L(s) = 1 | − 2-s + (−0.5 + 0.866i)3-s + 4-s + (−0.545 − 0.944i)5-s + (0.5 − 0.866i)6-s − 2.51·7-s − 8-s + (−0.499 − 0.866i)9-s + (0.545 + 0.944i)10-s + (−3.12 − 5.40i)11-s + (−0.5 + 0.866i)12-s + 5.01·13-s + 2.51·14-s + 1.09·15-s + 16-s + 1.49·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.288 + 0.499i)3-s + 0.5·4-s + (−0.243 − 0.422i)5-s + (0.204 − 0.353i)6-s − 0.951·7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (0.172 + 0.298i)10-s + (−0.941 − 1.62i)11-s + (−0.144 + 0.249i)12-s + 1.39·13-s + 0.672·14-s + 0.281·15-s + 0.250·16-s + 0.361·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.733 - 0.679i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.733 - 0.679i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2427561852\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2427561852\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 223 | \( 1 + (-13.6 + 6.06i)T \) |
good | 5 | \( 1 + (0.545 + 0.944i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 2.51T + 7T^{2} \) |
| 11 | \( 1 + (3.12 + 5.40i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.01T + 13T^{2} \) |
| 17 | \( 1 - 1.49T + 17T^{2} \) |
| 19 | \( 1 + (1.02 - 1.78i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.45 - 2.52i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.14 - 3.71i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.44 - 7.70i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.789 - 1.36i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 7.94T + 41T^{2} \) |
| 43 | \( 1 + (3.22 - 5.58i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.25 - 2.17i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.250 + 0.433i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 2.06T + 59T^{2} \) |
| 61 | \( 1 + (4.32 - 7.49i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1.36 - 2.36i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3.39 + 5.87i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.73 + 9.94i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.88 - 4.98i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.38 + 7.59i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.564 - 0.977i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.43 - 4.21i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05863730636763209586308052097, −8.850384459078712239043845682983, −8.635144877101330008430784497615, −7.74368591044761135859427946575, −6.44859969980705833689609821214, −5.97318780824644603753073267000, −5.02782943918466067870759677442, −3.53756004352776756611567609501, −3.12941995274331602103616720881, −1.16866249369258726268556141755,
0.14520343448594345389414148950, 1.81814801232844255978167367225, 2.85093322708708023288032001219, 3.98077601963331026352303549045, 5.32236448801674666590854188656, 6.31575979245924040392342424062, 6.92624854345695781290071869777, 7.62554677554168060628985668886, 8.406414366122975733285189803128, 9.417714344935745335445468582922