L(s) = 1 | − 2-s + (−0.5 + 0.866i)3-s + 4-s + (0.652 + 1.13i)5-s + (0.5 − 0.866i)6-s + 3.36·7-s − 8-s + (−0.499 − 0.866i)9-s + (−0.652 − 1.13i)10-s + (−0.271 − 0.470i)11-s + (−0.5 + 0.866i)12-s + 1.71·13-s − 3.36·14-s − 1.30·15-s + 16-s + 1.55·17-s + ⋯ |
L(s) = 1 | − 0.707·2-s + (−0.288 + 0.499i)3-s + 0.5·4-s + (0.291 + 0.505i)5-s + (0.204 − 0.353i)6-s + 1.27·7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.206 − 0.357i)10-s + (−0.0818 − 0.141i)11-s + (−0.144 + 0.249i)12-s + 0.476·13-s − 0.900·14-s − 0.337·15-s + 0.250·16-s + 0.377·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1338 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.403675143\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.403675143\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 223 | \( 1 + (2.19 - 14.7i)T \) |
good | 5 | \( 1 + (-0.652 - 1.13i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 3.36T + 7T^{2} \) |
| 11 | \( 1 + (0.271 + 0.470i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.71T + 13T^{2} \) |
| 17 | \( 1 - 1.55T + 17T^{2} \) |
| 19 | \( 1 + (-3.69 + 6.39i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.97 + 3.42i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.60 - 4.51i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.119 - 0.206i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.09 + 3.63i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 3.87T + 41T^{2} \) |
| 43 | \( 1 + (-1.01 + 1.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.55 + 6.15i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.96 + 5.13i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 0.705T + 59T^{2} \) |
| 61 | \( 1 + (-1.93 + 3.34i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.32 - 5.76i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.295 - 0.512i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.65 - 2.86i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.83 - 11.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.59 - 9.68i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.23 + 3.87i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.08 + 3.60i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.700531867112023008665160989830, −8.774882871799731786843060930984, −8.275248937752438397644510426933, −7.18710236624170949178025085765, −6.54965363440761584083844186615, −5.36694892646056871938473495293, −4.77175904445070129557963052011, −3.40133445746474629100040900970, −2.32599853773447087533784270636, −0.954378646663455411376726435111,
1.20482325121514202308814984739, 1.74249903429064436269645741368, 3.28136734281682779364039526363, 4.71953382188583604900190604509, 5.50688491813811592302152763652, 6.27825662818990260182233183718, 7.51724093707576443789547657796, 7.893536651163027986908690094484, 8.663633371665180697485860075422, 9.534890218492509955288834677886