Properties

Label 130.2.g.b.73.1
Level $130$
Weight $2$
Character 130.73
Analytic conductor $1.038$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(57,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 130.73
Dual form 130.2.g.b.57.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.00000 + 1.00000i) q^{3} +1.00000 q^{4} +(-1.00000 + 2.00000i) q^{5} +(-1.00000 - 1.00000i) q^{6} +2.00000i q^{7} -1.00000 q^{8} -1.00000i q^{9} +(1.00000 - 2.00000i) q^{10} +(-1.00000 + 1.00000i) q^{11} +(1.00000 + 1.00000i) q^{12} +(3.00000 + 2.00000i) q^{13} -2.00000i q^{14} +(-3.00000 + 1.00000i) q^{15} +1.00000 q^{16} +(1.00000 + 1.00000i) q^{17} +1.00000i q^{18} +(3.00000 - 3.00000i) q^{19} +(-1.00000 + 2.00000i) q^{20} +(-2.00000 + 2.00000i) q^{21} +(1.00000 - 1.00000i) q^{22} +(-1.00000 + 1.00000i) q^{23} +(-1.00000 - 1.00000i) q^{24} +(-3.00000 - 4.00000i) q^{25} +(-3.00000 - 2.00000i) q^{26} +(4.00000 - 4.00000i) q^{27} +2.00000i q^{28} -8.00000i q^{29} +(3.00000 - 1.00000i) q^{30} +(1.00000 + 1.00000i) q^{31} -1.00000 q^{32} -2.00000 q^{33} +(-1.00000 - 1.00000i) q^{34} +(-4.00000 - 2.00000i) q^{35} -1.00000i q^{36} -8.00000i q^{37} +(-3.00000 + 3.00000i) q^{38} +(1.00000 + 5.00000i) q^{39} +(1.00000 - 2.00000i) q^{40} +(-7.00000 - 7.00000i) q^{41} +(2.00000 - 2.00000i) q^{42} +(-1.00000 + 1.00000i) q^{43} +(-1.00000 + 1.00000i) q^{44} +(2.00000 + 1.00000i) q^{45} +(1.00000 - 1.00000i) q^{46} +10.0000i q^{47} +(1.00000 + 1.00000i) q^{48} +3.00000 q^{49} +(3.00000 + 4.00000i) q^{50} +2.00000i q^{51} +(3.00000 + 2.00000i) q^{52} +(1.00000 + 1.00000i) q^{53} +(-4.00000 + 4.00000i) q^{54} +(-1.00000 - 3.00000i) q^{55} -2.00000i q^{56} +6.00000 q^{57} +8.00000i q^{58} +(9.00000 + 9.00000i) q^{59} +(-3.00000 + 1.00000i) q^{60} +2.00000 q^{61} +(-1.00000 - 1.00000i) q^{62} +2.00000 q^{63} +1.00000 q^{64} +(-7.00000 + 4.00000i) q^{65} +2.00000 q^{66} -12.0000 q^{67} +(1.00000 + 1.00000i) q^{68} -2.00000 q^{69} +(4.00000 + 2.00000i) q^{70} +(5.00000 + 5.00000i) q^{71} +1.00000i q^{72} +6.00000 q^{73} +8.00000i q^{74} +(1.00000 - 7.00000i) q^{75} +(3.00000 - 3.00000i) q^{76} +(-2.00000 - 2.00000i) q^{77} +(-1.00000 - 5.00000i) q^{78} +10.0000i q^{79} +(-1.00000 + 2.00000i) q^{80} +5.00000 q^{81} +(7.00000 + 7.00000i) q^{82} -18.0000i q^{83} +(-2.00000 + 2.00000i) q^{84} +(-3.00000 + 1.00000i) q^{85} +(1.00000 - 1.00000i) q^{86} +(8.00000 - 8.00000i) q^{87} +(1.00000 - 1.00000i) q^{88} +(-11.0000 - 11.0000i) q^{89} +(-2.00000 - 1.00000i) q^{90} +(-4.00000 + 6.00000i) q^{91} +(-1.00000 + 1.00000i) q^{92} +2.00000i q^{93} -10.0000i q^{94} +(3.00000 + 9.00000i) q^{95} +(-1.00000 - 1.00000i) q^{96} -14.0000 q^{97} -3.00000 q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} - 2 q^{8} + 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{15} + 2 q^{16} + 2 q^{17} + 6 q^{19} - 2 q^{20} - 4 q^{21} + 2 q^{22} - 2 q^{23} - 2 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 + 2.00000i −0.447214 + 0.894427i
\(6\) −1.00000 1.00000i −0.408248 0.408248i
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000i 0.333333i
\(10\) 1.00000 2.00000i 0.316228 0.632456i
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 3.00000 + 2.00000i 0.832050 + 0.554700i
\(14\) 2.00000i 0.534522i
\(15\) −3.00000 + 1.00000i −0.774597 + 0.258199i
\(16\) 1.00000 0.250000
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.00000 3.00000i 0.688247 0.688247i −0.273597 0.961844i \(-0.588214\pi\)
0.961844 + 0.273597i \(0.0882135\pi\)
\(20\) −1.00000 + 2.00000i −0.223607 + 0.447214i
\(21\) −2.00000 + 2.00000i −0.436436 + 0.436436i
\(22\) 1.00000 1.00000i 0.213201 0.213201i
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) −1.00000 1.00000i −0.204124 0.204124i
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) −3.00000 2.00000i −0.588348 0.392232i
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 2.00000i 0.377964i
\(29\) 8.00000i 1.48556i −0.669534 0.742781i \(-0.733506\pi\)
0.669534 0.742781i \(-0.266494\pi\)
\(30\) 3.00000 1.00000i 0.547723 0.182574i
\(31\) 1.00000 + 1.00000i 0.179605 + 0.179605i 0.791184 0.611578i \(-0.209465\pi\)
−0.611578 + 0.791184i \(0.709465\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.00000 −0.348155
\(34\) −1.00000 1.00000i −0.171499 0.171499i
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) −3.00000 + 3.00000i −0.486664 + 0.486664i
\(39\) 1.00000 + 5.00000i 0.160128 + 0.800641i
\(40\) 1.00000 2.00000i 0.158114 0.316228i
\(41\) −7.00000 7.00000i −1.09322 1.09322i −0.995183 0.0980332i \(-0.968745\pi\)
−0.0980332 0.995183i \(-0.531255\pi\)
\(42\) 2.00000 2.00000i 0.308607 0.308607i
\(43\) −1.00000 + 1.00000i −0.152499 + 0.152499i −0.779233 0.626734i \(-0.784391\pi\)
0.626734 + 0.779233i \(0.284391\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 2.00000 + 1.00000i 0.298142 + 0.149071i
\(46\) 1.00000 1.00000i 0.147442 0.147442i
\(47\) 10.0000i 1.45865i 0.684167 + 0.729325i \(0.260166\pi\)
−0.684167 + 0.729325i \(0.739834\pi\)
\(48\) 1.00000 + 1.00000i 0.144338 + 0.144338i
\(49\) 3.00000 0.428571
\(50\) 3.00000 + 4.00000i 0.424264 + 0.565685i
\(51\) 2.00000i 0.280056i
\(52\) 3.00000 + 2.00000i 0.416025 + 0.277350i
\(53\) 1.00000 + 1.00000i 0.137361 + 0.137361i 0.772444 0.635083i \(-0.219034\pi\)
−0.635083 + 0.772444i \(0.719034\pi\)
\(54\) −4.00000 + 4.00000i −0.544331 + 0.544331i
\(55\) −1.00000 3.00000i −0.134840 0.404520i
\(56\) 2.00000i 0.267261i
\(57\) 6.00000 0.794719
\(58\) 8.00000i 1.05045i
\(59\) 9.00000 + 9.00000i 1.17170 + 1.17170i 0.981804 + 0.189896i \(0.0608151\pi\)
0.189896 + 0.981804i \(0.439185\pi\)
\(60\) −3.00000 + 1.00000i −0.387298 + 0.129099i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 1.00000i −0.127000 0.127000i
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) −7.00000 + 4.00000i −0.868243 + 0.496139i
\(66\) 2.00000 0.246183
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 1.00000 + 1.00000i 0.121268 + 0.121268i
\(69\) −2.00000 −0.240772
\(70\) 4.00000 + 2.00000i 0.478091 + 0.239046i
\(71\) 5.00000 + 5.00000i 0.593391 + 0.593391i 0.938546 0.345155i \(-0.112174\pi\)
−0.345155 + 0.938546i \(0.612174\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 8.00000i 0.929981i
\(75\) 1.00000 7.00000i 0.115470 0.808290i
\(76\) 3.00000 3.00000i 0.344124 0.344124i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) −1.00000 5.00000i −0.113228 0.566139i
\(79\) 10.0000i 1.12509i 0.826767 + 0.562544i \(0.190177\pi\)
−0.826767 + 0.562544i \(0.809823\pi\)
\(80\) −1.00000 + 2.00000i −0.111803 + 0.223607i
\(81\) 5.00000 0.555556
\(82\) 7.00000 + 7.00000i 0.773021 + 0.773021i
\(83\) 18.0000i 1.97576i −0.155230 0.987878i \(-0.549612\pi\)
0.155230 0.987878i \(-0.450388\pi\)
\(84\) −2.00000 + 2.00000i −0.218218 + 0.218218i
\(85\) −3.00000 + 1.00000i −0.325396 + 0.108465i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) 8.00000 8.00000i 0.857690 0.857690i
\(88\) 1.00000 1.00000i 0.106600 0.106600i
\(89\) −11.0000 11.0000i −1.16600 1.16600i −0.983139 0.182858i \(-0.941465\pi\)
−0.182858 0.983139i \(-0.558535\pi\)
\(90\) −2.00000 1.00000i −0.210819 0.105409i
\(91\) −4.00000 + 6.00000i −0.419314 + 0.628971i
\(92\) −1.00000 + 1.00000i −0.104257 + 0.104257i
\(93\) 2.00000i 0.207390i
\(94\) 10.0000i 1.03142i
\(95\) 3.00000 + 9.00000i 0.307794 + 0.923381i
\(96\) −1.00000 1.00000i −0.102062 0.102062i
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −3.00000 −0.303046
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 2.00000i 0.198030i
\(103\) −5.00000 + 5.00000i −0.492665 + 0.492665i −0.909145 0.416480i \(-0.863264\pi\)
0.416480 + 0.909145i \(0.363264\pi\)
\(104\) −3.00000 2.00000i −0.294174 0.196116i
\(105\) −2.00000 6.00000i −0.195180 0.585540i
\(106\) −1.00000 1.00000i −0.0971286 0.0971286i
\(107\) −1.00000 + 1.00000i −0.0966736 + 0.0966736i −0.753790 0.657116i \(-0.771776\pi\)
0.657116 + 0.753790i \(0.271776\pi\)
\(108\) 4.00000 4.00000i 0.384900 0.384900i
\(109\) 5.00000 5.00000i 0.478913 0.478913i −0.425871 0.904784i \(-0.640032\pi\)
0.904784 + 0.425871i \(0.140032\pi\)
\(110\) 1.00000 + 3.00000i 0.0953463 + 0.286039i
\(111\) 8.00000 8.00000i 0.759326 0.759326i
\(112\) 2.00000i 0.188982i
\(113\) −3.00000 3.00000i −0.282216 0.282216i 0.551776 0.833992i \(-0.313950\pi\)
−0.833992 + 0.551776i \(0.813950\pi\)
\(114\) −6.00000 −0.561951
\(115\) −1.00000 3.00000i −0.0932505 0.279751i
\(116\) 8.00000i 0.742781i
\(117\) 2.00000 3.00000i 0.184900 0.277350i
\(118\) −9.00000 9.00000i −0.828517 0.828517i
\(119\) −2.00000 + 2.00000i −0.183340 + 0.183340i
\(120\) 3.00000 1.00000i 0.273861 0.0912871i
\(121\) 9.00000i 0.818182i
\(122\) −2.00000 −0.181071
\(123\) 14.0000i 1.26234i
\(124\) 1.00000 + 1.00000i 0.0898027 + 0.0898027i
\(125\) 11.0000 2.00000i 0.983870 0.178885i
\(126\) −2.00000 −0.178174
\(127\) −3.00000 3.00000i −0.266207 0.266207i 0.561363 0.827570i \(-0.310277\pi\)
−0.827570 + 0.561363i \(0.810277\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.00000 −0.176090
\(130\) 7.00000 4.00000i 0.613941 0.350823i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −2.00000 −0.174078
\(133\) 6.00000 + 6.00000i 0.520266 + 0.520266i
\(134\) 12.0000 1.03664
\(135\) 4.00000 + 12.0000i 0.344265 + 1.03280i
\(136\) −1.00000 1.00000i −0.0857493 0.0857493i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 2.00000 0.170251
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) −4.00000 2.00000i −0.338062 0.169031i
\(141\) −10.0000 + 10.0000i −0.842152 + 0.842152i
\(142\) −5.00000 5.00000i −0.419591 0.419591i
\(143\) −5.00000 + 1.00000i −0.418121 + 0.0836242i
\(144\) 1.00000i 0.0833333i
\(145\) 16.0000 + 8.00000i 1.32873 + 0.664364i
\(146\) −6.00000 −0.496564
\(147\) 3.00000 + 3.00000i 0.247436 + 0.247436i
\(148\) 8.00000i 0.657596i
\(149\) 1.00000 1.00000i 0.0819232 0.0819232i −0.664958 0.746881i \(-0.731550\pi\)
0.746881 + 0.664958i \(0.231550\pi\)
\(150\) −1.00000 + 7.00000i −0.0816497 + 0.571548i
\(151\) 3.00000 3.00000i 0.244137 0.244137i −0.574422 0.818559i \(-0.694773\pi\)
0.818559 + 0.574422i \(0.194773\pi\)
\(152\) −3.00000 + 3.00000i −0.243332 + 0.243332i
\(153\) 1.00000 1.00000i 0.0808452 0.0808452i
\(154\) 2.00000 + 2.00000i 0.161165 + 0.161165i
\(155\) −3.00000 + 1.00000i −0.240966 + 0.0803219i
\(156\) 1.00000 + 5.00000i 0.0800641 + 0.400320i
\(157\) −15.0000 + 15.0000i −1.19713 + 1.19713i −0.222108 + 0.975022i \(0.571294\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(158\) 10.0000i 0.795557i
\(159\) 2.00000i 0.158610i
\(160\) 1.00000 2.00000i 0.0790569 0.158114i
\(161\) −2.00000 2.00000i −0.157622 0.157622i
\(162\) −5.00000 −0.392837
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) −7.00000 7.00000i −0.546608 0.546608i
\(165\) 2.00000 4.00000i 0.155700 0.311400i
\(166\) 18.0000i 1.39707i
\(167\) 14.0000i 1.08335i −0.840587 0.541676i \(-0.817790\pi\)
0.840587 0.541676i \(-0.182210\pi\)
\(168\) 2.00000 2.00000i 0.154303 0.154303i
\(169\) 5.00000 + 12.0000i 0.384615 + 0.923077i
\(170\) 3.00000 1.00000i 0.230089 0.0766965i
\(171\) −3.00000 3.00000i −0.229416 0.229416i
\(172\) −1.00000 + 1.00000i −0.0762493 + 0.0762493i
\(173\) 9.00000 9.00000i 0.684257 0.684257i −0.276699 0.960957i \(-0.589241\pi\)
0.960957 + 0.276699i \(0.0892406\pi\)
\(174\) −8.00000 + 8.00000i −0.606478 + 0.606478i
\(175\) 8.00000 6.00000i 0.604743 0.453557i
\(176\) −1.00000 + 1.00000i −0.0753778 + 0.0753778i
\(177\) 18.0000i 1.35296i
\(178\) 11.0000 + 11.0000i 0.824485 + 0.824485i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 2.00000 + 1.00000i 0.149071 + 0.0745356i
\(181\) 16.0000i 1.18927i −0.803996 0.594635i \(-0.797296\pi\)
0.803996 0.594635i \(-0.202704\pi\)
\(182\) 4.00000 6.00000i 0.296500 0.444750i
\(183\) 2.00000 + 2.00000i 0.147844 + 0.147844i
\(184\) 1.00000 1.00000i 0.0737210 0.0737210i
\(185\) 16.0000 + 8.00000i 1.17634 + 0.588172i
\(186\) 2.00000i 0.146647i
\(187\) −2.00000 −0.146254
\(188\) 10.0000i 0.729325i
\(189\) 8.00000 + 8.00000i 0.581914 + 0.581914i
\(190\) −3.00000 9.00000i −0.217643 0.652929i
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 1.00000 + 1.00000i 0.0721688 + 0.0721688i
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 14.0000 1.00514
\(195\) −11.0000 3.00000i −0.787726 0.214834i
\(196\) 3.00000 0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) −1.00000 1.00000i −0.0710669 0.0710669i
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 3.00000 + 4.00000i 0.212132 + 0.282843i
\(201\) −12.0000 12.0000i −0.846415 0.846415i
\(202\) 12.0000i 0.844317i
\(203\) 16.0000 1.12298
\(204\) 2.00000i 0.140028i
\(205\) 21.0000 7.00000i 1.46670 0.488901i
\(206\) 5.00000 5.00000i 0.348367 0.348367i
\(207\) 1.00000 + 1.00000i 0.0695048 + 0.0695048i
\(208\) 3.00000 + 2.00000i 0.208013 + 0.138675i
\(209\) 6.00000i 0.415029i
\(210\) 2.00000 + 6.00000i 0.138013 + 0.414039i
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 1.00000 + 1.00000i 0.0686803 + 0.0686803i
\(213\) 10.0000i 0.685189i
\(214\) 1.00000 1.00000i 0.0683586 0.0683586i
\(215\) −1.00000 3.00000i −0.0681994 0.204598i
\(216\) −4.00000 + 4.00000i −0.272166 + 0.272166i
\(217\) −2.00000 + 2.00000i −0.135769 + 0.135769i
\(218\) −5.00000 + 5.00000i −0.338643 + 0.338643i
\(219\) 6.00000 + 6.00000i 0.405442 + 0.405442i
\(220\) −1.00000 3.00000i −0.0674200 0.202260i
\(221\) 1.00000 + 5.00000i 0.0672673 + 0.336336i
\(222\) −8.00000 + 8.00000i −0.536925 + 0.536925i
\(223\) 18.0000i 1.20537i 0.797980 + 0.602685i \(0.205902\pi\)
−0.797980 + 0.602685i \(0.794098\pi\)
\(224\) 2.00000i 0.133631i
\(225\) −4.00000 + 3.00000i −0.266667 + 0.200000i
\(226\) 3.00000 + 3.00000i 0.199557 + 0.199557i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 6.00000 0.397360
\(229\) −15.0000 15.0000i −0.991228 0.991228i 0.00873396 0.999962i \(-0.497220\pi\)
−0.999962 + 0.00873396i \(0.997220\pi\)
\(230\) 1.00000 + 3.00000i 0.0659380 + 0.197814i
\(231\) 4.00000i 0.263181i
\(232\) 8.00000i 0.525226i
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) −2.00000 + 3.00000i −0.130744 + 0.196116i
\(235\) −20.0000 10.0000i −1.30466 0.652328i
\(236\) 9.00000 + 9.00000i 0.585850 + 0.585850i
\(237\) −10.0000 + 10.0000i −0.649570 + 0.649570i
\(238\) 2.00000 2.00000i 0.129641 0.129641i
\(239\) −1.00000 + 1.00000i −0.0646846 + 0.0646846i −0.738709 0.674024i \(-0.764564\pi\)
0.674024 + 0.738709i \(0.264564\pi\)
\(240\) −3.00000 + 1.00000i −0.193649 + 0.0645497i
\(241\) 1.00000 1.00000i 0.0644157 0.0644157i −0.674165 0.738581i \(-0.735496\pi\)
0.738581 + 0.674165i \(0.235496\pi\)
\(242\) 9.00000i 0.578542i
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 2.00000 0.128037
\(245\) −3.00000 + 6.00000i −0.191663 + 0.383326i
\(246\) 14.0000i 0.892607i
\(247\) 15.0000 3.00000i 0.954427 0.190885i
\(248\) −1.00000 1.00000i −0.0635001 0.0635001i
\(249\) 18.0000 18.0000i 1.14070 1.14070i
\(250\) −11.0000 + 2.00000i −0.695701 + 0.126491i
\(251\) 18.0000i 1.13615i −0.822977 0.568075i \(-0.807688\pi\)
0.822977 0.568075i \(-0.192312\pi\)
\(252\) 2.00000 0.125988
\(253\) 2.00000i 0.125739i
\(254\) 3.00000 + 3.00000i 0.188237 + 0.188237i
\(255\) −4.00000 2.00000i −0.250490 0.125245i
\(256\) 1.00000 0.0625000
\(257\) 21.0000 + 21.0000i 1.30994 + 1.30994i 0.921452 + 0.388492i \(0.127004\pi\)
0.388492 + 0.921452i \(0.372996\pi\)
\(258\) 2.00000 0.124515
\(259\) 16.0000 0.994192
\(260\) −7.00000 + 4.00000i −0.434122 + 0.248069i
\(261\) −8.00000 −0.495188
\(262\) −12.0000 −0.741362
\(263\) −3.00000 3.00000i −0.184988 0.184988i 0.608537 0.793525i \(-0.291757\pi\)
−0.793525 + 0.608537i \(0.791757\pi\)
\(264\) 2.00000 0.123091
\(265\) −3.00000 + 1.00000i −0.184289 + 0.0614295i
\(266\) −6.00000 6.00000i −0.367884 0.367884i
\(267\) 22.0000i 1.34638i
\(268\) −12.0000 −0.733017
\(269\) 4.00000i 0.243884i −0.992537 0.121942i \(-0.961088\pi\)
0.992537 0.121942i \(-0.0389122\pi\)
\(270\) −4.00000 12.0000i −0.243432 0.730297i
\(271\) 3.00000 3.00000i 0.182237 0.182237i −0.610093 0.792330i \(-0.708868\pi\)
0.792330 + 0.610093i \(0.208868\pi\)
\(272\) 1.00000 + 1.00000i 0.0606339 + 0.0606339i
\(273\) −10.0000 + 2.00000i −0.605228 + 0.121046i
\(274\) 0 0
\(275\) 7.00000 + 1.00000i 0.422116 + 0.0603023i
\(276\) −2.00000 −0.120386
\(277\) −11.0000 11.0000i −0.660926 0.660926i 0.294672 0.955598i \(-0.404789\pi\)
−0.955598 + 0.294672i \(0.904789\pi\)
\(278\) 2.00000i 0.119952i
\(279\) 1.00000 1.00000i 0.0598684 0.0598684i
\(280\) 4.00000 + 2.00000i 0.239046 + 0.119523i
\(281\) 9.00000 9.00000i 0.536895 0.536895i −0.385721 0.922616i \(-0.626047\pi\)
0.922616 + 0.385721i \(0.126047\pi\)
\(282\) 10.0000 10.0000i 0.595491 0.595491i
\(283\) 15.0000 15.0000i 0.891657 0.891657i −0.103022 0.994679i \(-0.532851\pi\)
0.994679 + 0.103022i \(0.0328511\pi\)
\(284\) 5.00000 + 5.00000i 0.296695 + 0.296695i
\(285\) −6.00000 + 12.0000i −0.355409 + 0.710819i
\(286\) 5.00000 1.00000i 0.295656 0.0591312i
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) 1.00000i 0.0589256i
\(289\) 15.0000i 0.882353i
\(290\) −16.0000 8.00000i −0.939552 0.469776i
\(291\) −14.0000 14.0000i −0.820695 0.820695i
\(292\) 6.00000 0.351123
\(293\) −22.0000 −1.28525 −0.642627 0.766179i \(-0.722155\pi\)
−0.642627 + 0.766179i \(0.722155\pi\)
\(294\) −3.00000 3.00000i −0.174964 0.174964i
\(295\) −27.0000 + 9.00000i −1.57200 + 0.524000i
\(296\) 8.00000i 0.464991i
\(297\) 8.00000i 0.464207i
\(298\) −1.00000 + 1.00000i −0.0579284 + 0.0579284i
\(299\) −5.00000 + 1.00000i −0.289157 + 0.0578315i
\(300\) 1.00000 7.00000i 0.0577350 0.404145i
\(301\) −2.00000 2.00000i −0.115278 0.115278i
\(302\) −3.00000 + 3.00000i −0.172631 + 0.172631i
\(303\) −12.0000 + 12.0000i −0.689382 + 0.689382i
\(304\) 3.00000 3.00000i 0.172062 0.172062i
\(305\) −2.00000 + 4.00000i −0.114520 + 0.229039i
\(306\) −1.00000 + 1.00000i −0.0571662 + 0.0571662i
\(307\) 10.0000i 0.570730i −0.958419 0.285365i \(-0.907885\pi\)
0.958419 0.285365i \(-0.0921148\pi\)
\(308\) −2.00000 2.00000i −0.113961 0.113961i
\(309\) −10.0000 −0.568880
\(310\) 3.00000 1.00000i 0.170389 0.0567962i
\(311\) 2.00000i 0.113410i 0.998391 + 0.0567048i \(0.0180594\pi\)
−0.998391 + 0.0567048i \(0.981941\pi\)
\(312\) −1.00000 5.00000i −0.0566139 0.283069i
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 15.0000 15.0000i 0.846499 0.846499i
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 10.0000i 0.562544i
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 2.00000i 0.112154i
\(319\) 8.00000 + 8.00000i 0.447914 + 0.447914i
\(320\) −1.00000 + 2.00000i −0.0559017 + 0.111803i
\(321\) −2.00000 −0.111629
\(322\) 2.00000 + 2.00000i 0.111456 + 0.111456i
\(323\) 6.00000 0.333849
\(324\) 5.00000 0.277778
\(325\) −1.00000 18.0000i −0.0554700 0.998460i
\(326\) 20.0000 1.10770
\(327\) 10.0000 0.553001
\(328\) 7.00000 + 7.00000i 0.386510 + 0.386510i
\(329\) −20.0000 −1.10264
\(330\) −2.00000 + 4.00000i −0.110096 + 0.220193i
\(331\) 21.0000 + 21.0000i 1.15426 + 1.15426i 0.985689 + 0.168576i \(0.0539168\pi\)
0.168576 + 0.985689i \(0.446083\pi\)
\(332\) 18.0000i 0.987878i
\(333\) −8.00000 −0.438397
\(334\) 14.0000i 0.766046i
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) −2.00000 + 2.00000i −0.109109 + 0.109109i
\(337\) 5.00000 + 5.00000i 0.272367 + 0.272367i 0.830053 0.557685i \(-0.188310\pi\)
−0.557685 + 0.830053i \(0.688310\pi\)
\(338\) −5.00000 12.0000i −0.271964 0.652714i
\(339\) 6.00000i 0.325875i
\(340\) −3.00000 + 1.00000i −0.162698 + 0.0542326i
\(341\) −2.00000 −0.108306
\(342\) 3.00000 + 3.00000i 0.162221 + 0.162221i
\(343\) 20.0000i 1.07990i
\(344\) 1.00000 1.00000i 0.0539164 0.0539164i
\(345\) 2.00000 4.00000i 0.107676 0.215353i
\(346\) −9.00000 + 9.00000i −0.483843 + 0.483843i
\(347\) −5.00000 + 5.00000i −0.268414 + 0.268414i −0.828461 0.560047i \(-0.810783\pi\)
0.560047 + 0.828461i \(0.310783\pi\)
\(348\) 8.00000 8.00000i 0.428845 0.428845i
\(349\) 21.0000 + 21.0000i 1.12410 + 1.12410i 0.991118 + 0.132986i \(0.0424566\pi\)
0.132986 + 0.991118i \(0.457543\pi\)
\(350\) −8.00000 + 6.00000i −0.427618 + 0.320713i
\(351\) 20.0000 4.00000i 1.06752 0.213504i
\(352\) 1.00000 1.00000i 0.0533002 0.0533002i
\(353\) 4.00000i 0.212899i 0.994318 + 0.106449i \(0.0339482\pi\)
−0.994318 + 0.106449i \(0.966052\pi\)
\(354\) 18.0000i 0.956689i
\(355\) −15.0000 + 5.00000i −0.796117 + 0.265372i
\(356\) −11.0000 11.0000i −0.582999 0.582999i
\(357\) −4.00000 −0.211702
\(358\) 20.0000 1.05703
\(359\) 5.00000 + 5.00000i 0.263890 + 0.263890i 0.826632 0.562742i \(-0.190254\pi\)
−0.562742 + 0.826632i \(0.690254\pi\)
\(360\) −2.00000 1.00000i −0.105409 0.0527046i
\(361\) 1.00000i 0.0526316i
\(362\) 16.0000i 0.840941i
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) −4.00000 + 6.00000i −0.209657 + 0.314485i
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) −2.00000 2.00000i −0.104542 0.104542i
\(367\) −21.0000 + 21.0000i −1.09619 + 1.09619i −0.101339 + 0.994852i \(0.532313\pi\)
−0.994852 + 0.101339i \(0.967687\pi\)
\(368\) −1.00000 + 1.00000i −0.0521286 + 0.0521286i
\(369\) −7.00000 + 7.00000i −0.364405 + 0.364405i
\(370\) −16.0000 8.00000i −0.831800 0.415900i
\(371\) −2.00000 + 2.00000i −0.103835 + 0.103835i
\(372\) 2.00000i 0.103695i
\(373\) 5.00000 + 5.00000i 0.258890 + 0.258890i 0.824603 0.565712i \(-0.191399\pi\)
−0.565712 + 0.824603i \(0.691399\pi\)
\(374\) 2.00000 0.103418
\(375\) 13.0000 + 9.00000i 0.671317 + 0.464758i
\(376\) 10.0000i 0.515711i
\(377\) 16.0000 24.0000i 0.824042 1.23606i
\(378\) −8.00000 8.00000i −0.411476 0.411476i
\(379\) 23.0000 23.0000i 1.18143 1.18143i 0.202057 0.979374i \(-0.435237\pi\)
0.979374 0.202057i \(-0.0647626\pi\)
\(380\) 3.00000 + 9.00000i 0.153897 + 0.461690i
\(381\) 6.00000i 0.307389i
\(382\) −8.00000 −0.409316
\(383\) 18.0000i 0.919757i 0.887982 + 0.459879i \(0.152107\pi\)
−0.887982 + 0.459879i \(0.847893\pi\)
\(384\) −1.00000 1.00000i −0.0510310 0.0510310i
\(385\) 6.00000 2.00000i 0.305788 0.101929i
\(386\) −2.00000 −0.101797
\(387\) 1.00000 + 1.00000i 0.0508329 + 0.0508329i
\(388\) −14.0000 −0.710742
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 11.0000 + 3.00000i 0.557007 + 0.151911i
\(391\) −2.00000 −0.101144
\(392\) −3.00000 −0.151523
\(393\) 12.0000 + 12.0000i 0.605320 + 0.605320i
\(394\) −6.00000 −0.302276
\(395\) −20.0000 10.0000i −1.00631 0.503155i
\(396\) 1.00000 + 1.00000i 0.0502519 + 0.0502519i
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 24.0000 1.20301
\(399\) 12.0000i 0.600751i
\(400\) −3.00000 4.00000i −0.150000 0.200000i
\(401\) −19.0000 + 19.0000i −0.948815 + 0.948815i −0.998752 0.0499376i \(-0.984098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 12.0000 + 12.0000i 0.598506 + 0.598506i
\(403\) 1.00000 + 5.00000i 0.0498135 + 0.249068i
\(404\) 12.0000i 0.597022i
\(405\) −5.00000 + 10.0000i −0.248452 + 0.496904i
\(406\) −16.0000 −0.794067
\(407\) 8.00000 + 8.00000i 0.396545 + 0.396545i
\(408\) 2.00000i 0.0990148i
\(409\) 9.00000 9.00000i 0.445021 0.445021i −0.448674 0.893695i \(-0.648104\pi\)
0.893695 + 0.448674i \(0.148104\pi\)
\(410\) −21.0000 + 7.00000i −1.03712 + 0.345705i
\(411\) 0 0
\(412\) −5.00000 + 5.00000i −0.246332 + 0.246332i
\(413\) −18.0000 + 18.0000i −0.885722 + 0.885722i
\(414\) −1.00000 1.00000i −0.0491473 0.0491473i
\(415\) 36.0000 + 18.0000i 1.76717 + 0.883585i
\(416\) −3.00000 2.00000i −0.147087 0.0980581i
\(417\) 2.00000 2.00000i 0.0979404 0.0979404i
\(418\) 6.00000i 0.293470i
\(419\) 22.0000i 1.07477i 0.843337 + 0.537385i \(0.180588\pi\)
−0.843337 + 0.537385i \(0.819412\pi\)
\(420\) −2.00000 6.00000i −0.0975900 0.292770i
\(421\) 9.00000 + 9.00000i 0.438633 + 0.438633i 0.891552 0.452919i \(-0.149617\pi\)
−0.452919 + 0.891552i \(0.649617\pi\)
\(422\) 12.0000 0.584151
\(423\) 10.0000 0.486217
\(424\) −1.00000 1.00000i −0.0485643 0.0485643i
\(425\) 1.00000 7.00000i 0.0485071 0.339550i
\(426\) 10.0000i 0.484502i
\(427\) 4.00000i 0.193574i
\(428\) −1.00000 + 1.00000i −0.0483368 + 0.0483368i
\(429\) −6.00000 4.00000i −0.289683 0.193122i
\(430\) 1.00000 + 3.00000i 0.0482243 + 0.144673i
\(431\) −15.0000 15.0000i −0.722525 0.722525i 0.246594 0.969119i \(-0.420689\pi\)
−0.969119 + 0.246594i \(0.920689\pi\)
\(432\) 4.00000 4.00000i 0.192450 0.192450i
\(433\) 9.00000 9.00000i 0.432512 0.432512i −0.456970 0.889482i \(-0.651065\pi\)
0.889482 + 0.456970i \(0.151065\pi\)
\(434\) 2.00000 2.00000i 0.0960031 0.0960031i
\(435\) 8.00000 + 24.0000i 0.383571 + 1.15071i
\(436\) 5.00000 5.00000i 0.239457 0.239457i
\(437\) 6.00000i 0.287019i
\(438\) −6.00000 6.00000i −0.286691 0.286691i
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 1.00000 + 3.00000i 0.0476731 + 0.143019i
\(441\) 3.00000i 0.142857i
\(442\) −1.00000 5.00000i −0.0475651 0.237826i
\(443\) 17.0000 + 17.0000i 0.807694 + 0.807694i 0.984284 0.176590i \(-0.0565067\pi\)
−0.176590 + 0.984284i \(0.556507\pi\)
\(444\) 8.00000 8.00000i 0.379663 0.379663i
\(445\) 33.0000 11.0000i 1.56435 0.521450i
\(446\) 18.0000i 0.852325i
\(447\) 2.00000 0.0945968
\(448\) 2.00000i 0.0944911i
\(449\) 13.0000 + 13.0000i 0.613508 + 0.613508i 0.943858 0.330350i \(-0.107167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 4.00000 3.00000i 0.188562 0.141421i
\(451\) 14.0000 0.659234
\(452\) −3.00000 3.00000i −0.141108 0.141108i
\(453\) 6.00000 0.281905
\(454\) −12.0000 −0.563188
\(455\) −8.00000 14.0000i −0.375046 0.656330i
\(456\) −6.00000 −0.280976
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 15.0000 + 15.0000i 0.700904 + 0.700904i
\(459\) 8.00000 0.373408
\(460\) −1.00000 3.00000i −0.0466252 0.139876i
\(461\) −11.0000 11.0000i −0.512321 0.512321i 0.402916 0.915237i \(-0.367997\pi\)
−0.915237 + 0.402916i \(0.867997\pi\)
\(462\) 4.00000i 0.186097i
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 8.00000i 0.371391i
\(465\) −4.00000 2.00000i −0.185496 0.0927478i
\(466\) −1.00000 + 1.00000i −0.0463241 + 0.0463241i
\(467\) −7.00000 7.00000i −0.323921 0.323921i 0.526348 0.850269i \(-0.323561\pi\)
−0.850269 + 0.526348i \(0.823561\pi\)
\(468\) 2.00000 3.00000i 0.0924500 0.138675i
\(469\) 24.0000i 1.10822i
\(470\) 20.0000 + 10.0000i 0.922531 + 0.461266i
\(471\) −30.0000 −1.38233
\(472\) −9.00000 9.00000i −0.414259 0.414259i
\(473\) 2.00000i 0.0919601i
\(474\) 10.0000 10.0000i 0.459315 0.459315i
\(475\) −21.0000 3.00000i −0.963546 0.137649i
\(476\) −2.00000 + 2.00000i −0.0916698 + 0.0916698i
\(477\) 1.00000 1.00000i 0.0457869 0.0457869i
\(478\) 1.00000 1.00000i 0.0457389 0.0457389i
\(479\) −19.0000 19.0000i −0.868132 0.868132i 0.124133 0.992266i \(-0.460385\pi\)
−0.992266 + 0.124133i \(0.960385\pi\)
\(480\) 3.00000 1.00000i 0.136931 0.0456435i
\(481\) 16.0000 24.0000i 0.729537 1.09431i
\(482\) −1.00000 + 1.00000i −0.0455488 + 0.0455488i
\(483\) 4.00000i 0.182006i
\(484\) 9.00000i 0.409091i
\(485\) 14.0000 28.0000i 0.635707 1.27141i
\(486\) 7.00000 + 7.00000i 0.317526 + 0.317526i
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −20.0000 20.0000i −0.904431 0.904431i
\(490\) 3.00000 6.00000i 0.135526 0.271052i
\(491\) 38.0000i 1.71492i 0.514554 + 0.857458i \(0.327958\pi\)
−0.514554 + 0.857458i \(0.672042\pi\)
\(492\) 14.0000i 0.631169i
\(493\) 8.00000 8.00000i 0.360302 0.360302i
\(494\) −15.0000 + 3.00000i −0.674882 + 0.134976i
\(495\) −3.00000 + 1.00000i −0.134840 + 0.0449467i
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) −10.0000 + 10.0000i −0.448561 + 0.448561i
\(498\) −18.0000 + 18.0000i −0.806599 + 0.806599i
\(499\) 19.0000 19.0000i 0.850557 0.850557i −0.139645 0.990202i \(-0.544596\pi\)
0.990202 + 0.139645i \(0.0445961\pi\)
\(500\) 11.0000 2.00000i 0.491935 0.0894427i
\(501\) 14.0000 14.0000i 0.625474 0.625474i
\(502\) 18.0000i 0.803379i
\(503\) −15.0000 15.0000i −0.668817 0.668817i 0.288625 0.957442i \(-0.406802\pi\)
−0.957442 + 0.288625i \(0.906802\pi\)
\(504\) −2.00000 −0.0890871
\(505\) −24.0000 12.0000i −1.06799 0.533993i
\(506\) 2.00000i 0.0889108i
\(507\) −7.00000 + 17.0000i −0.310881 + 0.754997i
\(508\) −3.00000 3.00000i −0.133103 0.133103i
\(509\) 1.00000 1.00000i 0.0443242 0.0443242i −0.684597 0.728922i \(-0.740022\pi\)
0.728922 + 0.684597i \(0.240022\pi\)
\(510\) 4.00000 + 2.00000i 0.177123 + 0.0885615i
\(511\) 12.0000i 0.530849i
\(512\) −1.00000 −0.0441942
\(513\) 24.0000i 1.05963i
\(514\) −21.0000 21.0000i −0.926270 0.926270i
\(515\) −5.00000 15.0000i −0.220326 0.660979i
\(516\) −2.00000 −0.0880451
\(517\) −10.0000 10.0000i −0.439799 0.439799i
\(518\) −16.0000 −0.703000
\(519\) 18.0000 0.790112
\(520\) 7.00000 4.00000i 0.306970 0.175412i
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 8.00000 0.350150
\(523\) −15.0000 15.0000i −0.655904 0.655904i 0.298504 0.954408i \(-0.403512\pi\)
−0.954408 + 0.298504i \(0.903512\pi\)
\(524\) 12.0000 0.524222
\(525\) 14.0000 + 2.00000i 0.611010 + 0.0872872i
\(526\) 3.00000 + 3.00000i 0.130806 + 0.130806i
\(527\) 2.00000i 0.0871214i
\(528\) −2.00000 −0.0870388
\(529\) 21.0000i 0.913043i
\(530\) 3.00000 1.00000i 0.130312 0.0434372i
\(531\) 9.00000 9.00000i 0.390567 0.390567i
\(532\) 6.00000 + 6.00000i 0.260133 + 0.260133i
\(533\) −7.00000 35.0000i −0.303204 1.51602i
\(534\) 22.0000i 0.952033i
\(535\) −1.00000 3.00000i −0.0432338 0.129701i
\(536\) 12.0000 0.518321
\(537\) −20.0000 20.0000i −0.863064 0.863064i
\(538\) 4.00000i 0.172452i
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) 4.00000 + 12.0000i 0.172133 + 0.516398i
\(541\) −27.0000 + 27.0000i −1.16082 + 1.16082i −0.176524 + 0.984296i \(0.556485\pi\)
−0.984296 + 0.176524i \(0.943515\pi\)
\(542\) −3.00000 + 3.00000i −0.128861 + 0.128861i
\(543\) 16.0000 16.0000i 0.686626 0.686626i
\(544\) −1.00000 1.00000i −0.0428746 0.0428746i
\(545\) 5.00000 + 15.0000i 0.214176 + 0.642529i
\(546\) 10.0000 2.00000i 0.427960 0.0855921i
\(547\) 23.0000 23.0000i 0.983409 0.983409i −0.0164556 0.999865i \(-0.505238\pi\)
0.999865 + 0.0164556i \(0.00523822\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) −7.00000 1.00000i −0.298481 0.0426401i
\(551\) −24.0000 24.0000i −1.02243 1.02243i
\(552\) 2.00000 0.0851257
\(553\) −20.0000 −0.850487
\(554\) 11.0000 + 11.0000i 0.467345 + 0.467345i
\(555\) 8.00000 + 24.0000i 0.339581 + 1.01874i
\(556\) 2.00000i 0.0848189i
\(557\) 32.0000i 1.35588i 0.735116 + 0.677942i \(0.237128\pi\)
−0.735116 + 0.677942i \(0.762872\pi\)
\(558\) −1.00000 + 1.00000i −0.0423334 + 0.0423334i
\(559\) −5.00000 + 1.00000i −0.211477 + 0.0422955i
\(560\) −4.00000 2.00000i −0.169031 0.0845154i
\(561\) −2.00000 2.00000i −0.0844401 0.0844401i
\(562\) −9.00000 + 9.00000i −0.379642 + 0.379642i
\(563\) 31.0000 31.0000i 1.30649 1.30649i 0.382566 0.923928i \(-0.375040\pi\)
0.923928 0.382566i \(-0.124960\pi\)
\(564\) −10.0000 + 10.0000i −0.421076 + 0.421076i
\(565\) 9.00000 3.00000i 0.378633 0.126211i
\(566\) −15.0000 + 15.0000i −0.630497 + 0.630497i
\(567\) 10.0000i 0.419961i
\(568\) −5.00000 5.00000i −0.209795 0.209795i
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 6.00000 12.0000i 0.251312 0.502625i
\(571\) 22.0000i 0.920671i 0.887745 + 0.460336i \(0.152271\pi\)
−0.887745 + 0.460336i \(0.847729\pi\)
\(572\) −5.00000 + 1.00000i −0.209061 + 0.0418121i
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) −14.0000 + 14.0000i −0.584349 + 0.584349i
\(575\) 7.00000 + 1.00000i 0.291920 + 0.0417029i
\(576\) 1.00000i 0.0416667i
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 15.0000i 0.623918i
\(579\) 2.00000 + 2.00000i 0.0831172 + 0.0831172i
\(580\) 16.0000 + 8.00000i 0.664364 + 0.332182i
\(581\) 36.0000 1.49353
\(582\) 14.0000 + 14.0000i 0.580319 + 0.580319i
\(583\) −2.00000 −0.0828315
\(584\) −6.00000 −0.248282
\(585\) 4.00000 + 7.00000i 0.165380 + 0.289414i
\(586\) 22.0000 0.908812
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 3.00000 + 3.00000i 0.123718 + 0.123718i
\(589\) 6.00000 0.247226
\(590\) 27.0000 9.00000i 1.11157 0.370524i
\(591\) 6.00000 + 6.00000i 0.246807 + 0.246807i
\(592\) 8.00000i 0.328798i
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) 8.00000i 0.328244i
\(595\) −2.00000 6.00000i −0.0819920 0.245976i
\(596\) 1.00000 1.00000i 0.0409616 0.0409616i
\(597\) −24.0000 24.0000i −0.982255 0.982255i
\(598\) 5.00000 1.00000i 0.204465 0.0408930i
\(599\) 26.0000i 1.06233i 0.847268 + 0.531166i \(0.178246\pi\)
−0.847268 + 0.531166i \(0.821754\pi\)
\(600\) −1.00000 + 7.00000i −0.0408248 + 0.285774i
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 2.00000 + 2.00000i 0.0815139 + 0.0815139i
\(603\) 12.0000i 0.488678i
\(604\) 3.00000 3.00000i 0.122068 0.122068i
\(605\) −18.0000 9.00000i −0.731804 0.365902i
\(606\) 12.0000 12.0000i 0.487467 0.487467i
\(607\) −9.00000 + 9.00000i −0.365299 + 0.365299i −0.865759 0.500461i \(-0.833164\pi\)
0.500461 + 0.865759i \(0.333164\pi\)
\(608\) −3.00000 + 3.00000i −0.121666 + 0.121666i
\(609\) 16.0000 + 16.0000i 0.648353 + 0.648353i
\(610\) 2.00000 4.00000i 0.0809776 0.161955i
\(611\) −20.0000 + 30.0000i −0.809113 + 1.21367i
\(612\) 1.00000 1.00000i 0.0404226 0.0404226i
\(613\) 4.00000i 0.161558i 0.996732 + 0.0807792i \(0.0257409\pi\)
−0.996732 + 0.0807792i \(0.974259\pi\)
\(614\) 10.0000i 0.403567i
\(615\) 28.0000 + 14.0000i 1.12907 + 0.564534i
\(616\) 2.00000 + 2.00000i 0.0805823 + 0.0805823i
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 10.0000 0.402259
\(619\) 9.00000 + 9.00000i 0.361741 + 0.361741i 0.864453 0.502713i \(-0.167665\pi\)
−0.502713 + 0.864453i \(0.667665\pi\)
\(620\) −3.00000 + 1.00000i −0.120483 + 0.0401610i
\(621\) 8.00000i 0.321029i
\(622\) 2.00000i 0.0801927i
\(623\) 22.0000 22.0000i 0.881411 0.881411i
\(624\) 1.00000 + 5.00000i 0.0400320 + 0.200160i
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −9.00000 9.00000i −0.359712 0.359712i
\(627\) −6.00000 + 6.00000i −0.239617 + 0.239617i
\(628\) −15.0000 + 15.0000i −0.598565 + 0.598565i
\(629\) 8.00000 8.00000i 0.318981 0.318981i
\(630\) 2.00000 4.00000i 0.0796819 0.159364i
\(631\) 23.0000 23.0000i 0.915616 0.915616i −0.0810911 0.996707i \(-0.525840\pi\)
0.996707 + 0.0810911i \(0.0258405\pi\)
\(632\) 10.0000i 0.397779i
\(633\) −12.0000 12.0000i −0.476957 0.476957i
\(634\) −2.00000 −0.0794301
\(635\) 9.00000 3.00000i 0.357154 0.119051i
\(636\) 2.00000i 0.0793052i
\(637\) 9.00000 + 6.00000i 0.356593 + 0.237729i
\(638\) −8.00000 8.00000i −0.316723 0.316723i
\(639\) 5.00000 5.00000i 0.197797 0.197797i
\(640\) 1.00000 2.00000i 0.0395285 0.0790569i
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 2.00000 0.0789337
\(643\) 10.0000i 0.394362i −0.980367 0.197181i \(-0.936821\pi\)
0.980367 0.197181i \(-0.0631786\pi\)
\(644\) −2.00000 2.00000i −0.0788110 0.0788110i
\(645\) 2.00000 4.00000i 0.0787499 0.157500i
\(646\) −6.00000 −0.236067
\(647\) 13.0000 + 13.0000i 0.511083 + 0.511083i 0.914858 0.403775i \(-0.132302\pi\)
−0.403775 + 0.914858i \(0.632302\pi\)
\(648\) −5.00000 −0.196419
\(649\) −18.0000 −0.706562
\(650\) 1.00000 + 18.0000i 0.0392232 + 0.706018i
\(651\) −4.00000 −0.156772
\(652\) −20.0000 −0.783260
\(653\) −15.0000 15.0000i −0.586995 0.586995i 0.349821 0.936817i \(-0.386242\pi\)
−0.936817 + 0.349821i \(0.886242\pi\)
\(654\) −10.0000 −0.391031
\(655\) −12.0000 + 24.0000i −0.468879 + 0.937758i
\(656\) −7.00000 7.00000i −0.273304 0.273304i
\(657\) 6.00000i 0.234082i
\(658\) 20.0000 0.779681
\(659\) 38.0000i 1.48027i 0.672458 + 0.740135i \(0.265238\pi\)
−0.672458 + 0.740135i \(0.734762\pi\)
\(660\) 2.00000 4.00000i 0.0778499 0.155700i
\(661\) 13.0000 13.0000i 0.505641 0.505641i −0.407544 0.913186i \(-0.633615\pi\)
0.913186 + 0.407544i \(0.133615\pi\)
\(662\) −21.0000 21.0000i −0.816188 0.816188i
\(663\) −4.00000 + 6.00000i −0.155347 + 0.233021i
\(664\) 18.0000i 0.698535i
\(665\) −18.0000 + 6.00000i −0.698010 + 0.232670i
\(666\) 8.00000 0.309994
\(667\) 8.00000 + 8.00000i 0.309761 + 0.309761i
\(668\) 14.0000i 0.541676i
\(669\) −18.0000 + 18.0000i −0.695920 + 0.695920i
\(670\) −12.0000 + 24.0000i −0.463600 + 0.927201i
\(671\) −2.00000 + 2.00000i −0.0772091 + 0.0772091i
\(672\) 2.00000 2.00000i 0.0771517 0.0771517i
\(673\) 17.0000 17.0000i 0.655302 0.655302i −0.298963 0.954265i \(-0.596641\pi\)
0.954265 + 0.298963i \(0.0966407\pi\)
\(674\) −5.00000 5.00000i −0.192593 0.192593i
\(675\) −28.0000 4.00000i −1.07772 0.153960i
\(676\) 5.00000 + 12.0000i 0.192308 + 0.461538i
\(677\) 13.0000 13.0000i 0.499631 0.499631i −0.411692 0.911323i \(-0.635062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 28.0000i 1.07454i
\(680\) 3.00000 1.00000i 0.115045 0.0383482i
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) 2.00000 0.0765840
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −3.00000 3.00000i −0.114708 0.114708i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) 30.0000i 1.14457i
\(688\) −1.00000 + 1.00000i −0.0381246 + 0.0381246i
\(689\) 1.00000 + 5.00000i 0.0380970 + 0.190485i
\(690\) −2.00000 + 4.00000i −0.0761387 + 0.152277i
\(691\) 21.0000 + 21.0000i 0.798878 + 0.798878i 0.982919 0.184041i \(-0.0589179\pi\)
−0.184041 + 0.982919i \(0.558918\pi\)
\(692\) 9.00000 9.00000i 0.342129 0.342129i
\(693\) −2.00000 + 2.00000i −0.0759737 + 0.0759737i
\(694\) 5.00000 5.00000i 0.189797 0.189797i
\(695\) 4.00000 + 2.00000i 0.151729 + 0.0758643i
\(696\) −8.00000 + 8.00000i −0.303239 + 0.303239i
\(697\) 14.0000i 0.530288i
\(698\) −21.0000 21.0000i −0.794862 0.794862i
\(699\) 2.00000 0.0756469
\(700\) 8.00000 6.00000i 0.302372 0.226779i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) −20.0000 + 4.00000i −0.754851 + 0.150970i
\(703\) −24.0000 24.0000i −0.905177 0.905177i
\(704\) −1.00000 + 1.00000i −0.0376889 + 0.0376889i
\(705\) −10.0000 30.0000i −0.376622 1.12987i
\(706\) 4.00000i 0.150542i
\(707\) −24.0000 −0.902613
\(708\) 18.0000i 0.676481i
\(709\) 33.0000 + 33.0000i 1.23934 + 1.23934i 0.960271 + 0.279070i \(0.0900263\pi\)
0.279070 + 0.960271i \(0.409974\pi\)
\(710\) 15.0000 5.00000i 0.562940 0.187647i
\(711\) 10.0000 0.375029
\(712\) 11.0000 + 11.0000i 0.412242 + 0.412242i
\(713\) −2.00000 −0.0749006
\(714\) 4.00000 0.149696
\(715\) 3.00000 11.0000i 0.112194 0.411377i
\(716\) −20.0000 −0.747435
\(717\) −2.00000 −0.0746914
\(718\) −5.00000 5.00000i −0.186598 0.186598i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 2.00000 + 1.00000i 0.0745356 + 0.0372678i
\(721\) −10.0000 10.0000i −0.372419 0.372419i
\(722\) 1.00000i 0.0372161i
\(723\) 2.00000 0.0743808
\(724\) 16.0000i 0.594635i
\(725\) −32.0000 + 24.0000i −1.18845 + 0.891338i
\(726\) 9.00000 9.00000i 0.334021 0.334021i
\(727\) 1.00000 + 1.00000i 0.0370879 + 0.0370879i 0.725408 0.688320i \(-0.241651\pi\)
−0.688320 + 0.725408i \(0.741651\pi\)
\(728\) 4.00000 6.00000i 0.148250 0.222375i
\(729\) 29.0000i 1.07407i
\(730\) 6.00000 12.0000i 0.222070 0.444140i
\(731\) −2.00000 −0.0739727
\(732\) 2.00000 + 2.00000i 0.0739221 + 0.0739221i
\(733\) 20.0000i 0.738717i 0.929287 + 0.369358i \(0.120423\pi\)
−0.929287 + 0.369358i \(0.879577\pi\)
\(734\) 21.0000 21.0000i 0.775124 0.775124i
\(735\) −9.00000 + 3.00000i −0.331970 + 0.110657i
\(736\) 1.00000 1.00000i 0.0368605 0.0368605i
\(737\) 12.0000 12.0000i 0.442026 0.442026i
\(738\) 7.00000 7.00000i 0.257674 0.257674i
\(739\) 5.00000 + 5.00000i 0.183928 + 0.183928i 0.793065 0.609137i \(-0.208484\pi\)
−0.609137 + 0.793065i \(0.708484\pi\)
\(740\) 16.0000 + 8.00000i 0.588172 + 0.294086i
\(741\) 18.0000 + 12.0000i 0.661247 + 0.440831i
\(742\) 2.00000 2.00000i 0.0734223 0.0734223i
\(743\) 18.0000i 0.660356i 0.943919 + 0.330178i \(0.107109\pi\)
−0.943919 + 0.330178i \(0.892891\pi\)
\(744\) 2.00000i 0.0733236i
\(745\) 1.00000 + 3.00000i 0.0366372 + 0.109911i
\(746\) −5.00000 5.00000i −0.183063 0.183063i
\(747\) −18.0000 −0.658586
\(748\) −2.00000 −0.0731272
\(749\) −2.00000 2.00000i −0.0730784 0.0730784i
\(750\) −13.0000 9.00000i −0.474693 0.328634i
\(751\) 38.0000i 1.38664i −0.720630 0.693320i \(-0.756147\pi\)
0.720630 0.693320i \(-0.243853\pi\)
\(752\) 10.0000i 0.364662i
\(753\) 18.0000 18.0000i 0.655956 0.655956i
\(754\) −16.0000 + 24.0000i −0.582686 + 0.874028i
\(755\) 3.00000 + 9.00000i 0.109181 + 0.327544i
\(756\) 8.00000 + 8.00000i 0.290957 + 0.290957i
\(757\) 25.0000 25.0000i 0.908640 0.908640i −0.0875221 0.996163i \(-0.527895\pi\)
0.996163 + 0.0875221i \(0.0278948\pi\)
\(758\) −23.0000 + 23.0000i −0.835398 + 0.835398i
\(759\) 2.00000 2.00000i 0.0725954 0.0725954i
\(760\) −3.00000 9.00000i −0.108821 0.326464i
\(761\) 1.00000 1.00000i 0.0362500 0.0362500i −0.688749 0.724999i \(-0.741840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 6.00000i 0.217357i
\(763\) 10.0000 + 10.0000i 0.362024 + 0.362024i
\(764\) 8.00000 0.289430
\(765\) 1.00000 + 3.00000i 0.0361551 + 0.108465i
\(766\) 18.0000i 0.650366i
\(767\) 9.00000 + 45.0000i 0.324971 + 1.62486i
\(768\) 1.00000 + 1.00000i 0.0360844 + 0.0360844i
\(769\) −23.0000 + 23.0000i −0.829401 + 0.829401i −0.987434 0.158033i \(-0.949485\pi\)
0.158033 + 0.987434i \(0.449485\pi\)
\(770\) −6.00000 + 2.00000i −0.216225 + 0.0720750i
\(771\) 42.0000i 1.51259i
\(772\) 2.00000 0.0719816
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) −1.00000 1.00000i −0.0359443 0.0359443i
\(775\) 1.00000 7.00000i 0.0359211 0.251447i
\(776\) 14.0000 0.502571
\(777\) 16.0000 + 16.0000i 0.573997 + 0.573997i
\(778\) 2.00000 0.0717035
\(779\) −42.0000 −1.50481
\(780\) −11.0000 3.00000i −0.393863 0.107417i
\(781\) −10.0000 −0.357828
\(782\) 2.00000 0.0715199
\(783\) −32.0000 32.0000i −1.14359 1.14359i
\(784\) 3.00000 0.107143
\(785\) −15.0000 45.0000i −0.535373 1.60612i
\(786\) −12.0000 12.0000i −0.428026 0.428026i
\(787\) 30.0000i 1.06938i 0.845047 + 0.534692i \(0.179572\pi\)
−0.845047 + 0.534692i \(0.820428\pi\)
\(788\) 6.00000 0.213741
\(789\) 6.00000i 0.213606i
\(790\) 20.0000 + 10.0000i 0.711568 + 0.355784i
\(791\) 6.00000 6.00000i 0.213335 0.213335i
\(792\) −1.00000 1.00000i −0.0355335 0.0355335i
\(793\) 6.00000 + 4.00000i 0.213066 + 0.142044i
\(794\) 8.00000i 0.283909i
\(795\) −4.00000 2.00000i −0.141865 0.0709327i
\(796\) −24.0000 −0.850657
\(797\) 5.00000 + 5.00000i 0.177109 + 0.177109i 0.790094 0.612985i \(-0.210032\pi\)
−0.612985 + 0.790094i \(0.710032\pi\)
\(798\) 12.0000i 0.424795i
\(799\) −10.0000 + 10.0000i −0.353775 + 0.353775i
\(800\) 3.00000 + 4.00000i 0.106066 + 0.141421i
\(801\) −11.0000 + 11.0000i −0.388666 + 0.388666i
\(802\) 19.0000 19.0000i 0.670913 0.670913i
\(803\) −6.00000 + 6.00000i −0.211735 + 0.211735i
\(804\) −12.0000 12.0000i −0.423207 0.423207i
\(805\) 6.00000 2.00000i 0.211472 0.0704907i
\(806\) −1.00000 5.00000i −0.0352235 0.176117i
\(807\) 4.00000 4.00000i 0.140807 0.140807i
\(808\) 12.0000i 0.422159i
\(809\) 12.0000i 0.421898i −0.977497 0.210949i \(-0.932345\pi\)
0.977497 0.210949i \(-0.0676553\pi\)
\(810\) 5.00000 10.0000i 0.175682 0.351364i
\(811\) 5.00000 + 5.00000i 0.175574 + 0.175574i 0.789423 0.613849i \(-0.210380\pi\)
−0.613849 + 0.789423i \(0.710380\pi\)
\(812\) 16.0000 0.561490
\(813\) 6.00000 0.210429
\(814\) −8.00000 8.00000i −0.280400 0.280400i
\(815\) 20.0000 40.0000i 0.700569 1.40114i
\(816\) 2.00000i 0.0700140i
\(817\) 6.00000i 0.209913i
\(818\) −9.00000 + 9.00000i −0.314678 + 0.314678i
\(819\) 6.00000 + 4.00000i 0.209657 + 0.139771i
\(820\) 21.0000 7.00000i 0.733352 0.244451i
\(821\) −19.0000 19.0000i −0.663105 0.663105i 0.293006 0.956111i \(-0.405344\pi\)
−0.956111 + 0.293006i \(0.905344\pi\)
\(822\) 0 0
\(823\) 3.00000 3.00000i 0.104573 0.104573i −0.652884 0.757458i \(-0.726441\pi\)
0.757458 + 0.652884i \(0.226441\pi\)
\(824\) 5.00000 5.00000i 0.174183 0.174183i
\(825\) 6.00000 + 8.00000i 0.208893 + 0.278524i
\(826\) 18.0000 18.0000i 0.626300 0.626300i
\(827\) 26.0000i 0.904109i −0.891990 0.452054i \(-0.850691\pi\)
0.891990 0.452054i \(-0.149309\pi\)
\(828\) 1.00000 + 1.00000i 0.0347524 + 0.0347524i
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) −36.0000 18.0000i −1.24958 0.624789i
\(831\) 22.0000i 0.763172i
\(832\) 3.00000 + 2.00000i 0.104006 + 0.0693375i
\(833\) 3.00000 + 3.00000i 0.103944 + 0.103944i
\(834\) −2.00000 + 2.00000i −0.0692543 + 0.0692543i
\(835\) 28.0000 + 14.0000i 0.968980 + 0.484490i
\(836\) 6.00000i 0.207514i
\(837\) 8.00000 0.276520
\(838\) 22.0000i 0.759977i
\(839\) −7.00000 7.00000i −0.241667 0.241667i 0.575873 0.817539i \(-0.304662\pi\)
−0.817539 + 0.575873i \(0.804662\pi\)
\(840\) 2.00000 + 6.00000i 0.0690066 + 0.207020i
\(841\) −35.0000 −1.20690
\(842\) −9.00000 9.00000i −0.310160 0.310160i
\(843\) 18.0000 0.619953
\(844\) −12.0000 −0.413057
\(845\) −29.0000 2.00000i −0.997630 0.0688021i
\(846\) −10.0000 −0.343807
\(847\) −18.0000 −0.618487
\(848\) 1.00000 + 1.00000i 0.0343401 + 0.0343401i
\(849\) 30.0000 1.02960
\(850\) −1.00000 + 7.00000i −0.0342997 + 0.240098i
\(851\) 8.00000 + 8.00000i 0.274236 + 0.274236i
\(852\) 10.0000i 0.342594i
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 4.00000i 0.136877i
\(855\) 9.00000 3.00000i 0.307794 0.102598i
\(856\) 1.00000 1.00000i 0.0341793 0.0341793i
\(857\) −11.0000 11.0000i −0.375753 0.375753i 0.493814 0.869567i \(-0.335602\pi\)
−0.869567 + 0.493814i \(0.835602\pi\)
\(858\) 6.00000 + 4.00000i 0.204837 + 0.136558i
\(859\) 34.0000i 1.16007i −0.814593 0.580033i \(-0.803040\pi\)
0.814593 0.580033i \(-0.196960\pi\)
\(860\) −1.00000 3.00000i −0.0340997 0.102299i
\(861\) 28.0000 0.954237
\(862\) 15.0000 + 15.0000i 0.510902 + 0.510902i
\(863\) 34.0000i 1.15737i 0.815550 + 0.578687i \(0.196435\pi\)
−0.815550 + 0.578687i \(0.803565\pi\)
\(864\) −4.00000 + 4.00000i −0.136083 + 0.136083i
\(865\) 9.00000 + 27.0000i 0.306009 + 0.918028i
\(866\) −9.00000 + 9.00000i −0.305832 + 0.305832i
\(867\) 15.0000 15.0000i 0.509427 0.509427i
\(868\) −2.00000 + 2.00000i −0.0678844 + 0.0678844i
\(869\) −10.0000 10.0000i −0.339227 0.339227i
\(870\) −8.00000 24.0000i −0.271225 0.813676i
\(871\) −36.0000 24.0000i −1.21981 0.813209i
\(872\) −5.00000 + 5.00000i −0.169321 + 0.169321i
\(873\) 14.0000i 0.473828i
\(874\) 6.00000i 0.202953i
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) 6.00000 + 6.00000i 0.202721 + 0.202721i
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 32.0000 1.07995
\(879\) −22.0000 22.0000i −0.742042 0.742042i
\(880\) −1.00000 3.00000i −0.0337100 0.101130i
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 3.00000i 0.101015i
\(883\) −25.0000 + 25.0000i −0.841317 + 0.841317i −0.989030 0.147713i \(-0.952809\pi\)
0.147713 + 0.989030i \(0.452809\pi\)
\(884\) 1.00000 + 5.00000i 0.0336336 + 0.168168i
\(885\) −36.0000 18.0000i −1.21013 0.605063i
\(886\) −17.0000 17.0000i −0.571126 0.571126i
\(887\) 19.0000 19.0000i 0.637958 0.637958i −0.312094 0.950051i \(-0.601030\pi\)
0.950051 + 0.312094i \(0.101030\pi\)
\(888\) −8.00000 + 8.00000i −0.268462 + 0.268462i
\(889\) 6.00000 6.00000i 0.201234 0.201234i
\(890\) −33.0000 + 11.0000i −1.10616 + 0.368721i
\(891\) −5.00000 + 5.00000i −0.167506 + 0.167506i
\(892\) 18.0000i 0.602685i
\(893\) 30.0000 + 30.0000i 1.00391 + 1.00391i
\(894\) −2.00000 −0.0668900
\(895\) 20.0000 40.0000i 0.668526 1.33705i
\(896\) 2.00000i 0.0668153i
\(897\) −6.00000 4.00000i −0.200334 0.133556i
\(898\) −13.0000 13.0000i −0.433816 0.433816i
\(899\) 8.00000 8.00000i 0.266815 0.266815i
\(900\) −4.00000 + 3.00000i −0.133333 + 0.100000i
\(901\) 2.00000i 0.0666297i
\(902\) −14.0000 −0.466149
\(903\) 4.00000i 0.133112i
\(904\) 3.00000 + 3.00000i 0.0997785 + 0.0997785i
\(905\) 32.0000 + 16.0000i 1.06372 + 0.531858i
\(906\) −6.00000 −0.199337
\(907\) −7.00000 7.00000i −0.232431 0.232431i 0.581276 0.813707i \(-0.302554\pi\)
−0.813707 + 0.581276i \(0.802554\pi\)
\(908\) 12.0000 0.398234
\(909\) 12.0000 0.398015
\(910\) 8.00000 + 14.0000i 0.265197 + 0.464095i
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 6.00000 0.198680
\(913\) 18.0000 + 18.0000i 0.595713 + 0.595713i
\(914\) −2.00000 −0.0661541
\(915\) −6.00000 + 2.00000i −0.198354 + 0.0661180i
\(916\) −15.0000 15.0000i −0.495614 0.495614i
\(917\) 24.0000i 0.792550i
\(918\) −8.00000 −0.264039
\(919\) 14.0000i 0.461817i −0.972975 0.230909i \(-0.925830\pi\)
0.972975 0.230909i \(-0.0741699\pi\)
\(920\) 1.00000 + 3.00000i 0.0329690 + 0.0989071i
\(921\) 10.0000 10.0000i 0.329511 0.329511i
\(922\) 11.0000 + 11.0000i 0.362266 + 0.362266i
\(923\) 5.00000 + 25.0000i 0.164577 + 0.822885i
\(924\) 4.00000i 0.131590i
\(925\) −32.0000 + 24.0000i −1.05215 + 0.789115i
\(926\) 16.0000 0.525793
\(927\) 5.00000 + 5.00000i 0.164222 + 0.164222i
\(928\) 8.00000i 0.262613i
\(929\) 13.0000 13.0000i 0.426516 0.426516i −0.460924 0.887440i \(-0.652482\pi\)
0.887440 + 0.460924i \(0.152482\pi\)
\(930\) 4.00000 + 2.00000i 0.131165 + 0.0655826i
\(931\) 9.00000 9.00000i 0.294963 0.294963i
\(932\) 1.00000 1.00000i 0.0327561 0.0327561i
\(933\) −2.00000 + 2.00000i −0.0654771 + 0.0654771i
\(934\) 7.00000 + 7.00000i 0.229047 + 0.229047i
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) −2.00000 + 3.00000i −0.0653720 + 0.0980581i
\(937\) 9.00000 9.00000i 0.294017 0.294017i −0.544648 0.838665i \(-0.683337\pi\)
0.838665 + 0.544648i \(0.183337\pi\)
\(938\) 24.0000i 0.783628i
\(939\) 18.0000i 0.587408i
\(940\) −20.0000 10.0000i −0.652328 0.326164i
\(941\) 17.0000 + 17.0000i 0.554184 + 0.554184i 0.927646 0.373462i \(-0.121829\pi\)
−0.373462 + 0.927646i \(0.621829\pi\)
\(942\) 30.0000 0.977453
\(943\) 14.0000 0.455903
\(944\) 9.00000 + 9.00000i 0.292925 + 0.292925i
\(945\) −24.0000 + 8.00000i −0.780720 + 0.260240i
\(946\) 2.00000i 0.0650256i
\(947\) 10.0000i 0.324956i −0.986712 0.162478i \(-0.948051\pi\)
0.986712 0.162478i \(-0.0519487\pi\)
\(948\) −10.0000 + 10.0000i −0.324785 + 0.324785i
\(949\) 18.0000 + 12.0000i 0.584305 + 0.389536i
\(950\) 21.0000 + 3.00000i 0.681330 + 0.0973329i
\(951\) 2.00000 + 2.00000i 0.0648544 + 0.0648544i
\(952\) 2.00000 2.00000i 0.0648204 0.0648204i
\(953\) 5.00000 5.00000i 0.161966 0.161966i −0.621471 0.783437i \(-0.713465\pi\)
0.783437 + 0.621471i \(0.213465\pi\)
\(954\) −1.00000 + 1.00000i −0.0323762 + 0.0323762i
\(955\) −8.00000 + 16.0000i −0.258874 + 0.517748i
\(956\) −1.00000 + 1.00000i −0.0323423 + 0.0323423i
\(957\) 16.0000i 0.517207i
\(958\) 19.0000 + 19.0000i 0.613862 + 0.613862i
\(959\) 0 0
\(960\) −3.00000 + 1.00000i −0.0968246 + 0.0322749i
\(961\) 29.0000i 0.935484i
\(962\) −16.0000 + 24.0000i −0.515861 + 0.773791i
\(963\) 1.00000 + 1.00000i 0.0322245 + 0.0322245i
\(964\) 1.00000 1.00000i 0.0322078 0.0322078i
\(965\) −2.00000 + 4.00000i −0.0643823 + 0.128765i
\(966\) 4.00000i 0.128698i
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 9.00000i 0.289271i
\(969\) 6.00000 + 6.00000i 0.192748 + 0.192748i
\(970\) −14.0000 + 28.0000i −0.449513 + 0.899026i
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) −7.00000 7.00000i −0.224525 0.224525i
\(973\) 4.00000 0.128234
\(974\) 8.00000 0.256337
\(975\) 17.0000 19.0000i 0.544436 0.608487i
\(976\) 2.00000 0.0640184
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 20.0000 + 20.0000i 0.639529 + 0.639529i
\(979\) 22.0000 0.703123
\(980\) −3.00000 + 6.00000i −0.0958315 + 0.191663i
\(981\) −5.00000 5.00000i −0.159638 0.159638i
\(982\) 38.0000i 1.21263i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 14.0000i 0.446304i
\(985\) −6.00000 + 12.0000i −0.191176 + 0.382352i
\(986\) −8.00000 + 8.00000i −0.254772 + 0.254772i
\(987\) −20.0000 20.0000i −0.636607 0.636607i
\(988\) 15.0000 3.00000i 0.477214 0.0954427i
\(989\) 2.00000i 0.0635963i
\(990\) 3.00000 1.00000i 0.0953463 0.0317821i
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) −1.00000 1.00000i −0.0317500 0.0317500i
\(993\) 42.0000i 1.33283i
\(994\) 10.0000 10.0000i 0.317181 0.317181i
\(995\) 24.0000 48.0000i 0.760851 1.52170i
\(996\) 18.0000 18.0000i 0.570352 0.570352i
\(997\) 13.0000 13.0000i 0.411714 0.411714i −0.470621 0.882335i \(-0.655970\pi\)
0.882335 + 0.470621i \(0.155970\pi\)
\(998\) −19.0000 + 19.0000i −0.601434 + 0.601434i
\(999\) −32.0000 32.0000i −1.01244 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.g.b.73.1 yes 2
3.2 odd 2 1170.2.m.b.73.1 2
4.3 odd 2 1040.2.bg.b.593.1 2
5.2 odd 4 130.2.j.c.47.1 yes 2
5.3 odd 4 650.2.j.a.307.1 2
5.4 even 2 650.2.g.c.593.1 2
13.5 odd 4 130.2.j.c.83.1 yes 2
15.2 even 4 1170.2.w.a.307.1 2
20.7 even 4 1040.2.cd.c.177.1 2
39.5 even 4 1170.2.w.a.343.1 2
52.31 even 4 1040.2.cd.c.993.1 2
65.18 even 4 650.2.g.c.57.1 2
65.44 odd 4 650.2.j.a.343.1 2
65.57 even 4 inner 130.2.g.b.57.1 2
195.122 odd 4 1170.2.m.b.577.1 2
260.187 odd 4 1040.2.bg.b.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.b.57.1 2 65.57 even 4 inner
130.2.g.b.73.1 yes 2 1.1 even 1 trivial
130.2.j.c.47.1 yes 2 5.2 odd 4
130.2.j.c.83.1 yes 2 13.5 odd 4
650.2.g.c.57.1 2 65.18 even 4
650.2.g.c.593.1 2 5.4 even 2
650.2.j.a.307.1 2 5.3 odd 4
650.2.j.a.343.1 2 65.44 odd 4
1040.2.bg.b.577.1 2 260.187 odd 4
1040.2.bg.b.593.1 2 4.3 odd 2
1040.2.cd.c.177.1 2 20.7 even 4
1040.2.cd.c.993.1 2 52.31 even 4
1170.2.m.b.73.1 2 3.2 odd 2
1170.2.m.b.577.1 2 195.122 odd 4
1170.2.w.a.307.1 2 15.2 even 4
1170.2.w.a.343.1 2 39.5 even 4