849 Copy content Toggle raw display
77 (T76T6++223)2 (T^{7} - 6 T^{6} + \cdots + 223)^{2} Copy content Toggle raw display
1111 T14+10T13++46225 T^{14} + 10 T^{13} + \cdots + 46225 Copy content Toggle raw display
1313 (T7+2T6+8104)2 (T^{7} + 2 T^{6} + \cdots - 8104)^{2} Copy content Toggle raw display
1717 (T74T6+1004)2 (T^{7} - 4 T^{6} + \cdots - 1004)^{2} Copy content Toggle raw display
1919 T14++3268180224 T^{14} + \cdots + 3268180224 Copy content Toggle raw display
2323 T14+8T13++27520516 T^{14} + 8 T^{13} + \cdots + 27520516 Copy content Toggle raw display
2929 T14++2509509025 T^{14} + \cdots + 2509509025 Copy content Toggle raw display
3131 T14+10T13++256 T^{14} + 10 T^{13} + \cdots + 256 Copy content Toggle raw display
3737 T1415T13++33686416 T^{14} - 15 T^{13} + \cdots + 33686416 Copy content Toggle raw display
4141 (T712T6+97744)2 (T^{7} - 12 T^{6} + \cdots - 97744)^{2} Copy content Toggle raw display
4343 T14+14T13++2696164 T^{14} + 14 T^{13} + \cdots + 2696164 Copy content Toggle raw display
4747 T14+10T13++16384 T^{14} + 10 T^{13} + \cdots + 16384 Copy content Toggle raw display
5353 T14+9T13++4225 T^{14} + 9 T^{13} + \cdots + 4225 Copy content Toggle raw display
5959 (T7+10T6++4979)2 (T^{7} + 10 T^{6} + \cdots + 4979)^{2} Copy content Toggle raw display
6161 T14++43622537629696 T^{14} + \cdots + 43622537629696 Copy content Toggle raw display
6767 T14+13T13++7193124 T^{14} + 13 T^{13} + \cdots + 7193124 Copy content Toggle raw display
7171 T14++2418278976 T^{14} + \cdots + 2418278976 Copy content Toggle raw display
7373 T14++842740900 T^{14} + \cdots + 842740900 Copy content Toggle raw display
7979 T14++200001256225 T^{14} + \cdots + 200001256225 Copy content Toggle raw display
8383 T14++1444650148096 T^{14} + \cdots + 1444650148096 Copy content Toggle raw display
8989 T14++1005650944 T^{14} + \cdots + 1005650944 Copy content Toggle raw display
9797 T14++720170896 T^{14} + \cdots + 720170896 Copy content Toggle raw display
show more
show less