Properties

Label 1170.2.w.a.343.1
Level $1170$
Weight $2$
Character 1170.343
Analytic conductor $9.342$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(307,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 343.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1170.343
Dual form 1170.2.w.a.307.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-2.00000 - 1.00000i) q^{5} -2.00000 q^{7} +1.00000i q^{8} +(-1.00000 + 2.00000i) q^{10} +(1.00000 + 1.00000i) q^{11} +(2.00000 + 3.00000i) q^{13} +2.00000i q^{14} +1.00000 q^{16} +(1.00000 + 1.00000i) q^{17} +(-3.00000 - 3.00000i) q^{19} +(2.00000 + 1.00000i) q^{20} +(1.00000 - 1.00000i) q^{22} +(-1.00000 + 1.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} +(3.00000 - 2.00000i) q^{26} +2.00000 q^{28} +8.00000i q^{29} +(1.00000 - 1.00000i) q^{31} -1.00000i q^{32} +(1.00000 - 1.00000i) q^{34} +(4.00000 + 2.00000i) q^{35} +8.00000 q^{37} +(-3.00000 + 3.00000i) q^{38} +(1.00000 - 2.00000i) q^{40} +(7.00000 - 7.00000i) q^{41} +(1.00000 - 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(1.00000 + 1.00000i) q^{46} +10.0000 q^{47} -3.00000 q^{49} +(4.00000 - 3.00000i) q^{50} +(-2.00000 - 3.00000i) q^{52} +(-1.00000 - 1.00000i) q^{53} +(-1.00000 - 3.00000i) q^{55} -2.00000i q^{56} +8.00000 q^{58} +(9.00000 - 9.00000i) q^{59} +2.00000 q^{61} +(-1.00000 - 1.00000i) q^{62} -1.00000 q^{64} +(-1.00000 - 8.00000i) q^{65} +12.0000i q^{67} +(-1.00000 - 1.00000i) q^{68} +(2.00000 - 4.00000i) q^{70} +(-5.00000 + 5.00000i) q^{71} +6.00000i q^{73} -8.00000i q^{74} +(3.00000 + 3.00000i) q^{76} +(-2.00000 - 2.00000i) q^{77} +10.0000i q^{79} +(-2.00000 - 1.00000i) q^{80} +(-7.00000 - 7.00000i) q^{82} +18.0000 q^{83} +(-1.00000 - 3.00000i) q^{85} +(-1.00000 - 1.00000i) q^{86} +(-1.00000 + 1.00000i) q^{88} +(-11.0000 + 11.0000i) q^{89} +(-4.00000 - 6.00000i) q^{91} +(1.00000 - 1.00000i) q^{92} -10.0000i q^{94} +(3.00000 + 9.00000i) q^{95} +14.0000i q^{97} +3.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{5} - 4 q^{7} - 2 q^{10} + 2 q^{11} + 4 q^{13} + 2 q^{16} + 2 q^{17} - 6 q^{19} + 4 q^{20} + 2 q^{22} - 2 q^{23} + 6 q^{25} + 6 q^{26} + 4 q^{28} + 2 q^{31} + 2 q^{34} + 8 q^{35} + 16 q^{37}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.00000 + 2.00000i −0.316228 + 0.632456i
\(11\) 1.00000 + 1.00000i 0.301511 + 0.301511i 0.841605 0.540094i \(-0.181611\pi\)
−0.540094 + 0.841605i \(0.681611\pi\)
\(12\) 0 0
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 2.00000i 0.534522i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.00000 + 1.00000i 0.242536 + 0.242536i 0.817898 0.575363i \(-0.195139\pi\)
−0.575363 + 0.817898i \(0.695139\pi\)
\(18\) 0 0
\(19\) −3.00000 3.00000i −0.688247 0.688247i 0.273597 0.961844i \(-0.411786\pi\)
−0.961844 + 0.273597i \(0.911786\pi\)
\(20\) 2.00000 + 1.00000i 0.447214 + 0.223607i
\(21\) 0 0
\(22\) 1.00000 1.00000i 0.213201 0.213201i
\(23\) −1.00000 + 1.00000i −0.208514 + 0.208514i −0.803636 0.595121i \(-0.797104\pi\)
0.595121 + 0.803636i \(0.297104\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 3.00000 2.00000i 0.588348 0.392232i
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 8.00000i 1.48556i 0.669534 + 0.742781i \(0.266494\pi\)
−0.669534 + 0.742781i \(0.733506\pi\)
\(30\) 0 0
\(31\) 1.00000 1.00000i 0.179605 0.179605i −0.611578 0.791184i \(-0.709465\pi\)
0.791184 + 0.611578i \(0.209465\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) 4.00000 + 2.00000i 0.676123 + 0.338062i
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −3.00000 + 3.00000i −0.486664 + 0.486664i
\(39\) 0 0
\(40\) 1.00000 2.00000i 0.158114 0.316228i
\(41\) 7.00000 7.00000i 1.09322 1.09322i 0.0980332 0.995183i \(-0.468745\pi\)
0.995183 0.0980332i \(-0.0312551\pi\)
\(42\) 0 0
\(43\) 1.00000 1.00000i 0.152499 0.152499i −0.626734 0.779233i \(-0.715609\pi\)
0.779233 + 0.626734i \(0.215609\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) 0 0
\(46\) 1.00000 + 1.00000i 0.147442 + 0.147442i
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 4.00000 3.00000i 0.565685 0.424264i
\(51\) 0 0
\(52\) −2.00000 3.00000i −0.277350 0.416025i
\(53\) −1.00000 1.00000i −0.137361 0.137361i 0.635083 0.772444i \(-0.280966\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(54\) 0 0
\(55\) −1.00000 3.00000i −0.134840 0.404520i
\(56\) 2.00000i 0.267261i
\(57\) 0 0
\(58\) 8.00000 1.05045
\(59\) 9.00000 9.00000i 1.17170 1.17170i 0.189896 0.981804i \(-0.439185\pi\)
0.981804 0.189896i \(-0.0608151\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 1.00000i −0.127000 0.127000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.00000 8.00000i −0.124035 0.992278i
\(66\) 0 0
\(67\) 12.0000i 1.46603i 0.680211 + 0.733017i \(0.261888\pi\)
−0.680211 + 0.733017i \(0.738112\pi\)
\(68\) −1.00000 1.00000i −0.121268 0.121268i
\(69\) 0 0
\(70\) 2.00000 4.00000i 0.239046 0.478091i
\(71\) −5.00000 + 5.00000i −0.593391 + 0.593391i −0.938546 0.345155i \(-0.887826\pi\)
0.345155 + 0.938546i \(0.387826\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 8.00000i 0.929981i
\(75\) 0 0
\(76\) 3.00000 + 3.00000i 0.344124 + 0.344124i
\(77\) −2.00000 2.00000i −0.227921 0.227921i
\(78\) 0 0
\(79\) 10.0000i 1.12509i 0.826767 + 0.562544i \(0.190177\pi\)
−0.826767 + 0.562544i \(0.809823\pi\)
\(80\) −2.00000 1.00000i −0.223607 0.111803i
\(81\) 0 0
\(82\) −7.00000 7.00000i −0.773021 0.773021i
\(83\) 18.0000 1.97576 0.987878 0.155230i \(-0.0496119\pi\)
0.987878 + 0.155230i \(0.0496119\pi\)
\(84\) 0 0
\(85\) −1.00000 3.00000i −0.108465 0.325396i
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) −1.00000 + 1.00000i −0.106600 + 0.106600i
\(89\) −11.0000 + 11.0000i −1.16600 + 1.16600i −0.182858 + 0.983139i \(0.558535\pi\)
−0.983139 + 0.182858i \(0.941465\pi\)
\(90\) 0 0
\(91\) −4.00000 6.00000i −0.419314 0.628971i
\(92\) 1.00000 1.00000i 0.104257 0.104257i
\(93\) 0 0
\(94\) 10.0000i 1.03142i
\(95\) 3.00000 + 9.00000i 0.307794 + 0.923381i
\(96\) 0 0
\(97\) 14.0000i 1.42148i 0.703452 + 0.710742i \(0.251641\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 0 0
\(100\) −3.00000 4.00000i −0.300000 0.400000i
\(101\) 12.0000i 1.19404i 0.802225 + 0.597022i \(0.203650\pi\)
−0.802225 + 0.597022i \(0.796350\pi\)
\(102\) 0 0
\(103\) 5.00000 5.00000i 0.492665 0.492665i −0.416480 0.909145i \(-0.636736\pi\)
0.909145 + 0.416480i \(0.136736\pi\)
\(104\) −3.00000 + 2.00000i −0.294174 + 0.196116i
\(105\) 0 0
\(106\) −1.00000 + 1.00000i −0.0971286 + 0.0971286i
\(107\) 1.00000 1.00000i 0.0966736 0.0966736i −0.657116 0.753790i \(-0.728224\pi\)
0.753790 + 0.657116i \(0.228224\pi\)
\(108\) 0 0
\(109\) −5.00000 5.00000i −0.478913 0.478913i 0.425871 0.904784i \(-0.359968\pi\)
−0.904784 + 0.425871i \(0.859968\pi\)
\(110\) −3.00000 + 1.00000i −0.286039 + 0.0953463i
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 3.00000 + 3.00000i 0.282216 + 0.282216i 0.833992 0.551776i \(-0.186050\pi\)
−0.551776 + 0.833992i \(0.686050\pi\)
\(114\) 0 0
\(115\) 3.00000 1.00000i 0.279751 0.0932505i
\(116\) 8.00000i 0.742781i
\(117\) 0 0
\(118\) −9.00000 9.00000i −0.828517 0.828517i
\(119\) −2.00000 2.00000i −0.183340 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) −1.00000 + 1.00000i −0.0898027 + 0.0898027i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) 3.00000 + 3.00000i 0.266207 + 0.266207i 0.827570 0.561363i \(-0.189723\pi\)
−0.561363 + 0.827570i \(0.689723\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −8.00000 + 1.00000i −0.701646 + 0.0877058i
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 6.00000 + 6.00000i 0.520266 + 0.520266i
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) −1.00000 + 1.00000i −0.0857493 + 0.0857493i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) −4.00000 2.00000i −0.338062 0.169031i
\(141\) 0 0
\(142\) 5.00000 + 5.00000i 0.419591 + 0.419591i
\(143\) −1.00000 + 5.00000i −0.0836242 + 0.418121i
\(144\) 0 0
\(145\) 8.00000 16.0000i 0.664364 1.32873i
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) 1.00000 + 1.00000i 0.0819232 + 0.0819232i 0.746881 0.664958i \(-0.231550\pi\)
−0.664958 + 0.746881i \(0.731550\pi\)
\(150\) 0 0
\(151\) 3.00000 + 3.00000i 0.244137 + 0.244137i 0.818559 0.574422i \(-0.194773\pi\)
−0.574422 + 0.818559i \(0.694773\pi\)
\(152\) 3.00000 3.00000i 0.243332 0.243332i
\(153\) 0 0
\(154\) −2.00000 + 2.00000i −0.161165 + 0.161165i
\(155\) −3.00000 + 1.00000i −0.240966 + 0.0803219i
\(156\) 0 0
\(157\) −15.0000 + 15.0000i −1.19713 + 1.19713i −0.222108 + 0.975022i \(0.571294\pi\)
−0.975022 + 0.222108i \(0.928706\pi\)
\(158\) 10.0000 0.795557
\(159\) 0 0
\(160\) −1.00000 + 2.00000i −0.0790569 + 0.158114i
\(161\) 2.00000 2.00000i 0.157622 0.157622i
\(162\) 0 0
\(163\) 20.0000i 1.56652i −0.621694 0.783260i \(-0.713555\pi\)
0.621694 0.783260i \(-0.286445\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) 0 0
\(166\) 18.0000i 1.39707i
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) −3.00000 + 1.00000i −0.230089 + 0.0766965i
\(171\) 0 0
\(172\) −1.00000 + 1.00000i −0.0762493 + 0.0762493i
\(173\) 9.00000 9.00000i 0.684257 0.684257i −0.276699 0.960957i \(-0.589241\pi\)
0.960957 + 0.276699i \(0.0892406\pi\)
\(174\) 0 0
\(175\) −6.00000 8.00000i −0.453557 0.604743i
\(176\) 1.00000 + 1.00000i 0.0753778 + 0.0753778i
\(177\) 0 0
\(178\) 11.0000 + 11.0000i 0.824485 + 0.824485i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) −6.00000 + 4.00000i −0.444750 + 0.296500i
\(183\) 0 0
\(184\) −1.00000 1.00000i −0.0737210 0.0737210i
\(185\) −16.0000 8.00000i −1.17634 0.588172i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) −10.0000 −0.729325
\(189\) 0 0
\(190\) 9.00000 3.00000i 0.652929 0.217643i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 2.00000i 0.143963i 0.997406 + 0.0719816i \(0.0229323\pi\)
−0.997406 + 0.0719816i \(0.977068\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) 3.00000 0.214286
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) −4.00000 + 3.00000i −0.282843 + 0.212132i
\(201\) 0 0
\(202\) 12.0000 0.844317
\(203\) 16.0000i 1.12298i
\(204\) 0 0
\(205\) −21.0000 + 7.00000i −1.46670 + 0.488901i
\(206\) −5.00000 5.00000i −0.348367 0.348367i
\(207\) 0 0
\(208\) 2.00000 + 3.00000i 0.138675 + 0.208013i
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 1.00000 + 1.00000i 0.0686803 + 0.0686803i
\(213\) 0 0
\(214\) −1.00000 1.00000i −0.0683586 0.0683586i
\(215\) −3.00000 + 1.00000i −0.204598 + 0.0681994i
\(216\) 0 0
\(217\) −2.00000 + 2.00000i −0.135769 + 0.135769i
\(218\) −5.00000 + 5.00000i −0.338643 + 0.338643i
\(219\) 0 0
\(220\) 1.00000 + 3.00000i 0.0674200 + 0.202260i
\(221\) −1.00000 + 5.00000i −0.0672673 + 0.336336i
\(222\) 0 0
\(223\) 18.0000 1.20537 0.602685 0.797980i \(-0.294098\pi\)
0.602685 + 0.797980i \(0.294098\pi\)
\(224\) 2.00000i 0.133631i
\(225\) 0 0
\(226\) 3.00000 3.00000i 0.199557 0.199557i
\(227\) 12.0000i 0.796468i 0.917284 + 0.398234i \(0.130377\pi\)
−0.917284 + 0.398234i \(0.869623\pi\)
\(228\) 0 0
\(229\) 15.0000 15.0000i 0.991228 0.991228i −0.00873396 0.999962i \(-0.502780\pi\)
0.999962 + 0.00873396i \(0.00278014\pi\)
\(230\) −1.00000 3.00000i −0.0659380 0.197814i
\(231\) 0 0
\(232\) −8.00000 −0.525226
\(233\) 1.00000 1.00000i 0.0655122 0.0655122i −0.673592 0.739104i \(-0.735249\pi\)
0.739104 + 0.673592i \(0.235249\pi\)
\(234\) 0 0
\(235\) −20.0000 10.0000i −1.30466 0.652328i
\(236\) −9.00000 + 9.00000i −0.585850 + 0.585850i
\(237\) 0 0
\(238\) −2.00000 + 2.00000i −0.129641 + 0.129641i
\(239\) −1.00000 1.00000i −0.0646846 0.0646846i 0.674024 0.738709i \(-0.264564\pi\)
−0.738709 + 0.674024i \(0.764564\pi\)
\(240\) 0 0
\(241\) 1.00000 + 1.00000i 0.0644157 + 0.0644157i 0.738581 0.674165i \(-0.235496\pi\)
−0.674165 + 0.738581i \(0.735496\pi\)
\(242\) −9.00000 −0.578542
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 6.00000 + 3.00000i 0.383326 + 0.191663i
\(246\) 0 0
\(247\) 3.00000 15.0000i 0.190885 0.954427i
\(248\) 1.00000 + 1.00000i 0.0635001 + 0.0635001i
\(249\) 0 0
\(250\) −11.0000 + 2.00000i −0.695701 + 0.126491i
\(251\) 18.0000i 1.13615i −0.822977 0.568075i \(-0.807688\pi\)
0.822977 0.568075i \(-0.192312\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 3.00000 3.00000i 0.188237 0.188237i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.0000 + 21.0000i 1.30994 + 1.30994i 0.921452 + 0.388492i \(0.127004\pi\)
0.388492 + 0.921452i \(0.372996\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 1.00000 + 8.00000i 0.0620174 + 0.496139i
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) 3.00000 + 3.00000i 0.184988 + 0.184988i 0.793525 0.608537i \(-0.208243\pi\)
−0.608537 + 0.793525i \(0.708243\pi\)
\(264\) 0 0
\(265\) 1.00000 + 3.00000i 0.0614295 + 0.184289i
\(266\) 6.00000 6.00000i 0.367884 0.367884i
\(267\) 0 0
\(268\) 12.0000i 0.733017i
\(269\) 4.00000i 0.243884i 0.992537 + 0.121942i \(0.0389122\pi\)
−0.992537 + 0.121942i \(0.961088\pi\)
\(270\) 0 0
\(271\) 3.00000 + 3.00000i 0.182237 + 0.182237i 0.792330 0.610093i \(-0.208868\pi\)
−0.610093 + 0.792330i \(0.708868\pi\)
\(272\) 1.00000 + 1.00000i 0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 + 7.00000i −0.0603023 + 0.422116i
\(276\) 0 0
\(277\) 11.0000 + 11.0000i 0.660926 + 0.660926i 0.955598 0.294672i \(-0.0952105\pi\)
−0.294672 + 0.955598i \(0.595211\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) −2.00000 + 4.00000i −0.119523 + 0.239046i
\(281\) −9.00000 9.00000i −0.536895 0.536895i 0.385721 0.922616i \(-0.373953\pi\)
−0.922616 + 0.385721i \(0.873953\pi\)
\(282\) 0 0
\(283\) −15.0000 + 15.0000i −0.891657 + 0.891657i −0.994679 0.103022i \(-0.967149\pi\)
0.103022 + 0.994679i \(0.467149\pi\)
\(284\) 5.00000 5.00000i 0.296695 0.296695i
\(285\) 0 0
\(286\) 5.00000 + 1.00000i 0.295656 + 0.0591312i
\(287\) −14.0000 + 14.0000i −0.826394 + 0.826394i
\(288\) 0 0
\(289\) 15.0000i 0.882353i
\(290\) −16.0000 8.00000i −0.939552 0.469776i
\(291\) 0 0
\(292\) 6.00000i 0.351123i
\(293\) 22.0000i 1.28525i 0.766179 + 0.642627i \(0.222155\pi\)
−0.766179 + 0.642627i \(0.777845\pi\)
\(294\) 0 0
\(295\) −27.0000 + 9.00000i −1.57200 + 0.524000i
\(296\) 8.00000i 0.464991i
\(297\) 0 0
\(298\) 1.00000 1.00000i 0.0579284 0.0579284i
\(299\) −5.00000 1.00000i −0.289157 0.0578315i
\(300\) 0 0
\(301\) −2.00000 + 2.00000i −0.115278 + 0.115278i
\(302\) 3.00000 3.00000i 0.172631 0.172631i
\(303\) 0 0
\(304\) −3.00000 3.00000i −0.172062 0.172062i
\(305\) −4.00000 2.00000i −0.229039 0.114520i
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 2.00000 + 2.00000i 0.113961 + 0.113961i
\(309\) 0 0
\(310\) 1.00000 + 3.00000i 0.0567962 + 0.170389i
\(311\) 2.00000i 0.113410i 0.998391 + 0.0567048i \(0.0180594\pi\)
−0.998391 + 0.0567048i \(0.981941\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 15.0000 + 15.0000i 0.846499 + 0.846499i
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) 0 0
\(319\) −8.00000 + 8.00000i −0.447914 + 0.447914i
\(320\) 2.00000 + 1.00000i 0.111803 + 0.0559017i
\(321\) 0 0
\(322\) −2.00000 2.00000i −0.111456 0.111456i
\(323\) 6.00000i 0.333849i
\(324\) 0 0
\(325\) −6.00000 + 17.0000i −0.332820 + 0.942990i
\(326\) −20.0000 −1.10770
\(327\) 0 0
\(328\) 7.00000 + 7.00000i 0.386510 + 0.386510i
\(329\) −20.0000 −1.10264
\(330\) 0 0
\(331\) 21.0000 21.0000i 1.15426 1.15426i 0.168576 0.985689i \(-0.446083\pi\)
0.985689 0.168576i \(-0.0539168\pi\)
\(332\) −18.0000 −0.987878
\(333\) 0 0
\(334\) 14.0000i 0.766046i
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) 0 0
\(337\) −5.00000 5.00000i −0.272367 0.272367i 0.557685 0.830053i \(-0.311690\pi\)
−0.830053 + 0.557685i \(0.811690\pi\)
\(338\) 12.0000 + 5.00000i 0.652714 + 0.271964i
\(339\) 0 0
\(340\) 1.00000 + 3.00000i 0.0542326 + 0.162698i
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 1.00000 + 1.00000i 0.0539164 + 0.0539164i
\(345\) 0 0
\(346\) −9.00000 9.00000i −0.483843 0.483843i
\(347\) 5.00000 5.00000i 0.268414 0.268414i −0.560047 0.828461i \(-0.689217\pi\)
0.828461 + 0.560047i \(0.189217\pi\)
\(348\) 0 0
\(349\) −21.0000 + 21.0000i −1.12410 + 1.12410i −0.132986 + 0.991118i \(0.542457\pi\)
−0.991118 + 0.132986i \(0.957543\pi\)
\(350\) −8.00000 + 6.00000i −0.427618 + 0.320713i
\(351\) 0 0
\(352\) 1.00000 1.00000i 0.0533002 0.0533002i
\(353\) −4.00000 −0.212899 −0.106449 0.994318i \(-0.533948\pi\)
−0.106449 + 0.994318i \(0.533948\pi\)
\(354\) 0 0
\(355\) 15.0000 5.00000i 0.796117 0.265372i
\(356\) 11.0000 11.0000i 0.582999 0.582999i
\(357\) 0 0
\(358\) 20.0000i 1.05703i
\(359\) 5.00000 5.00000i 0.263890 0.263890i −0.562742 0.826632i \(-0.690254\pi\)
0.826632 + 0.562742i \(0.190254\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 16.0000 0.840941
\(363\) 0 0
\(364\) 4.00000 + 6.00000i 0.209657 + 0.314485i
\(365\) 6.00000 12.0000i 0.314054 0.628109i
\(366\) 0 0
\(367\) −21.0000 + 21.0000i −1.09619 + 1.09619i −0.101339 + 0.994852i \(0.532313\pi\)
−0.994852 + 0.101339i \(0.967687\pi\)
\(368\) −1.00000 + 1.00000i −0.0521286 + 0.0521286i
\(369\) 0 0
\(370\) −8.00000 + 16.0000i −0.415900 + 0.831800i
\(371\) 2.00000 + 2.00000i 0.103835 + 0.103835i
\(372\) 0 0
\(373\) 5.00000 + 5.00000i 0.258890 + 0.258890i 0.824603 0.565712i \(-0.191399\pi\)
−0.565712 + 0.824603i \(0.691399\pi\)
\(374\) 2.00000 0.103418
\(375\) 0 0
\(376\) 10.0000i 0.515711i
\(377\) −24.0000 + 16.0000i −1.23606 + 0.824042i
\(378\) 0 0
\(379\) −23.0000 23.0000i −1.18143 1.18143i −0.979374 0.202057i \(-0.935237\pi\)
−0.202057 0.979374i \(-0.564763\pi\)
\(380\) −3.00000 9.00000i −0.153897 0.461690i
\(381\) 0 0
\(382\) 8.00000i 0.409316i
\(383\) −18.0000 −0.919757 −0.459879 0.887982i \(-0.652107\pi\)
−0.459879 + 0.887982i \(0.652107\pi\)
\(384\) 0 0
\(385\) 2.00000 + 6.00000i 0.101929 + 0.305788i
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) 14.0000i 0.710742i
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 0 0
\(391\) −2.00000 −0.101144
\(392\) 3.00000i 0.151523i
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) 10.0000 20.0000i 0.503155 1.00631i
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 24.0000i 1.20301i
\(399\) 0 0
\(400\) 3.00000 + 4.00000i 0.150000 + 0.200000i
\(401\) 19.0000 + 19.0000i 0.948815 + 0.948815i 0.998752 0.0499376i \(-0.0159023\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 5.00000 + 1.00000i 0.249068 + 0.0498135i
\(404\) 12.0000i 0.597022i
\(405\) 0 0
\(406\) −16.0000 −0.794067
\(407\) 8.00000 + 8.00000i 0.396545 + 0.396545i
\(408\) 0 0
\(409\) −9.00000 9.00000i −0.445021 0.445021i 0.448674 0.893695i \(-0.351896\pi\)
−0.893695 + 0.448674i \(0.851896\pi\)
\(410\) 7.00000 + 21.0000i 0.345705 + 1.03712i
\(411\) 0 0
\(412\) −5.00000 + 5.00000i −0.246332 + 0.246332i
\(413\) −18.0000 + 18.0000i −0.885722 + 0.885722i
\(414\) 0 0
\(415\) −36.0000 18.0000i −1.76717 0.883585i
\(416\) 3.00000 2.00000i 0.147087 0.0980581i
\(417\) 0 0
\(418\) −6.00000 −0.293470
\(419\) 22.0000i 1.07477i −0.843337 0.537385i \(-0.819412\pi\)
0.843337 0.537385i \(-0.180588\pi\)
\(420\) 0 0
\(421\) 9.00000 9.00000i 0.438633 0.438633i −0.452919 0.891552i \(-0.649617\pi\)
0.891552 + 0.452919i \(0.149617\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 0 0
\(424\) 1.00000 1.00000i 0.0485643 0.0485643i
\(425\) −1.00000 + 7.00000i −0.0485071 + 0.339550i
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) −1.00000 + 1.00000i −0.0483368 + 0.0483368i
\(429\) 0 0
\(430\) 1.00000 + 3.00000i 0.0482243 + 0.144673i
\(431\) 15.0000 15.0000i 0.722525 0.722525i −0.246594 0.969119i \(-0.579311\pi\)
0.969119 + 0.246594i \(0.0793115\pi\)
\(432\) 0 0
\(433\) −9.00000 + 9.00000i −0.432512 + 0.432512i −0.889482 0.456970i \(-0.848935\pi\)
0.456970 + 0.889482i \(0.348935\pi\)
\(434\) 2.00000 + 2.00000i 0.0960031 + 0.0960031i
\(435\) 0 0
\(436\) 5.00000 + 5.00000i 0.239457 + 0.239457i
\(437\) 6.00000 0.287019
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 3.00000 1.00000i 0.143019 0.0476731i
\(441\) 0 0
\(442\) 5.00000 + 1.00000i 0.237826 + 0.0475651i
\(443\) −17.0000 17.0000i −0.807694 0.807694i 0.176590 0.984284i \(-0.443493\pi\)
−0.984284 + 0.176590i \(0.943493\pi\)
\(444\) 0 0
\(445\) 33.0000 11.0000i 1.56435 0.521450i
\(446\) 18.0000i 0.852325i
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) 13.0000 13.0000i 0.613508 0.613508i −0.330350 0.943858i \(-0.607167\pi\)
0.943858 + 0.330350i \(0.107167\pi\)
\(450\) 0 0
\(451\) 14.0000 0.659234
\(452\) −3.00000 3.00000i −0.141108 0.141108i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 2.00000 + 16.0000i 0.0937614 + 0.750092i
\(456\) 0 0
\(457\) 2.00000i 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) −15.0000 15.0000i −0.700904 0.700904i
\(459\) 0 0
\(460\) −3.00000 + 1.00000i −0.139876 + 0.0466252i
\(461\) 11.0000 11.0000i 0.512321 0.512321i −0.402916 0.915237i \(-0.632003\pi\)
0.915237 + 0.402916i \(0.132003\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i −0.928316 0.371792i \(-0.878744\pi\)
0.928316 0.371792i \(-0.121256\pi\)
\(464\) 8.00000i 0.371391i
\(465\) 0 0
\(466\) −1.00000 1.00000i −0.0463241 0.0463241i
\(467\) −7.00000 7.00000i −0.323921 0.323921i 0.526348 0.850269i \(-0.323561\pi\)
−0.850269 + 0.526348i \(0.823561\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) −10.0000 + 20.0000i −0.461266 + 0.922531i
\(471\) 0 0
\(472\) 9.00000 + 9.00000i 0.414259 + 0.414259i
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 3.00000 21.0000i 0.137649 0.963546i
\(476\) 2.00000 + 2.00000i 0.0916698 + 0.0916698i
\(477\) 0 0
\(478\) −1.00000 + 1.00000i −0.0457389 + 0.0457389i
\(479\) −19.0000 + 19.0000i −0.868132 + 0.868132i −0.992266 0.124133i \(-0.960385\pi\)
0.124133 + 0.992266i \(0.460385\pi\)
\(480\) 0 0
\(481\) 16.0000 + 24.0000i 0.729537 + 1.09431i
\(482\) 1.00000 1.00000i 0.0455488 0.0455488i
\(483\) 0 0
\(484\) 9.00000i 0.409091i
\(485\) 14.0000 28.0000i 0.635707 1.27141i
\(486\) 0 0
\(487\) 8.00000i 0.362515i 0.983436 + 0.181257i \(0.0580167\pi\)
−0.983436 + 0.181257i \(0.941983\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 0 0
\(490\) 3.00000 6.00000i 0.135526 0.271052i
\(491\) 38.0000i 1.71492i 0.514554 + 0.857458i \(0.327958\pi\)
−0.514554 + 0.857458i \(0.672042\pi\)
\(492\) 0 0
\(493\) −8.00000 + 8.00000i −0.360302 + 0.360302i
\(494\) −15.0000 3.00000i −0.674882 0.134976i
\(495\) 0 0
\(496\) 1.00000 1.00000i 0.0449013 0.0449013i
\(497\) 10.0000 10.0000i 0.448561 0.448561i
\(498\) 0 0
\(499\) −19.0000 19.0000i −0.850557 0.850557i 0.139645 0.990202i \(-0.455404\pi\)
−0.990202 + 0.139645i \(0.955404\pi\)
\(500\) 2.00000 + 11.0000i 0.0894427 + 0.491935i
\(501\) 0 0
\(502\) −18.0000 −0.803379
\(503\) 15.0000 + 15.0000i 0.668817 + 0.668817i 0.957442 0.288625i \(-0.0931982\pi\)
−0.288625 + 0.957442i \(0.593198\pi\)
\(504\) 0 0
\(505\) 12.0000 24.0000i 0.533993 1.06799i
\(506\) 2.00000i 0.0889108i
\(507\) 0 0
\(508\) −3.00000 3.00000i −0.133103 0.133103i
\(509\) 1.00000 + 1.00000i 0.0443242 + 0.0443242i 0.728922 0.684597i \(-0.240022\pi\)
−0.684597 + 0.728922i \(0.740022\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.0000 21.0000i 0.926270 0.926270i
\(515\) −15.0000 + 5.00000i −0.660979 + 0.220326i
\(516\) 0 0
\(517\) 10.0000 + 10.0000i 0.439799 + 0.439799i
\(518\) 16.0000i 0.703000i
\(519\) 0 0
\(520\) 8.00000 1.00000i 0.350823 0.0438529i
\(521\) 10.0000 0.438108 0.219054 0.975713i \(-0.429703\pi\)
0.219054 + 0.975713i \(0.429703\pi\)
\(522\) 0 0
\(523\) −15.0000 15.0000i −0.655904 0.655904i 0.298504 0.954408i \(-0.403512\pi\)
−0.954408 + 0.298504i \(0.903512\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 3.00000 3.00000i 0.130806 0.130806i
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) 21.0000i 0.913043i
\(530\) 3.00000 1.00000i 0.130312 0.0434372i
\(531\) 0 0
\(532\) −6.00000 6.00000i −0.260133 0.260133i
\(533\) 35.0000 + 7.00000i 1.51602 + 0.303204i
\(534\) 0 0
\(535\) −3.00000 + 1.00000i −0.129701 + 0.0432338i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) 4.00000 0.172452
\(539\) −3.00000 3.00000i −0.129219 0.129219i
\(540\) 0 0
\(541\) −27.0000 27.0000i −1.16082 1.16082i −0.984296 0.176524i \(-0.943515\pi\)
−0.176524 0.984296i \(-0.556485\pi\)
\(542\) 3.00000 3.00000i 0.128861 0.128861i
\(543\) 0 0
\(544\) 1.00000 1.00000i 0.0428746 0.0428746i
\(545\) 5.00000 + 15.0000i 0.214176 + 0.642529i
\(546\) 0 0
\(547\) 23.0000 23.0000i 0.983409 0.983409i −0.0164556 0.999865i \(-0.505238\pi\)
0.999865 + 0.0164556i \(0.00523822\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 7.00000 + 1.00000i 0.298481 + 0.0426401i
\(551\) 24.0000 24.0000i 1.02243 1.02243i
\(552\) 0 0
\(553\) 20.0000i 0.850487i
\(554\) 11.0000 11.0000i 0.467345 0.467345i
\(555\) 0 0
\(556\) 2.00000i 0.0848189i
\(557\) 32.0000 1.35588 0.677942 0.735116i \(-0.262872\pi\)
0.677942 + 0.735116i \(0.262872\pi\)
\(558\) 0 0
\(559\) 5.00000 + 1.00000i 0.211477 + 0.0422955i
\(560\) 4.00000 + 2.00000i 0.169031 + 0.0845154i
\(561\) 0 0
\(562\) −9.00000 + 9.00000i −0.379642 + 0.379642i
\(563\) 31.0000 31.0000i 1.30649 1.30649i 0.382566 0.923928i \(-0.375040\pi\)
0.923928 0.382566i \(-0.124960\pi\)
\(564\) 0 0
\(565\) −3.00000 9.00000i −0.126211 0.378633i
\(566\) 15.0000 + 15.0000i 0.630497 + 0.630497i
\(567\) 0 0
\(568\) −5.00000 5.00000i −0.209795 0.209795i
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 22.0000i 0.920671i −0.887745 0.460336i \(-0.847729\pi\)
0.887745 0.460336i \(-0.152271\pi\)
\(572\) 1.00000 5.00000i 0.0418121 0.209061i
\(573\) 0 0
\(574\) 14.0000 + 14.0000i 0.584349 + 0.584349i
\(575\) −7.00000 1.00000i −0.291920 0.0417029i
\(576\) 0 0
\(577\) 14.0000i 0.582828i −0.956597 0.291414i \(-0.905874\pi\)
0.956597 0.291414i \(-0.0941257\pi\)
\(578\) −15.0000 −0.623918
\(579\) 0 0
\(580\) −8.00000 + 16.0000i −0.332182 + 0.664364i
\(581\) −36.0000 −1.49353
\(582\) 0 0
\(583\) 2.00000i 0.0828315i
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 22.0000 0.908812
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) −6.00000 −0.247226
\(590\) 9.00000 + 27.0000i 0.370524 + 1.11157i
\(591\) 0 0
\(592\) 8.00000 0.328798
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 0 0
\(595\) 2.00000 + 6.00000i 0.0819920 + 0.245976i
\(596\) −1.00000 1.00000i −0.0409616 0.0409616i
\(597\) 0 0
\(598\) −1.00000 + 5.00000i −0.0408930 + 0.204465i
\(599\) 26.0000i 1.06233i −0.847268 0.531166i \(-0.821754\pi\)
0.847268 0.531166i \(-0.178246\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 2.00000 + 2.00000i 0.0815139 + 0.0815139i
\(603\) 0 0
\(604\) −3.00000 3.00000i −0.122068 0.122068i
\(605\) −9.00000 + 18.0000i −0.365902 + 0.731804i
\(606\) 0 0
\(607\) −9.00000 + 9.00000i −0.365299 + 0.365299i −0.865759 0.500461i \(-0.833164\pi\)
0.500461 + 0.865759i \(0.333164\pi\)
\(608\) −3.00000 + 3.00000i −0.121666 + 0.121666i
\(609\) 0 0
\(610\) −2.00000 + 4.00000i −0.0809776 + 0.161955i
\(611\) 20.0000 + 30.0000i 0.809113 + 1.21367i
\(612\) 0 0
\(613\) 4.00000 0.161558 0.0807792 0.996732i \(-0.474259\pi\)
0.0807792 + 0.996732i \(0.474259\pi\)
\(614\) 10.0000i 0.403567i
\(615\) 0 0
\(616\) 2.00000 2.00000i 0.0805823 0.0805823i
\(617\) 38.0000i 1.52982i −0.644136 0.764911i \(-0.722783\pi\)
0.644136 0.764911i \(-0.277217\pi\)
\(618\) 0 0
\(619\) −9.00000 + 9.00000i −0.361741 + 0.361741i −0.864453 0.502713i \(-0.832335\pi\)
0.502713 + 0.864453i \(0.332335\pi\)
\(620\) 3.00000 1.00000i 0.120483 0.0401610i
\(621\) 0 0
\(622\) 2.00000 0.0801927
\(623\) 22.0000 22.0000i 0.881411 0.881411i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 9.00000 9.00000i 0.359712 0.359712i
\(627\) 0 0
\(628\) 15.0000 15.0000i 0.598565 0.598565i
\(629\) 8.00000 + 8.00000i 0.318981 + 0.318981i
\(630\) 0 0
\(631\) 23.0000 + 23.0000i 0.915616 + 0.915616i 0.996707 0.0810911i \(-0.0258405\pi\)
−0.0810911 + 0.996707i \(0.525840\pi\)
\(632\) −10.0000 −0.397779
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) −3.00000 9.00000i −0.119051 0.357154i
\(636\) 0 0
\(637\) −6.00000 9.00000i −0.237729 0.356593i
\(638\) 8.00000 + 8.00000i 0.316723 + 0.316723i
\(639\) 0 0
\(640\) 1.00000 2.00000i 0.0395285 0.0790569i
\(641\) 24.0000i 0.947943i 0.880540 + 0.473972i \(0.157180\pi\)
−0.880540 + 0.473972i \(0.842820\pi\)
\(642\) 0 0
\(643\) −10.0000 −0.394362 −0.197181 0.980367i \(-0.563179\pi\)
−0.197181 + 0.980367i \(0.563179\pi\)
\(644\) −2.00000 + 2.00000i −0.0788110 + 0.0788110i
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) 13.0000 + 13.0000i 0.511083 + 0.511083i 0.914858 0.403775i \(-0.132302\pi\)
−0.403775 + 0.914858i \(0.632302\pi\)
\(648\) 0 0
\(649\) 18.0000 0.706562
\(650\) 17.0000 + 6.00000i 0.666795 + 0.235339i
\(651\) 0 0
\(652\) 20.0000i 0.783260i
\(653\) 15.0000 + 15.0000i 0.586995 + 0.586995i 0.936817 0.349821i \(-0.113758\pi\)
−0.349821 + 0.936817i \(0.613758\pi\)
\(654\) 0 0
\(655\) 24.0000 + 12.0000i 0.937758 + 0.468879i
\(656\) 7.00000 7.00000i 0.273304 0.273304i
\(657\) 0 0
\(658\) 20.0000i 0.779681i
\(659\) 38.0000i 1.48027i −0.672458 0.740135i \(-0.734762\pi\)
0.672458 0.740135i \(-0.265238\pi\)
\(660\) 0 0
\(661\) 13.0000 + 13.0000i 0.505641 + 0.505641i 0.913186 0.407544i \(-0.133615\pi\)
−0.407544 + 0.913186i \(0.633615\pi\)
\(662\) −21.0000 21.0000i −0.816188 0.816188i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) −6.00000 18.0000i −0.232670 0.698010i
\(666\) 0 0
\(667\) −8.00000 8.00000i −0.309761 0.309761i
\(668\) 14.0000 0.541676
\(669\) 0 0
\(670\) −24.0000 12.0000i −0.927201 0.463600i
\(671\) 2.00000 + 2.00000i 0.0772091 + 0.0772091i
\(672\) 0 0
\(673\) −17.0000 + 17.0000i −0.655302 + 0.655302i −0.954265 0.298963i \(-0.903359\pi\)
0.298963 + 0.954265i \(0.403359\pi\)
\(674\) −5.00000 + 5.00000i −0.192593 + 0.192593i
\(675\) 0 0
\(676\) 5.00000 12.0000i 0.192308 0.461538i
\(677\) −13.0000 + 13.0000i −0.499631 + 0.499631i −0.911323 0.411692i \(-0.864938\pi\)
0.411692 + 0.911323i \(0.364938\pi\)
\(678\) 0 0
\(679\) 28.0000i 1.07454i
\(680\) 3.00000 1.00000i 0.115045 0.0383482i
\(681\) 0 0
\(682\) 2.00000i 0.0765840i
\(683\) 12.0000i 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) 0 0
\(688\) 1.00000 1.00000i 0.0381246 0.0381246i
\(689\) 1.00000 5.00000i 0.0380970 0.190485i
\(690\) 0 0
\(691\) 21.0000 21.0000i 0.798878 0.798878i −0.184041 0.982919i \(-0.558918\pi\)
0.982919 + 0.184041i \(0.0589179\pi\)
\(692\) −9.00000 + 9.00000i −0.342129 + 0.342129i
\(693\) 0 0
\(694\) −5.00000 5.00000i −0.189797 0.189797i
\(695\) −2.00000 + 4.00000i −0.0758643 + 0.151729i
\(696\) 0 0
\(697\) 14.0000 0.530288
\(698\) 21.0000 + 21.0000i 0.794862 + 0.794862i
\(699\) 0 0
\(700\) 6.00000 + 8.00000i 0.226779 + 0.302372i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) −24.0000 24.0000i −0.905177 0.905177i
\(704\) −1.00000 1.00000i −0.0376889 0.0376889i
\(705\) 0 0
\(706\) 4.00000i 0.150542i
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) −33.0000 + 33.0000i −1.23934 + 1.23934i −0.279070 + 0.960271i \(0.590026\pi\)
−0.960271 + 0.279070i \(0.909974\pi\)
\(710\) −5.00000 15.0000i −0.187647 0.562940i
\(711\) 0 0
\(712\) −11.0000 11.0000i −0.412242 0.412242i
\(713\) 2.00000i 0.0749006i
\(714\) 0 0
\(715\) 7.00000 9.00000i 0.261785 0.336581i
\(716\) 20.0000 0.747435
\(717\) 0 0
\(718\) −5.00000 5.00000i −0.186598 0.186598i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) −10.0000 + 10.0000i −0.372419 + 0.372419i
\(722\) −1.00000 −0.0372161
\(723\) 0 0
\(724\) 16.0000i 0.594635i
\(725\) −32.0000 + 24.0000i −1.18845 + 0.891338i
\(726\) 0 0
\(727\) −1.00000 1.00000i −0.0370879 0.0370879i 0.688320 0.725408i \(-0.258349\pi\)
−0.725408 + 0.688320i \(0.758349\pi\)
\(728\) 6.00000 4.00000i 0.222375 0.148250i
\(729\) 0 0
\(730\) −12.0000 6.00000i −0.444140 0.222070i
\(731\) 2.00000 0.0739727
\(732\) 0 0
\(733\) 20.0000 0.738717 0.369358 0.929287i \(-0.379577\pi\)
0.369358 + 0.929287i \(0.379577\pi\)
\(734\) 21.0000 + 21.0000i 0.775124 + 0.775124i
\(735\) 0 0
\(736\) 1.00000 + 1.00000i 0.0368605 + 0.0368605i
\(737\) −12.0000 + 12.0000i −0.442026 + 0.442026i
\(738\) 0 0
\(739\) −5.00000 + 5.00000i −0.183928 + 0.183928i −0.793065 0.609137i \(-0.791516\pi\)
0.609137 + 0.793065i \(0.291516\pi\)
\(740\) 16.0000 + 8.00000i 0.588172 + 0.294086i
\(741\) 0 0
\(742\) 2.00000 2.00000i 0.0734223 0.0734223i
\(743\) −18.0000 −0.660356 −0.330178 0.943919i \(-0.607109\pi\)
−0.330178 + 0.943919i \(0.607109\pi\)
\(744\) 0 0
\(745\) −1.00000 3.00000i −0.0366372 0.109911i
\(746\) 5.00000 5.00000i 0.183063 0.183063i
\(747\) 0 0
\(748\) 2.00000i 0.0731272i
\(749\) −2.00000 + 2.00000i −0.0730784 + 0.0730784i
\(750\) 0 0
\(751\) 38.0000i 1.38664i 0.720630 + 0.693320i \(0.243853\pi\)
−0.720630 + 0.693320i \(0.756147\pi\)
\(752\) 10.0000 0.364662
\(753\) 0 0
\(754\) 16.0000 + 24.0000i 0.582686 + 0.874028i
\(755\) −3.00000 9.00000i −0.109181 0.327544i
\(756\) 0 0
\(757\) 25.0000 25.0000i 0.908640 0.908640i −0.0875221 0.996163i \(-0.527895\pi\)
0.996163 + 0.0875221i \(0.0278948\pi\)
\(758\) −23.0000 + 23.0000i −0.835398 + 0.835398i
\(759\) 0 0
\(760\) −9.00000 + 3.00000i −0.326464 + 0.108821i
\(761\) −1.00000 1.00000i −0.0362500 0.0362500i 0.688749 0.724999i \(-0.258160\pi\)
−0.724999 + 0.688749i \(0.758160\pi\)
\(762\) 0 0
\(763\) 10.0000 + 10.0000i 0.362024 + 0.362024i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) 18.0000i 0.650366i
\(767\) 45.0000 + 9.00000i 1.62486 + 0.324971i
\(768\) 0 0
\(769\) 23.0000 + 23.0000i 0.829401 + 0.829401i 0.987434 0.158033i \(-0.0505151\pi\)
−0.158033 + 0.987434i \(0.550515\pi\)
\(770\) 6.00000 2.00000i 0.216225 0.0720750i
\(771\) 0 0
\(772\) 2.00000i 0.0719816i
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 7.00000 + 1.00000i 0.251447 + 0.0359211i
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) 2.00000i 0.0717035i
\(779\) −42.0000 −1.50481
\(780\) 0 0
\(781\) −10.0000 −0.357828
\(782\) 2.00000i 0.0715199i
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 45.0000 15.0000i 1.60612 0.535373i
\(786\) 0 0
\(787\) −30.0000 −1.06938 −0.534692 0.845047i \(-0.679572\pi\)
−0.534692 + 0.845047i \(0.679572\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 0 0
\(790\) −20.0000 10.0000i −0.711568 0.355784i
\(791\) −6.00000 6.00000i −0.213335 0.213335i
\(792\) 0 0
\(793\) 4.00000 + 6.00000i 0.142044 + 0.213066i
\(794\) 8.00000i 0.283909i
\(795\) 0 0
\(796\) −24.0000 −0.850657
\(797\) 5.00000 + 5.00000i 0.177109 + 0.177109i 0.790094 0.612985i \(-0.210032\pi\)
−0.612985 + 0.790094i \(0.710032\pi\)
\(798\) 0 0
\(799\) 10.0000 + 10.0000i 0.353775 + 0.353775i
\(800\) 4.00000 3.00000i 0.141421 0.106066i
\(801\) 0 0
\(802\) 19.0000 19.0000i 0.670913 0.670913i
\(803\) −6.00000 + 6.00000i −0.211735 + 0.211735i
\(804\) 0 0
\(805\) −6.00000 + 2.00000i −0.211472 + 0.0704907i
\(806\) 1.00000 5.00000i 0.0352235 0.176117i
\(807\) 0 0
\(808\) −12.0000 −0.422159
\(809\) 12.0000i 0.421898i 0.977497 + 0.210949i \(0.0676553\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(810\) 0 0
\(811\) 5.00000 5.00000i 0.175574 0.175574i −0.613849 0.789423i \(-0.710380\pi\)
0.789423 + 0.613849i \(0.210380\pi\)
\(812\) 16.0000i 0.561490i
\(813\) 0 0
\(814\) 8.00000 8.00000i 0.280400 0.280400i
\(815\) −20.0000 + 40.0000i −0.700569 + 1.40114i
\(816\) 0 0
\(817\) −6.00000 −0.209913
\(818\) −9.00000 + 9.00000i −0.314678 + 0.314678i
\(819\) 0 0
\(820\) 21.0000 7.00000i 0.733352 0.244451i
\(821\) 19.0000 19.0000i 0.663105 0.663105i −0.293006 0.956111i \(-0.594656\pi\)
0.956111 + 0.293006i \(0.0946556\pi\)
\(822\) 0 0
\(823\) −3.00000 + 3.00000i −0.104573 + 0.104573i −0.757458 0.652884i \(-0.773559\pi\)
0.652884 + 0.757458i \(0.273559\pi\)
\(824\) 5.00000 + 5.00000i 0.174183 + 0.174183i
\(825\) 0 0
\(826\) 18.0000 + 18.0000i 0.626300 + 0.626300i
\(827\) −26.0000 −0.904109 −0.452054 0.891990i \(-0.649309\pi\)
−0.452054 + 0.891990i \(0.649309\pi\)
\(828\) 0 0
\(829\) −18.0000 −0.625166 −0.312583 0.949890i \(-0.601194\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(830\) −18.0000 + 36.0000i −0.624789 + 1.24958i
\(831\) 0 0
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) −3.00000 3.00000i −0.103944 0.103944i
\(834\) 0 0
\(835\) 28.0000 + 14.0000i 0.968980 + 0.484490i
\(836\) 6.00000i 0.207514i
\(837\) 0 0
\(838\) −22.0000 −0.759977
\(839\) −7.00000 + 7.00000i −0.241667 + 0.241667i −0.817539 0.575873i \(-0.804662\pi\)
0.575873 + 0.817539i \(0.304662\pi\)
\(840\) 0 0
\(841\) −35.0000 −1.20690
\(842\) −9.00000 9.00000i −0.310160 0.310160i
\(843\) 0 0
\(844\) 12.0000 0.413057
\(845\) 22.0000 19.0000i 0.756823 0.653620i
\(846\) 0 0
\(847\) 18.0000i 0.618487i
\(848\) −1.00000 1.00000i −0.0343401 0.0343401i
\(849\) 0 0
\(850\) 7.00000 + 1.00000i 0.240098 + 0.0342997i
\(851\) −8.00000 + 8.00000i −0.274236 + 0.274236i
\(852\) 0 0
\(853\) 38.0000i 1.30110i −0.759465 0.650548i \(-0.774539\pi\)
0.759465 0.650548i \(-0.225461\pi\)
\(854\) 4.00000i 0.136877i
\(855\) 0 0
\(856\) 1.00000 + 1.00000i 0.0341793 + 0.0341793i
\(857\) −11.0000 11.0000i −0.375753 0.375753i 0.493814 0.869567i \(-0.335602\pi\)
−0.869567 + 0.493814i \(0.835602\pi\)
\(858\) 0 0
\(859\) 34.0000i 1.16007i −0.814593 0.580033i \(-0.803040\pi\)
0.814593 0.580033i \(-0.196960\pi\)
\(860\) 3.00000 1.00000i 0.102299 0.0340997i
\(861\) 0 0
\(862\) −15.0000 15.0000i −0.510902 0.510902i
\(863\) −34.0000 −1.15737 −0.578687 0.815550i \(-0.696435\pi\)
−0.578687 + 0.815550i \(0.696435\pi\)
\(864\) 0 0
\(865\) −27.0000 + 9.00000i −0.918028 + 0.306009i
\(866\) 9.00000 + 9.00000i 0.305832 + 0.305832i
\(867\) 0 0
\(868\) 2.00000 2.00000i 0.0678844 0.0678844i
\(869\) −10.0000 + 10.0000i −0.339227 + 0.339227i
\(870\) 0 0
\(871\) −36.0000 + 24.0000i −1.21981 + 0.813209i
\(872\) 5.00000 5.00000i 0.169321 0.169321i
\(873\) 0 0
\(874\) 6.00000i 0.202953i
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) 0 0
\(877\) 6.00000i 0.202606i −0.994856 0.101303i \(-0.967699\pi\)
0.994856 0.101303i \(-0.0323011\pi\)
\(878\) 32.0000i 1.07995i
\(879\) 0 0
\(880\) −1.00000 3.00000i −0.0337100 0.101130i
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 0 0
\(883\) 25.0000 25.0000i 0.841317 0.841317i −0.147713 0.989030i \(-0.547191\pi\)
0.989030 + 0.147713i \(0.0471913\pi\)
\(884\) 1.00000 5.00000i 0.0336336 0.168168i
\(885\) 0 0
\(886\) −17.0000 + 17.0000i −0.571126 + 0.571126i
\(887\) −19.0000 + 19.0000i −0.637958 + 0.637958i −0.950051 0.312094i \(-0.898970\pi\)
0.312094 + 0.950051i \(0.398970\pi\)
\(888\) 0 0
\(889\) −6.00000 6.00000i −0.201234 0.201234i
\(890\) −11.0000 33.0000i −0.368721 1.10616i
\(891\) 0 0
\(892\) −18.0000 −0.602685
\(893\) −30.0000 30.0000i −1.00391 1.00391i
\(894\) 0 0
\(895\) 40.0000 + 20.0000i 1.33705 + 0.668526i
\(896\) 2.00000i 0.0668153i
\(897\) 0 0
\(898\) −13.0000 13.0000i −0.433816 0.433816i
\(899\) 8.00000 + 8.00000i 0.266815 + 0.266815i
\(900\) 0 0
\(901\) 2.00000i 0.0666297i
\(902\) 14.0000i 0.466149i
\(903\) 0 0
\(904\) −3.00000 + 3.00000i −0.0997785 + 0.0997785i
\(905\) 16.0000 32.0000i 0.531858 1.06372i
\(906\) 0 0
\(907\) 7.00000 + 7.00000i 0.232431 + 0.232431i 0.813707 0.581276i \(-0.197446\pi\)
−0.581276 + 0.813707i \(0.697446\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) 16.0000 2.00000i 0.530395 0.0662994i
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) 18.0000 + 18.0000i 0.595713 + 0.595713i
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) −15.0000 + 15.0000i −0.495614 + 0.495614i
\(917\) 24.0000 0.792550
\(918\) 0 0
\(919\) 14.0000i 0.461817i −0.972975 0.230909i \(-0.925830\pi\)
0.972975 0.230909i \(-0.0741699\pi\)
\(920\) 1.00000 + 3.00000i 0.0329690 + 0.0989071i
\(921\) 0 0
\(922\) −11.0000 11.0000i −0.362266 0.362266i
\(923\) −25.0000 5.00000i −0.822885 0.164577i
\(924\) 0 0
\(925\) 24.0000 + 32.0000i 0.789115 + 1.05215i
\(926\) −16.0000 −0.525793
\(927\) 0 0
\(928\) 8.00000 0.262613
\(929\) 13.0000 + 13.0000i 0.426516 + 0.426516i 0.887440 0.460924i \(-0.152482\pi\)
−0.460924 + 0.887440i \(0.652482\pi\)
\(930\) 0 0
\(931\) 9.00000 + 9.00000i 0.294963 + 0.294963i
\(932\) −1.00000 + 1.00000i −0.0327561 + 0.0327561i
\(933\) 0 0
\(934\) −7.00000 + 7.00000i −0.229047 + 0.229047i
\(935\) 2.00000 4.00000i 0.0654070 0.130814i
\(936\) 0 0
\(937\) 9.00000 9.00000i 0.294017 0.294017i −0.544648 0.838665i \(-0.683337\pi\)
0.838665 + 0.544648i \(0.183337\pi\)
\(938\) −24.0000 −0.783628
\(939\) 0 0
\(940\) 20.0000 + 10.0000i 0.652328 + 0.326164i
\(941\) −17.0000 + 17.0000i −0.554184 + 0.554184i −0.927646 0.373462i \(-0.878171\pi\)
0.373462 + 0.927646i \(0.378171\pi\)
\(942\) 0 0
\(943\) 14.0000i 0.455903i
\(944\) 9.00000 9.00000i 0.292925 0.292925i
\(945\) 0 0
\(946\) 2.00000i 0.0650256i
\(947\) −10.0000 −0.324956 −0.162478 0.986712i \(-0.551949\pi\)
−0.162478 + 0.986712i \(0.551949\pi\)
\(948\) 0 0
\(949\) −18.0000 + 12.0000i −0.584305 + 0.389536i
\(950\) −21.0000 3.00000i −0.681330 0.0973329i
\(951\) 0 0
\(952\) 2.00000 2.00000i 0.0648204 0.0648204i
\(953\) 5.00000 5.00000i 0.161966 0.161966i −0.621471 0.783437i \(-0.713465\pi\)
0.783437 + 0.621471i \(0.213465\pi\)
\(954\) 0 0
\(955\) 16.0000 + 8.00000i 0.517748 + 0.258874i
\(956\) 1.00000 + 1.00000i 0.0323423 + 0.0323423i
\(957\) 0 0
\(958\) 19.0000 + 19.0000i 0.613862 + 0.613862i
\(959\) 0 0
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) 24.0000 16.0000i 0.773791 0.515861i
\(963\) 0 0
\(964\) −1.00000 1.00000i −0.0322078 0.0322078i
\(965\) 2.00000 4.00000i 0.0643823 0.128765i
\(966\) 0 0
\(967\) 24.0000i 0.771788i 0.922543 + 0.385894i \(0.126107\pi\)
−0.922543 + 0.385894i \(0.873893\pi\)
\(968\) 9.00000 0.289271
\(969\) 0 0
\(970\) −28.0000 14.0000i −0.899026 0.449513i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 4.00000i 0.128234i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 2.00000i 0.0639857i −0.999488 0.0319928i \(-0.989815\pi\)
0.999488 0.0319928i \(-0.0101854\pi\)
\(978\) 0 0
\(979\) −22.0000 −0.703123
\(980\) −6.00000 3.00000i −0.191663 0.0958315i
\(981\) 0 0
\(982\) 38.0000 1.21263
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 6.00000 12.0000i 0.191176 0.382352i
\(986\) 8.00000 + 8.00000i 0.254772 + 0.254772i
\(987\) 0 0
\(988\) −3.00000 + 15.0000i −0.0954427 + 0.477214i
\(989\) 2.00000i 0.0635963i
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) −1.00000 1.00000i −0.0317500 0.0317500i
\(993\) 0 0
\(994\) −10.0000 10.0000i −0.317181 0.317181i
\(995\) −48.0000 24.0000i −1.52170 0.760851i
\(996\) 0 0
\(997\) 13.0000 13.0000i 0.411714 0.411714i −0.470621 0.882335i \(-0.655970\pi\)
0.882335 + 0.470621i \(0.155970\pi\)
\(998\) −19.0000 + 19.0000i −0.601434 + 0.601434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.w.a.343.1 2
3.2 odd 2 130.2.j.c.83.1 yes 2
5.2 odd 4 1170.2.m.b.577.1 2
12.11 even 2 1040.2.cd.c.993.1 2
13.8 odd 4 1170.2.m.b.73.1 2
15.2 even 4 130.2.g.b.57.1 2
15.8 even 4 650.2.g.c.57.1 2
15.14 odd 2 650.2.j.a.343.1 2
39.8 even 4 130.2.g.b.73.1 yes 2
60.47 odd 4 1040.2.bg.b.577.1 2
65.47 even 4 inner 1170.2.w.a.307.1 2
156.47 odd 4 1040.2.bg.b.593.1 2
195.8 odd 4 650.2.j.a.307.1 2
195.47 odd 4 130.2.j.c.47.1 yes 2
195.164 even 4 650.2.g.c.593.1 2
780.47 even 4 1040.2.cd.c.177.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.b.57.1 2 15.2 even 4
130.2.g.b.73.1 yes 2 39.8 even 4
130.2.j.c.47.1 yes 2 195.47 odd 4
130.2.j.c.83.1 yes 2 3.2 odd 2
650.2.g.c.57.1 2 15.8 even 4
650.2.g.c.593.1 2 195.164 even 4
650.2.j.a.307.1 2 195.8 odd 4
650.2.j.a.343.1 2 15.14 odd 2
1040.2.bg.b.577.1 2 60.47 odd 4
1040.2.bg.b.593.1 2 156.47 odd 4
1040.2.cd.c.177.1 2 780.47 even 4
1040.2.cd.c.993.1 2 12.11 even 2
1170.2.m.b.73.1 2 13.8 odd 4
1170.2.m.b.577.1 2 5.2 odd 4
1170.2.w.a.307.1 2 65.47 even 4 inner
1170.2.w.a.343.1 2 1.1 even 1 trivial