Properties

Label 130.2.g.b.57.1
Level $130$
Weight $2$
Character 130.57
Analytic conductor $1.038$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(57,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 130.57
Dual form 130.2.g.b.73.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.00000 - 1.00000i) q^{3} +1.00000 q^{4} +(-1.00000 - 2.00000i) q^{5} +(-1.00000 + 1.00000i) q^{6} -2.00000i q^{7} -1.00000 q^{8} +1.00000i q^{9} +(1.00000 + 2.00000i) q^{10} +(-1.00000 - 1.00000i) q^{11} +(1.00000 - 1.00000i) q^{12} +(3.00000 - 2.00000i) q^{13} +2.00000i q^{14} +(-3.00000 - 1.00000i) q^{15} +1.00000 q^{16} +(1.00000 - 1.00000i) q^{17} -1.00000i q^{18} +(3.00000 + 3.00000i) q^{19} +(-1.00000 - 2.00000i) q^{20} +(-2.00000 - 2.00000i) q^{21} +(1.00000 + 1.00000i) q^{22} +(-1.00000 - 1.00000i) q^{23} +(-1.00000 + 1.00000i) q^{24} +(-3.00000 + 4.00000i) q^{25} +(-3.00000 + 2.00000i) q^{26} +(4.00000 + 4.00000i) q^{27} -2.00000i q^{28} +8.00000i q^{29} +(3.00000 + 1.00000i) q^{30} +(1.00000 - 1.00000i) q^{31} -1.00000 q^{32} -2.00000 q^{33} +(-1.00000 + 1.00000i) q^{34} +(-4.00000 + 2.00000i) q^{35} +1.00000i q^{36} +8.00000i q^{37} +(-3.00000 - 3.00000i) q^{38} +(1.00000 - 5.00000i) q^{39} +(1.00000 + 2.00000i) q^{40} +(-7.00000 + 7.00000i) q^{41} +(2.00000 + 2.00000i) q^{42} +(-1.00000 - 1.00000i) q^{43} +(-1.00000 - 1.00000i) q^{44} +(2.00000 - 1.00000i) q^{45} +(1.00000 + 1.00000i) q^{46} -10.0000i q^{47} +(1.00000 - 1.00000i) q^{48} +3.00000 q^{49} +(3.00000 - 4.00000i) q^{50} -2.00000i q^{51} +(3.00000 - 2.00000i) q^{52} +(1.00000 - 1.00000i) q^{53} +(-4.00000 - 4.00000i) q^{54} +(-1.00000 + 3.00000i) q^{55} +2.00000i q^{56} +6.00000 q^{57} -8.00000i q^{58} +(9.00000 - 9.00000i) q^{59} +(-3.00000 - 1.00000i) q^{60} +2.00000 q^{61} +(-1.00000 + 1.00000i) q^{62} +2.00000 q^{63} +1.00000 q^{64} +(-7.00000 - 4.00000i) q^{65} +2.00000 q^{66} -12.0000 q^{67} +(1.00000 - 1.00000i) q^{68} -2.00000 q^{69} +(4.00000 - 2.00000i) q^{70} +(5.00000 - 5.00000i) q^{71} -1.00000i q^{72} +6.00000 q^{73} -8.00000i q^{74} +(1.00000 + 7.00000i) q^{75} +(3.00000 + 3.00000i) q^{76} +(-2.00000 + 2.00000i) q^{77} +(-1.00000 + 5.00000i) q^{78} -10.0000i q^{79} +(-1.00000 - 2.00000i) q^{80} +5.00000 q^{81} +(7.00000 - 7.00000i) q^{82} +18.0000i q^{83} +(-2.00000 - 2.00000i) q^{84} +(-3.00000 - 1.00000i) q^{85} +(1.00000 + 1.00000i) q^{86} +(8.00000 + 8.00000i) q^{87} +(1.00000 + 1.00000i) q^{88} +(-11.0000 + 11.0000i) q^{89} +(-2.00000 + 1.00000i) q^{90} +(-4.00000 - 6.00000i) q^{91} +(-1.00000 - 1.00000i) q^{92} -2.00000i q^{93} +10.0000i q^{94} +(3.00000 - 9.00000i) q^{95} +(-1.00000 + 1.00000i) q^{96} -14.0000 q^{97} -3.00000 q^{98} +(1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{3} + 2 q^{4} - 2 q^{5} - 2 q^{6} - 2 q^{8} + 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{15} + 2 q^{16} + 2 q^{17} + 6 q^{19} - 2 q^{20} - 4 q^{21} + 2 q^{22} - 2 q^{23} - 2 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 1.00000i 0.577350 0.577350i −0.356822 0.934172i \(-0.616140\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(4\) 1.00000 0.500000
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) −1.00000 + 1.00000i −0.408248 + 0.408248i
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000i 0.333333i
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) 2.00000i 0.534522i
\(15\) −3.00000 1.00000i −0.774597 0.258199i
\(16\) 1.00000 0.250000
\(17\) 1.00000 1.00000i 0.242536 0.242536i −0.575363 0.817898i \(-0.695139\pi\)
0.817898 + 0.575363i \(0.195139\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.00000 + 3.00000i 0.688247 + 0.688247i 0.961844 0.273597i \(-0.0882135\pi\)
−0.273597 + 0.961844i \(0.588214\pi\)
\(20\) −1.00000 2.00000i −0.223607 0.447214i
\(21\) −2.00000 2.00000i −0.436436 0.436436i
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) −1.00000 1.00000i −0.208514 0.208514i 0.595121 0.803636i \(-0.297104\pi\)
−0.803636 + 0.595121i \(0.797104\pi\)
\(24\) −1.00000 + 1.00000i −0.204124 + 0.204124i
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) −3.00000 + 2.00000i −0.588348 + 0.392232i
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) 2.00000i 0.377964i
\(29\) 8.00000i 1.48556i 0.669534 + 0.742781i \(0.266494\pi\)
−0.669534 + 0.742781i \(0.733506\pi\)
\(30\) 3.00000 + 1.00000i 0.547723 + 0.182574i
\(31\) 1.00000 1.00000i 0.179605 0.179605i −0.611578 0.791184i \(-0.709465\pi\)
0.791184 + 0.611578i \(0.209465\pi\)
\(32\) −1.00000 −0.176777
\(33\) −2.00000 −0.348155
\(34\) −1.00000 + 1.00000i −0.171499 + 0.171499i
\(35\) −4.00000 + 2.00000i −0.676123 + 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 8.00000i 1.31519i 0.753371 + 0.657596i \(0.228427\pi\)
−0.753371 + 0.657596i \(0.771573\pi\)
\(38\) −3.00000 3.00000i −0.486664 0.486664i
\(39\) 1.00000 5.00000i 0.160128 0.800641i
\(40\) 1.00000 + 2.00000i 0.158114 + 0.316228i
\(41\) −7.00000 + 7.00000i −1.09322 + 1.09322i −0.0980332 + 0.995183i \(0.531255\pi\)
−0.995183 + 0.0980332i \(0.968745\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) −1.00000 1.00000i −0.152499 0.152499i 0.626734 0.779233i \(-0.284391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(44\) −1.00000 1.00000i −0.150756 0.150756i
\(45\) 2.00000 1.00000i 0.298142 0.149071i
\(46\) 1.00000 + 1.00000i 0.147442 + 0.147442i
\(47\) 10.0000i 1.45865i −0.684167 0.729325i \(-0.739834\pi\)
0.684167 0.729325i \(-0.260166\pi\)
\(48\) 1.00000 1.00000i 0.144338 0.144338i
\(49\) 3.00000 0.428571
\(50\) 3.00000 4.00000i 0.424264 0.565685i
\(51\) 2.00000i 0.280056i
\(52\) 3.00000 2.00000i 0.416025 0.277350i
\(53\) 1.00000 1.00000i 0.137361 0.137361i −0.635083 0.772444i \(-0.719034\pi\)
0.772444 + 0.635083i \(0.219034\pi\)
\(54\) −4.00000 4.00000i −0.544331 0.544331i
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 2.00000i 0.267261i
\(57\) 6.00000 0.794719
\(58\) 8.00000i 1.05045i
\(59\) 9.00000 9.00000i 1.17170 1.17170i 0.189896 0.981804i \(-0.439185\pi\)
0.981804 0.189896i \(-0.0608151\pi\)
\(60\) −3.00000 1.00000i −0.387298 0.129099i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 + 1.00000i −0.127000 + 0.127000i
\(63\) 2.00000 0.251976
\(64\) 1.00000 0.125000
\(65\) −7.00000 4.00000i −0.868243 0.496139i
\(66\) 2.00000 0.246183
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 1.00000 1.00000i 0.121268 0.121268i
\(69\) −2.00000 −0.240772
\(70\) 4.00000 2.00000i 0.478091 0.239046i
\(71\) 5.00000 5.00000i 0.593391 0.593391i −0.345155 0.938546i \(-0.612174\pi\)
0.938546 + 0.345155i \(0.112174\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 8.00000i 0.929981i
\(75\) 1.00000 + 7.00000i 0.115470 + 0.808290i
\(76\) 3.00000 + 3.00000i 0.344124 + 0.344124i
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) −1.00000 + 5.00000i −0.113228 + 0.566139i
\(79\) 10.0000i 1.12509i −0.826767 0.562544i \(-0.809823\pi\)
0.826767 0.562544i \(-0.190177\pi\)
\(80\) −1.00000 2.00000i −0.111803 0.223607i
\(81\) 5.00000 0.555556
\(82\) 7.00000 7.00000i 0.773021 0.773021i
\(83\) 18.0000i 1.97576i 0.155230 + 0.987878i \(0.450388\pi\)
−0.155230 + 0.987878i \(0.549612\pi\)
\(84\) −2.00000 2.00000i −0.218218 0.218218i
\(85\) −3.00000 1.00000i −0.325396 0.108465i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 8.00000 + 8.00000i 0.857690 + 0.857690i
\(88\) 1.00000 + 1.00000i 0.106600 + 0.106600i
\(89\) −11.0000 + 11.0000i −1.16600 + 1.16600i −0.182858 + 0.983139i \(0.558535\pi\)
−0.983139 + 0.182858i \(0.941465\pi\)
\(90\) −2.00000 + 1.00000i −0.210819 + 0.105409i
\(91\) −4.00000 6.00000i −0.419314 0.628971i
\(92\) −1.00000 1.00000i −0.104257 0.104257i
\(93\) 2.00000i 0.207390i
\(94\) 10.0000i 1.03142i
\(95\) 3.00000 9.00000i 0.307794 0.923381i
\(96\) −1.00000 + 1.00000i −0.102062 + 0.102062i
\(97\) −14.0000 −1.42148 −0.710742 0.703452i \(-0.751641\pi\)
−0.710742 + 0.703452i \(0.751641\pi\)
\(98\) −3.00000 −0.303046
\(99\) 1.00000 1.00000i 0.100504 0.100504i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 2.00000i 0.198030i
\(103\) −5.00000 5.00000i −0.492665 0.492665i 0.416480 0.909145i \(-0.363264\pi\)
−0.909145 + 0.416480i \(0.863264\pi\)
\(104\) −3.00000 + 2.00000i −0.294174 + 0.196116i
\(105\) −2.00000 + 6.00000i −0.195180 + 0.585540i
\(106\) −1.00000 + 1.00000i −0.0971286 + 0.0971286i
\(107\) −1.00000 1.00000i −0.0966736 0.0966736i 0.657116 0.753790i \(-0.271776\pi\)
−0.753790 + 0.657116i \(0.771776\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) 5.00000 + 5.00000i 0.478913 + 0.478913i 0.904784 0.425871i \(-0.140032\pi\)
−0.425871 + 0.904784i \(0.640032\pi\)
\(110\) 1.00000 3.00000i 0.0953463 0.286039i
\(111\) 8.00000 + 8.00000i 0.759326 + 0.759326i
\(112\) 2.00000i 0.188982i
\(113\) −3.00000 + 3.00000i −0.282216 + 0.282216i −0.833992 0.551776i \(-0.813950\pi\)
0.551776 + 0.833992i \(0.313950\pi\)
\(114\) −6.00000 −0.561951
\(115\) −1.00000 + 3.00000i −0.0932505 + 0.279751i
\(116\) 8.00000i 0.742781i
\(117\) 2.00000 + 3.00000i 0.184900 + 0.277350i
\(118\) −9.00000 + 9.00000i −0.828517 + 0.828517i
\(119\) −2.00000 2.00000i −0.183340 0.183340i
\(120\) 3.00000 + 1.00000i 0.273861 + 0.0912871i
\(121\) 9.00000i 0.818182i
\(122\) −2.00000 −0.181071
\(123\) 14.0000i 1.26234i
\(124\) 1.00000 1.00000i 0.0898027 0.0898027i
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) −2.00000 −0.178174
\(127\) −3.00000 + 3.00000i −0.266207 + 0.266207i −0.827570 0.561363i \(-0.810277\pi\)
0.561363 + 0.827570i \(0.310277\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −2.00000 −0.176090
\(130\) 7.00000 + 4.00000i 0.613941 + 0.350823i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) −2.00000 −0.174078
\(133\) 6.00000 6.00000i 0.520266 0.520266i
\(134\) 12.0000 1.03664
\(135\) 4.00000 12.0000i 0.344265 1.03280i
\(136\) −1.00000 + 1.00000i −0.0857493 + 0.0857493i
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 2.00000 0.170251
\(139\) 2.00000i 0.169638i 0.996396 + 0.0848189i \(0.0270312\pi\)
−0.996396 + 0.0848189i \(0.972969\pi\)
\(140\) −4.00000 + 2.00000i −0.338062 + 0.169031i
\(141\) −10.0000 10.0000i −0.842152 0.842152i
\(142\) −5.00000 + 5.00000i −0.419591 + 0.419591i
\(143\) −5.00000 1.00000i −0.418121 0.0836242i
\(144\) 1.00000i 0.0833333i
\(145\) 16.0000 8.00000i 1.32873 0.664364i
\(146\) −6.00000 −0.496564
\(147\) 3.00000 3.00000i 0.247436 0.247436i
\(148\) 8.00000i 0.657596i
\(149\) 1.00000 + 1.00000i 0.0819232 + 0.0819232i 0.746881 0.664958i \(-0.231550\pi\)
−0.664958 + 0.746881i \(0.731550\pi\)
\(150\) −1.00000 7.00000i −0.0816497 0.571548i
\(151\) 3.00000 + 3.00000i 0.244137 + 0.244137i 0.818559 0.574422i \(-0.194773\pi\)
−0.574422 + 0.818559i \(0.694773\pi\)
\(152\) −3.00000 3.00000i −0.243332 0.243332i
\(153\) 1.00000 + 1.00000i 0.0808452 + 0.0808452i
\(154\) 2.00000 2.00000i 0.161165 0.161165i
\(155\) −3.00000 1.00000i −0.240966 0.0803219i
\(156\) 1.00000 5.00000i 0.0800641 0.400320i
\(157\) −15.0000 15.0000i −1.19713 1.19713i −0.975022 0.222108i \(-0.928706\pi\)
−0.222108 0.975022i \(-0.571294\pi\)
\(158\) 10.0000i 0.795557i
\(159\) 2.00000i 0.158610i
\(160\) 1.00000 + 2.00000i 0.0790569 + 0.158114i
\(161\) −2.00000 + 2.00000i −0.157622 + 0.157622i
\(162\) −5.00000 −0.392837
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) −7.00000 + 7.00000i −0.546608 + 0.546608i
\(165\) 2.00000 + 4.00000i 0.155700 + 0.311400i
\(166\) 18.0000i 1.39707i
\(167\) 14.0000i 1.08335i 0.840587 + 0.541676i \(0.182210\pi\)
−0.840587 + 0.541676i \(0.817790\pi\)
\(168\) 2.00000 + 2.00000i 0.154303 + 0.154303i
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 3.00000 + 1.00000i 0.230089 + 0.0766965i
\(171\) −3.00000 + 3.00000i −0.229416 + 0.229416i
\(172\) −1.00000 1.00000i −0.0762493 0.0762493i
\(173\) 9.00000 + 9.00000i 0.684257 + 0.684257i 0.960957 0.276699i \(-0.0892406\pi\)
−0.276699 + 0.960957i \(0.589241\pi\)
\(174\) −8.00000 8.00000i −0.606478 0.606478i
\(175\) 8.00000 + 6.00000i 0.604743 + 0.453557i
\(176\) −1.00000 1.00000i −0.0753778 0.0753778i
\(177\) 18.0000i 1.35296i
\(178\) 11.0000 11.0000i 0.824485 0.824485i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 2.00000 1.00000i 0.149071 0.0745356i
\(181\) 16.0000i 1.18927i 0.803996 + 0.594635i \(0.202704\pi\)
−0.803996 + 0.594635i \(0.797296\pi\)
\(182\) 4.00000 + 6.00000i 0.296500 + 0.444750i
\(183\) 2.00000 2.00000i 0.147844 0.147844i
\(184\) 1.00000 + 1.00000i 0.0737210 + 0.0737210i
\(185\) 16.0000 8.00000i 1.17634 0.588172i
\(186\) 2.00000i 0.146647i
\(187\) −2.00000 −0.146254
\(188\) 10.0000i 0.729325i
\(189\) 8.00000 8.00000i 0.581914 0.581914i
\(190\) −3.00000 + 9.00000i −0.217643 + 0.652929i
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 1.00000 1.00000i 0.0721688 0.0721688i
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 14.0000 1.00514
\(195\) −11.0000 + 3.00000i −0.787726 + 0.214834i
\(196\) 3.00000 0.214286
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) −24.0000 −1.70131 −0.850657 0.525720i \(-0.823796\pi\)
−0.850657 + 0.525720i \(0.823796\pi\)
\(200\) 3.00000 4.00000i 0.212132 0.282843i
\(201\) −12.0000 + 12.0000i −0.846415 + 0.846415i
\(202\) 12.0000i 0.844317i
\(203\) 16.0000 1.12298
\(204\) 2.00000i 0.140028i
\(205\) 21.0000 + 7.00000i 1.46670 + 0.488901i
\(206\) 5.00000 + 5.00000i 0.348367 + 0.348367i
\(207\) 1.00000 1.00000i 0.0695048 0.0695048i
\(208\) 3.00000 2.00000i 0.208013 0.138675i
\(209\) 6.00000i 0.415029i
\(210\) 2.00000 6.00000i 0.138013 0.414039i
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 1.00000 1.00000i 0.0686803 0.0686803i
\(213\) 10.0000i 0.685189i
\(214\) 1.00000 + 1.00000i 0.0683586 + 0.0683586i
\(215\) −1.00000 + 3.00000i −0.0681994 + 0.204598i
\(216\) −4.00000 4.00000i −0.272166 0.272166i
\(217\) −2.00000 2.00000i −0.135769 0.135769i
\(218\) −5.00000 5.00000i −0.338643 0.338643i
\(219\) 6.00000 6.00000i 0.405442 0.405442i
\(220\) −1.00000 + 3.00000i −0.0674200 + 0.202260i
\(221\) 1.00000 5.00000i 0.0672673 0.336336i
\(222\) −8.00000 8.00000i −0.536925 0.536925i
\(223\) 18.0000i 1.20537i −0.797980 0.602685i \(-0.794098\pi\)
0.797980 0.602685i \(-0.205902\pi\)
\(224\) 2.00000i 0.133631i
\(225\) −4.00000 3.00000i −0.266667 0.200000i
\(226\) 3.00000 3.00000i 0.199557 0.199557i
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 6.00000 0.397360
\(229\) −15.0000 + 15.0000i −0.991228 + 0.991228i −0.999962 0.00873396i \(-0.997220\pi\)
0.00873396 + 0.999962i \(0.497220\pi\)
\(230\) 1.00000 3.00000i 0.0659380 0.197814i
\(231\) 4.00000i 0.263181i
\(232\) 8.00000i 0.525226i
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) −2.00000 3.00000i −0.130744 0.196116i
\(235\) −20.0000 + 10.0000i −1.30466 + 0.652328i
\(236\) 9.00000 9.00000i 0.585850 0.585850i
\(237\) −10.0000 10.0000i −0.649570 0.649570i
\(238\) 2.00000 + 2.00000i 0.129641 + 0.129641i
\(239\) −1.00000 1.00000i −0.0646846 0.0646846i 0.674024 0.738709i \(-0.264564\pi\)
−0.738709 + 0.674024i \(0.764564\pi\)
\(240\) −3.00000 1.00000i −0.193649 0.0645497i
\(241\) 1.00000 + 1.00000i 0.0644157 + 0.0644157i 0.738581 0.674165i \(-0.235496\pi\)
−0.674165 + 0.738581i \(0.735496\pi\)
\(242\) 9.00000i 0.578542i
\(243\) −7.00000 + 7.00000i −0.449050 + 0.449050i
\(244\) 2.00000 0.128037
\(245\) −3.00000 6.00000i −0.191663 0.383326i
\(246\) 14.0000i 0.892607i
\(247\) 15.0000 + 3.00000i 0.954427 + 0.190885i
\(248\) −1.00000 + 1.00000i −0.0635001 + 0.0635001i
\(249\) 18.0000 + 18.0000i 1.14070 + 1.14070i
\(250\) −11.0000 2.00000i −0.695701 0.126491i
\(251\) 18.0000i 1.13615i 0.822977 + 0.568075i \(0.192312\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(252\) 2.00000 0.125988
\(253\) 2.00000i 0.125739i
\(254\) 3.00000 3.00000i 0.188237 0.188237i
\(255\) −4.00000 + 2.00000i −0.250490 + 0.125245i
\(256\) 1.00000 0.0625000
\(257\) 21.0000 21.0000i 1.30994 1.30994i 0.388492 0.921452i \(-0.372996\pi\)
0.921452 0.388492i \(-0.127004\pi\)
\(258\) 2.00000 0.124515
\(259\) 16.0000 0.994192
\(260\) −7.00000 4.00000i −0.434122 0.248069i
\(261\) −8.00000 −0.495188
\(262\) −12.0000 −0.741362
\(263\) −3.00000 + 3.00000i −0.184988 + 0.184988i −0.793525 0.608537i \(-0.791757\pi\)
0.608537 + 0.793525i \(0.291757\pi\)
\(264\) 2.00000 0.123091
\(265\) −3.00000 1.00000i −0.184289 0.0614295i
\(266\) −6.00000 + 6.00000i −0.367884 + 0.367884i
\(267\) 22.0000i 1.34638i
\(268\) −12.0000 −0.733017
\(269\) 4.00000i 0.243884i 0.992537 + 0.121942i \(0.0389122\pi\)
−0.992537 + 0.121942i \(0.961088\pi\)
\(270\) −4.00000 + 12.0000i −0.243432 + 0.730297i
\(271\) 3.00000 + 3.00000i 0.182237 + 0.182237i 0.792330 0.610093i \(-0.208868\pi\)
−0.610093 + 0.792330i \(0.708868\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) −10.0000 2.00000i −0.605228 0.121046i
\(274\) 0 0
\(275\) 7.00000 1.00000i 0.422116 0.0603023i
\(276\) −2.00000 −0.120386
\(277\) −11.0000 + 11.0000i −0.660926 + 0.660926i −0.955598 0.294672i \(-0.904789\pi\)
0.294672 + 0.955598i \(0.404789\pi\)
\(278\) 2.00000i 0.119952i
\(279\) 1.00000 + 1.00000i 0.0598684 + 0.0598684i
\(280\) 4.00000 2.00000i 0.239046 0.119523i
\(281\) 9.00000 + 9.00000i 0.536895 + 0.536895i 0.922616 0.385721i \(-0.126047\pi\)
−0.385721 + 0.922616i \(0.626047\pi\)
\(282\) 10.0000 + 10.0000i 0.595491 + 0.595491i
\(283\) 15.0000 + 15.0000i 0.891657 + 0.891657i 0.994679 0.103022i \(-0.0328511\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(284\) 5.00000 5.00000i 0.296695 0.296695i
\(285\) −6.00000 12.0000i −0.355409 0.710819i
\(286\) 5.00000 + 1.00000i 0.295656 + 0.0591312i
\(287\) 14.0000 + 14.0000i 0.826394 + 0.826394i
\(288\) 1.00000i 0.0589256i
\(289\) 15.0000i 0.882353i
\(290\) −16.0000 + 8.00000i −0.939552 + 0.469776i
\(291\) −14.0000 + 14.0000i −0.820695 + 0.820695i
\(292\) 6.00000 0.351123
\(293\) −22.0000 −1.28525 −0.642627 0.766179i \(-0.722155\pi\)
−0.642627 + 0.766179i \(0.722155\pi\)
\(294\) −3.00000 + 3.00000i −0.174964 + 0.174964i
\(295\) −27.0000 9.00000i −1.57200 0.524000i
\(296\) 8.00000i 0.464991i
\(297\) 8.00000i 0.464207i
\(298\) −1.00000 1.00000i −0.0579284 0.0579284i
\(299\) −5.00000 1.00000i −0.289157 0.0578315i
\(300\) 1.00000 + 7.00000i 0.0577350 + 0.404145i
\(301\) −2.00000 + 2.00000i −0.115278 + 0.115278i
\(302\) −3.00000 3.00000i −0.172631 0.172631i
\(303\) −12.0000 12.0000i −0.689382 0.689382i
\(304\) 3.00000 + 3.00000i 0.172062 + 0.172062i
\(305\) −2.00000 4.00000i −0.114520 0.229039i
\(306\) −1.00000 1.00000i −0.0571662 0.0571662i
\(307\) 10.0000i 0.570730i 0.958419 + 0.285365i \(0.0921148\pi\)
−0.958419 + 0.285365i \(0.907885\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) −10.0000 −0.568880
\(310\) 3.00000 + 1.00000i 0.170389 + 0.0567962i
\(311\) 2.00000i 0.113410i −0.998391 0.0567048i \(-0.981941\pi\)
0.998391 0.0567048i \(-0.0180594\pi\)
\(312\) −1.00000 + 5.00000i −0.0566139 + 0.283069i
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 15.0000 + 15.0000i 0.846499 + 0.846499i
\(315\) −2.00000 4.00000i −0.112687 0.225374i
\(316\) 10.0000i 0.562544i
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 2.00000i 0.112154i
\(319\) 8.00000 8.00000i 0.447914 0.447914i
\(320\) −1.00000 2.00000i −0.0559017 0.111803i
\(321\) −2.00000 −0.111629
\(322\) 2.00000 2.00000i 0.111456 0.111456i
\(323\) 6.00000 0.333849
\(324\) 5.00000 0.277778
\(325\) −1.00000 + 18.0000i −0.0554700 + 0.998460i
\(326\) 20.0000 1.10770
\(327\) 10.0000 0.553001
\(328\) 7.00000 7.00000i 0.386510 0.386510i
\(329\) −20.0000 −1.10264
\(330\) −2.00000 4.00000i −0.110096 0.220193i
\(331\) 21.0000 21.0000i 1.15426 1.15426i 0.168576 0.985689i \(-0.446083\pi\)
0.985689 0.168576i \(-0.0539168\pi\)
\(332\) 18.0000i 0.987878i
\(333\) −8.00000 −0.438397
\(334\) 14.0000i 0.766046i
\(335\) 12.0000 + 24.0000i 0.655630 + 1.31126i
\(336\) −2.00000 2.00000i −0.109109 0.109109i
\(337\) 5.00000 5.00000i 0.272367 0.272367i −0.557685 0.830053i \(-0.688310\pi\)
0.830053 + 0.557685i \(0.188310\pi\)
\(338\) −5.00000 + 12.0000i −0.271964 + 0.652714i
\(339\) 6.00000i 0.325875i
\(340\) −3.00000 1.00000i −0.162698 0.0542326i
\(341\) −2.00000 −0.108306
\(342\) 3.00000 3.00000i 0.162221 0.162221i
\(343\) 20.0000i 1.07990i
\(344\) 1.00000 + 1.00000i 0.0539164 + 0.0539164i
\(345\) 2.00000 + 4.00000i 0.107676 + 0.215353i
\(346\) −9.00000 9.00000i −0.483843 0.483843i
\(347\) −5.00000 5.00000i −0.268414 0.268414i 0.560047 0.828461i \(-0.310783\pi\)
−0.828461 + 0.560047i \(0.810783\pi\)
\(348\) 8.00000 + 8.00000i 0.428845 + 0.428845i
\(349\) 21.0000 21.0000i 1.12410 1.12410i 0.132986 0.991118i \(-0.457543\pi\)
0.991118 0.132986i \(-0.0424566\pi\)
\(350\) −8.00000 6.00000i −0.427618 0.320713i
\(351\) 20.0000 + 4.00000i 1.06752 + 0.213504i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) 4.00000i 0.212899i −0.994318 0.106449i \(-0.966052\pi\)
0.994318 0.106449i \(-0.0339482\pi\)
\(354\) 18.0000i 0.956689i
\(355\) −15.0000 5.00000i −0.796117 0.265372i
\(356\) −11.0000 + 11.0000i −0.582999 + 0.582999i
\(357\) −4.00000 −0.211702
\(358\) 20.0000 1.05703
\(359\) 5.00000 5.00000i 0.263890 0.263890i −0.562742 0.826632i \(-0.690254\pi\)
0.826632 + 0.562742i \(0.190254\pi\)
\(360\) −2.00000 + 1.00000i −0.105409 + 0.0527046i
\(361\) 1.00000i 0.0526316i
\(362\) 16.0000i 0.840941i
\(363\) −9.00000 9.00000i −0.472377 0.472377i
\(364\) −4.00000 6.00000i −0.209657 0.314485i
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) −2.00000 + 2.00000i −0.104542 + 0.104542i
\(367\) −21.0000 21.0000i −1.09619 1.09619i −0.994852 0.101339i \(-0.967687\pi\)
−0.101339 0.994852i \(-0.532313\pi\)
\(368\) −1.00000 1.00000i −0.0521286 0.0521286i
\(369\) −7.00000 7.00000i −0.364405 0.364405i
\(370\) −16.0000 + 8.00000i −0.831800 + 0.415900i
\(371\) −2.00000 2.00000i −0.103835 0.103835i
\(372\) 2.00000i 0.103695i
\(373\) 5.00000 5.00000i 0.258890 0.258890i −0.565712 0.824603i \(-0.691399\pi\)
0.824603 + 0.565712i \(0.191399\pi\)
\(374\) 2.00000 0.103418
\(375\) 13.0000 9.00000i 0.671317 0.464758i
\(376\) 10.0000i 0.515711i
\(377\) 16.0000 + 24.0000i 0.824042 + 1.23606i
\(378\) −8.00000 + 8.00000i −0.411476 + 0.411476i
\(379\) 23.0000 + 23.0000i 1.18143 + 1.18143i 0.979374 + 0.202057i \(0.0647626\pi\)
0.202057 + 0.979374i \(0.435237\pi\)
\(380\) 3.00000 9.00000i 0.153897 0.461690i
\(381\) 6.00000i 0.307389i
\(382\) −8.00000 −0.409316
\(383\) 18.0000i 0.919757i −0.887982 0.459879i \(-0.847893\pi\)
0.887982 0.459879i \(-0.152107\pi\)
\(384\) −1.00000 + 1.00000i −0.0510310 + 0.0510310i
\(385\) 6.00000 + 2.00000i 0.305788 + 0.101929i
\(386\) −2.00000 −0.101797
\(387\) 1.00000 1.00000i 0.0508329 0.0508329i
\(388\) −14.0000 −0.710742
\(389\) −2.00000 −0.101404 −0.0507020 0.998714i \(-0.516146\pi\)
−0.0507020 + 0.998714i \(0.516146\pi\)
\(390\) 11.0000 3.00000i 0.557007 0.151911i
\(391\) −2.00000 −0.101144
\(392\) −3.00000 −0.151523
\(393\) 12.0000 12.0000i 0.605320 0.605320i
\(394\) −6.00000 −0.302276
\(395\) −20.0000 + 10.0000i −1.00631 + 0.503155i
\(396\) 1.00000 1.00000i 0.0502519 0.0502519i
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 24.0000 1.20301
\(399\) 12.0000i 0.600751i
\(400\) −3.00000 + 4.00000i −0.150000 + 0.200000i
\(401\) −19.0000 19.0000i −0.948815 0.948815i 0.0499376 0.998752i \(-0.484098\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 12.0000 12.0000i 0.598506 0.598506i
\(403\) 1.00000 5.00000i 0.0498135 0.249068i
\(404\) 12.0000i 0.597022i
\(405\) −5.00000 10.0000i −0.248452 0.496904i
\(406\) −16.0000 −0.794067
\(407\) 8.00000 8.00000i 0.396545 0.396545i
\(408\) 2.00000i 0.0990148i
\(409\) 9.00000 + 9.00000i 0.445021 + 0.445021i 0.893695 0.448674i \(-0.148104\pi\)
−0.448674 + 0.893695i \(0.648104\pi\)
\(410\) −21.0000 7.00000i −1.03712 0.345705i
\(411\) 0 0
\(412\) −5.00000 5.00000i −0.246332 0.246332i
\(413\) −18.0000 18.0000i −0.885722 0.885722i
\(414\) −1.00000 + 1.00000i −0.0491473 + 0.0491473i
\(415\) 36.0000 18.0000i 1.76717 0.883585i
\(416\) −3.00000 + 2.00000i −0.147087 + 0.0980581i
\(417\) 2.00000 + 2.00000i 0.0979404 + 0.0979404i
\(418\) 6.00000i 0.293470i
\(419\) 22.0000i 1.07477i −0.843337 0.537385i \(-0.819412\pi\)
0.843337 0.537385i \(-0.180588\pi\)
\(420\) −2.00000 + 6.00000i −0.0975900 + 0.292770i
\(421\) 9.00000 9.00000i 0.438633 0.438633i −0.452919 0.891552i \(-0.649617\pi\)
0.891552 + 0.452919i \(0.149617\pi\)
\(422\) 12.0000 0.584151
\(423\) 10.0000 0.486217
\(424\) −1.00000 + 1.00000i −0.0485643 + 0.0485643i
\(425\) 1.00000 + 7.00000i 0.0485071 + 0.339550i
\(426\) 10.0000i 0.484502i
\(427\) 4.00000i 0.193574i
\(428\) −1.00000 1.00000i −0.0483368 0.0483368i
\(429\) −6.00000 + 4.00000i −0.289683 + 0.193122i
\(430\) 1.00000 3.00000i 0.0482243 0.144673i
\(431\) −15.0000 + 15.0000i −0.722525 + 0.722525i −0.969119 0.246594i \(-0.920689\pi\)
0.246594 + 0.969119i \(0.420689\pi\)
\(432\) 4.00000 + 4.00000i 0.192450 + 0.192450i
\(433\) 9.00000 + 9.00000i 0.432512 + 0.432512i 0.889482 0.456970i \(-0.151065\pi\)
−0.456970 + 0.889482i \(0.651065\pi\)
\(434\) 2.00000 + 2.00000i 0.0960031 + 0.0960031i
\(435\) 8.00000 24.0000i 0.383571 1.15071i
\(436\) 5.00000 + 5.00000i 0.239457 + 0.239457i
\(437\) 6.00000i 0.287019i
\(438\) −6.00000 + 6.00000i −0.286691 + 0.286691i
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 1.00000 3.00000i 0.0476731 0.143019i
\(441\) 3.00000i 0.142857i
\(442\) −1.00000 + 5.00000i −0.0475651 + 0.237826i
\(443\) 17.0000 17.0000i 0.807694 0.807694i −0.176590 0.984284i \(-0.556507\pi\)
0.984284 + 0.176590i \(0.0565067\pi\)
\(444\) 8.00000 + 8.00000i 0.379663 + 0.379663i
\(445\) 33.0000 + 11.0000i 1.56435 + 0.521450i
\(446\) 18.0000i 0.852325i
\(447\) 2.00000 0.0945968
\(448\) 2.00000i 0.0944911i
\(449\) 13.0000 13.0000i 0.613508 0.613508i −0.330350 0.943858i \(-0.607167\pi\)
0.943858 + 0.330350i \(0.107167\pi\)
\(450\) 4.00000 + 3.00000i 0.188562 + 0.141421i
\(451\) 14.0000 0.659234
\(452\) −3.00000 + 3.00000i −0.141108 + 0.141108i
\(453\) 6.00000 0.281905
\(454\) −12.0000 −0.563188
\(455\) −8.00000 + 14.0000i −0.375046 + 0.656330i
\(456\) −6.00000 −0.280976
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 15.0000 15.0000i 0.700904 0.700904i
\(459\) 8.00000 0.373408
\(460\) −1.00000 + 3.00000i −0.0466252 + 0.139876i
\(461\) −11.0000 + 11.0000i −0.512321 + 0.512321i −0.915237 0.402916i \(-0.867997\pi\)
0.402916 + 0.915237i \(0.367997\pi\)
\(462\) 4.00000i 0.186097i
\(463\) −16.0000 −0.743583 −0.371792 0.928316i \(-0.621256\pi\)
−0.371792 + 0.928316i \(0.621256\pi\)
\(464\) 8.00000i 0.371391i
\(465\) −4.00000 + 2.00000i −0.185496 + 0.0927478i
\(466\) −1.00000 1.00000i −0.0463241 0.0463241i
\(467\) −7.00000 + 7.00000i −0.323921 + 0.323921i −0.850269 0.526348i \(-0.823561\pi\)
0.526348 + 0.850269i \(0.323561\pi\)
\(468\) 2.00000 + 3.00000i 0.0924500 + 0.138675i
\(469\) 24.0000i 1.10822i
\(470\) 20.0000 10.0000i 0.922531 0.461266i
\(471\) −30.0000 −1.38233
\(472\) −9.00000 + 9.00000i −0.414259 + 0.414259i
\(473\) 2.00000i 0.0919601i
\(474\) 10.0000 + 10.0000i 0.459315 + 0.459315i
\(475\) −21.0000 + 3.00000i −0.963546 + 0.137649i
\(476\) −2.00000 2.00000i −0.0916698 0.0916698i
\(477\) 1.00000 + 1.00000i 0.0457869 + 0.0457869i
\(478\) 1.00000 + 1.00000i 0.0457389 + 0.0457389i
\(479\) −19.0000 + 19.0000i −0.868132 + 0.868132i −0.992266 0.124133i \(-0.960385\pi\)
0.124133 + 0.992266i \(0.460385\pi\)
\(480\) 3.00000 + 1.00000i 0.136931 + 0.0456435i
\(481\) 16.0000 + 24.0000i 0.729537 + 1.09431i
\(482\) −1.00000 1.00000i −0.0455488 0.0455488i
\(483\) 4.00000i 0.182006i
\(484\) 9.00000i 0.409091i
\(485\) 14.0000 + 28.0000i 0.635707 + 1.27141i
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −20.0000 + 20.0000i −0.904431 + 0.904431i
\(490\) 3.00000 + 6.00000i 0.135526 + 0.271052i
\(491\) 38.0000i 1.71492i −0.514554 0.857458i \(-0.672042\pi\)
0.514554 0.857458i \(-0.327958\pi\)
\(492\) 14.0000i 0.631169i
\(493\) 8.00000 + 8.00000i 0.360302 + 0.360302i
\(494\) −15.0000 3.00000i −0.674882 0.134976i
\(495\) −3.00000 1.00000i −0.134840 0.0449467i
\(496\) 1.00000 1.00000i 0.0449013 0.0449013i
\(497\) −10.0000 10.0000i −0.448561 0.448561i
\(498\) −18.0000 18.0000i −0.806599 0.806599i
\(499\) 19.0000 + 19.0000i 0.850557 + 0.850557i 0.990202 0.139645i \(-0.0445961\pi\)
−0.139645 + 0.990202i \(0.544596\pi\)
\(500\) 11.0000 + 2.00000i 0.491935 + 0.0894427i
\(501\) 14.0000 + 14.0000i 0.625474 + 0.625474i
\(502\) 18.0000i 0.803379i
\(503\) −15.0000 + 15.0000i −0.668817 + 0.668817i −0.957442 0.288625i \(-0.906802\pi\)
0.288625 + 0.957442i \(0.406802\pi\)
\(504\) −2.00000 −0.0890871
\(505\) −24.0000 + 12.0000i −1.06799 + 0.533993i
\(506\) 2.00000i 0.0889108i
\(507\) −7.00000 17.0000i −0.310881 0.754997i
\(508\) −3.00000 + 3.00000i −0.133103 + 0.133103i
\(509\) 1.00000 + 1.00000i 0.0443242 + 0.0443242i 0.728922 0.684597i \(-0.240022\pi\)
−0.684597 + 0.728922i \(0.740022\pi\)
\(510\) 4.00000 2.00000i 0.177123 0.0885615i
\(511\) 12.0000i 0.530849i
\(512\) −1.00000 −0.0441942
\(513\) 24.0000i 1.05963i
\(514\) −21.0000 + 21.0000i −0.926270 + 0.926270i
\(515\) −5.00000 + 15.0000i −0.220326 + 0.660979i
\(516\) −2.00000 −0.0880451
\(517\) −10.0000 + 10.0000i −0.439799 + 0.439799i
\(518\) −16.0000 −0.703000
\(519\) 18.0000 0.790112
\(520\) 7.00000 + 4.00000i 0.306970 + 0.175412i
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 8.00000 0.350150
\(523\) −15.0000 + 15.0000i −0.655904 + 0.655904i −0.954408 0.298504i \(-0.903512\pi\)
0.298504 + 0.954408i \(0.403512\pi\)
\(524\) 12.0000 0.524222
\(525\) 14.0000 2.00000i 0.611010 0.0872872i
\(526\) 3.00000 3.00000i 0.130806 0.130806i
\(527\) 2.00000i 0.0871214i
\(528\) −2.00000 −0.0870388
\(529\) 21.0000i 0.913043i
\(530\) 3.00000 + 1.00000i 0.130312 + 0.0434372i
\(531\) 9.00000 + 9.00000i 0.390567 + 0.390567i
\(532\) 6.00000 6.00000i 0.260133 0.260133i
\(533\) −7.00000 + 35.0000i −0.303204 + 1.51602i
\(534\) 22.0000i 0.952033i
\(535\) −1.00000 + 3.00000i −0.0432338 + 0.129701i
\(536\) 12.0000 0.518321
\(537\) −20.0000 + 20.0000i −0.863064 + 0.863064i
\(538\) 4.00000i 0.172452i
\(539\) −3.00000 3.00000i −0.129219 0.129219i
\(540\) 4.00000 12.0000i 0.172133 0.516398i
\(541\) −27.0000 27.0000i −1.16082 1.16082i −0.984296 0.176524i \(-0.943515\pi\)
−0.176524 0.984296i \(-0.556485\pi\)
\(542\) −3.00000 3.00000i −0.128861 0.128861i
\(543\) 16.0000 + 16.0000i 0.686626 + 0.686626i
\(544\) −1.00000 + 1.00000i −0.0428746 + 0.0428746i
\(545\) 5.00000 15.0000i 0.214176 0.642529i
\(546\) 10.0000 + 2.00000i 0.427960 + 0.0855921i
\(547\) 23.0000 + 23.0000i 0.983409 + 0.983409i 0.999865 0.0164556i \(-0.00523822\pi\)
−0.0164556 + 0.999865i \(0.505238\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) −7.00000 + 1.00000i −0.298481 + 0.0426401i
\(551\) −24.0000 + 24.0000i −1.02243 + 1.02243i
\(552\) 2.00000 0.0851257
\(553\) −20.0000 −0.850487
\(554\) 11.0000 11.0000i 0.467345 0.467345i
\(555\) 8.00000 24.0000i 0.339581 1.01874i
\(556\) 2.00000i 0.0848189i
\(557\) 32.0000i 1.35588i −0.735116 0.677942i \(-0.762872\pi\)
0.735116 0.677942i \(-0.237128\pi\)
\(558\) −1.00000 1.00000i −0.0423334 0.0423334i
\(559\) −5.00000 1.00000i −0.211477 0.0422955i
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) −2.00000 + 2.00000i −0.0844401 + 0.0844401i
\(562\) −9.00000 9.00000i −0.379642 0.379642i
\(563\) 31.0000 + 31.0000i 1.30649 + 1.30649i 0.923928 + 0.382566i \(0.124960\pi\)
0.382566 + 0.923928i \(0.375040\pi\)
\(564\) −10.0000 10.0000i −0.421076 0.421076i
\(565\) 9.00000 + 3.00000i 0.378633 + 0.126211i
\(566\) −15.0000 15.0000i −0.630497 0.630497i
\(567\) 10.0000i 0.419961i
\(568\) −5.00000 + 5.00000i −0.209795 + 0.209795i
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 6.00000 + 12.0000i 0.251312 + 0.502625i
\(571\) 22.0000i 0.920671i −0.887745 0.460336i \(-0.847729\pi\)
0.887745 0.460336i \(-0.152271\pi\)
\(572\) −5.00000 1.00000i −0.209061 0.0418121i
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) −14.0000 14.0000i −0.584349 0.584349i
\(575\) 7.00000 1.00000i 0.291920 0.0417029i
\(576\) 1.00000i 0.0416667i
\(577\) 14.0000 0.582828 0.291414 0.956597i \(-0.405874\pi\)
0.291414 + 0.956597i \(0.405874\pi\)
\(578\) 15.0000i 0.623918i
\(579\) 2.00000 2.00000i 0.0831172 0.0831172i
\(580\) 16.0000 8.00000i 0.664364 0.332182i
\(581\) 36.0000 1.49353
\(582\) 14.0000 14.0000i 0.580319 0.580319i
\(583\) −2.00000 −0.0828315
\(584\) −6.00000 −0.248282
\(585\) 4.00000 7.00000i 0.165380 0.289414i
\(586\) 22.0000 0.908812
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 3.00000 3.00000i 0.123718 0.123718i
\(589\) 6.00000 0.247226
\(590\) 27.0000 + 9.00000i 1.11157 + 0.370524i
\(591\) 6.00000 6.00000i 0.246807 0.246807i
\(592\) 8.00000i 0.328798i
\(593\) 10.0000 0.410651 0.205325 0.978694i \(-0.434175\pi\)
0.205325 + 0.978694i \(0.434175\pi\)
\(594\) 8.00000i 0.328244i
\(595\) −2.00000 + 6.00000i −0.0819920 + 0.245976i
\(596\) 1.00000 + 1.00000i 0.0409616 + 0.0409616i
\(597\) −24.0000 + 24.0000i −0.982255 + 0.982255i
\(598\) 5.00000 + 1.00000i 0.204465 + 0.0408930i
\(599\) 26.0000i 1.06233i −0.847268 0.531166i \(-0.821754\pi\)
0.847268 0.531166i \(-0.178246\pi\)
\(600\) −1.00000 7.00000i −0.0408248 0.285774i
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 2.00000 2.00000i 0.0815139 0.0815139i
\(603\) 12.0000i 0.488678i
\(604\) 3.00000 + 3.00000i 0.122068 + 0.122068i
\(605\) −18.0000 + 9.00000i −0.731804 + 0.365902i
\(606\) 12.0000 + 12.0000i 0.487467 + 0.487467i
\(607\) −9.00000 9.00000i −0.365299 0.365299i 0.500461 0.865759i \(-0.333164\pi\)
−0.865759 + 0.500461i \(0.833164\pi\)
\(608\) −3.00000 3.00000i −0.121666 0.121666i
\(609\) 16.0000 16.0000i 0.648353 0.648353i
\(610\) 2.00000 + 4.00000i 0.0809776 + 0.161955i
\(611\) −20.0000 30.0000i −0.809113 1.21367i
\(612\) 1.00000 + 1.00000i 0.0404226 + 0.0404226i
\(613\) 4.00000i 0.161558i −0.996732 0.0807792i \(-0.974259\pi\)
0.996732 0.0807792i \(-0.0257409\pi\)
\(614\) 10.0000i 0.403567i
\(615\) 28.0000 14.0000i 1.12907 0.564534i
\(616\) 2.00000 2.00000i 0.0805823 0.0805823i
\(617\) −38.0000 −1.52982 −0.764911 0.644136i \(-0.777217\pi\)
−0.764911 + 0.644136i \(0.777217\pi\)
\(618\) 10.0000 0.402259
\(619\) 9.00000 9.00000i 0.361741 0.361741i −0.502713 0.864453i \(-0.667665\pi\)
0.864453 + 0.502713i \(0.167665\pi\)
\(620\) −3.00000 1.00000i −0.120483 0.0401610i
\(621\) 8.00000i 0.321029i
\(622\) 2.00000i 0.0801927i
\(623\) 22.0000 + 22.0000i 0.881411 + 0.881411i
\(624\) 1.00000 5.00000i 0.0400320 0.200160i
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −9.00000 + 9.00000i −0.359712 + 0.359712i
\(627\) −6.00000 6.00000i −0.239617 0.239617i
\(628\) −15.0000 15.0000i −0.598565 0.598565i
\(629\) 8.00000 + 8.00000i 0.318981 + 0.318981i
\(630\) 2.00000 + 4.00000i 0.0796819 + 0.159364i
\(631\) 23.0000 + 23.0000i 0.915616 + 0.915616i 0.996707 0.0810911i \(-0.0258405\pi\)
−0.0810911 + 0.996707i \(0.525840\pi\)
\(632\) 10.0000i 0.397779i
\(633\) −12.0000 + 12.0000i −0.476957 + 0.476957i
\(634\) −2.00000 −0.0794301
\(635\) 9.00000 + 3.00000i 0.357154 + 0.119051i
\(636\) 2.00000i 0.0793052i
\(637\) 9.00000 6.00000i 0.356593 0.237729i
\(638\) −8.00000 + 8.00000i −0.316723 + 0.316723i
\(639\) 5.00000 + 5.00000i 0.197797 + 0.197797i
\(640\) 1.00000 + 2.00000i 0.0395285 + 0.0790569i
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) 2.00000 0.0789337
\(643\) 10.0000i 0.394362i 0.980367 + 0.197181i \(0.0631786\pi\)
−0.980367 + 0.197181i \(0.936821\pi\)
\(644\) −2.00000 + 2.00000i −0.0788110 + 0.0788110i
\(645\) 2.00000 + 4.00000i 0.0787499 + 0.157500i
\(646\) −6.00000 −0.236067
\(647\) 13.0000 13.0000i 0.511083 0.511083i −0.403775 0.914858i \(-0.632302\pi\)
0.914858 + 0.403775i \(0.132302\pi\)
\(648\) −5.00000 −0.196419
\(649\) −18.0000 −0.706562
\(650\) 1.00000 18.0000i 0.0392232 0.706018i
\(651\) −4.00000 −0.156772
\(652\) −20.0000 −0.783260
\(653\) −15.0000 + 15.0000i −0.586995 + 0.586995i −0.936817 0.349821i \(-0.886242\pi\)
0.349821 + 0.936817i \(0.386242\pi\)
\(654\) −10.0000 −0.391031
\(655\) −12.0000 24.0000i −0.468879 0.937758i
\(656\) −7.00000 + 7.00000i −0.273304 + 0.273304i
\(657\) 6.00000i 0.234082i
\(658\) 20.0000 0.779681
\(659\) 38.0000i 1.48027i −0.672458 0.740135i \(-0.734762\pi\)
0.672458 0.740135i \(-0.265238\pi\)
\(660\) 2.00000 + 4.00000i 0.0778499 + 0.155700i
\(661\) 13.0000 + 13.0000i 0.505641 + 0.505641i 0.913186 0.407544i \(-0.133615\pi\)
−0.407544 + 0.913186i \(0.633615\pi\)
\(662\) −21.0000 + 21.0000i −0.816188 + 0.816188i
\(663\) −4.00000 6.00000i −0.155347 0.233021i
\(664\) 18.0000i 0.698535i
\(665\) −18.0000 6.00000i −0.698010 0.232670i
\(666\) 8.00000 0.309994
\(667\) 8.00000 8.00000i 0.309761 0.309761i
\(668\) 14.0000i 0.541676i
\(669\) −18.0000 18.0000i −0.695920 0.695920i
\(670\) −12.0000 24.0000i −0.463600 0.927201i
\(671\) −2.00000 2.00000i −0.0772091 0.0772091i
\(672\) 2.00000 + 2.00000i 0.0771517 + 0.0771517i
\(673\) 17.0000 + 17.0000i 0.655302 + 0.655302i 0.954265 0.298963i \(-0.0966407\pi\)
−0.298963 + 0.954265i \(0.596641\pi\)
\(674\) −5.00000 + 5.00000i −0.192593 + 0.192593i
\(675\) −28.0000 + 4.00000i −1.07772 + 0.153960i
\(676\) 5.00000 12.0000i 0.192308 0.461538i
\(677\) 13.0000 + 13.0000i 0.499631 + 0.499631i 0.911323 0.411692i \(-0.135062\pi\)
−0.411692 + 0.911323i \(0.635062\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 28.0000i 1.07454i
\(680\) 3.00000 + 1.00000i 0.115045 + 0.0383482i
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 2.00000 0.0765840
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) −3.00000 + 3.00000i −0.114708 + 0.114708i
\(685\) 0 0
\(686\) 20.0000i 0.763604i
\(687\) 30.0000i 1.14457i
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 1.00000 5.00000i 0.0380970 0.190485i
\(690\) −2.00000 4.00000i −0.0761387 0.152277i
\(691\) 21.0000 21.0000i 0.798878 0.798878i −0.184041 0.982919i \(-0.558918\pi\)
0.982919 + 0.184041i \(0.0589179\pi\)
\(692\) 9.00000 + 9.00000i 0.342129 + 0.342129i
\(693\) −2.00000 2.00000i −0.0759737 0.0759737i
\(694\) 5.00000 + 5.00000i 0.189797 + 0.189797i
\(695\) 4.00000 2.00000i 0.151729 0.0758643i
\(696\) −8.00000 8.00000i −0.303239 0.303239i
\(697\) 14.0000i 0.530288i
\(698\) −21.0000 + 21.0000i −0.794862 + 0.794862i
\(699\) 2.00000 0.0756469
\(700\) 8.00000 + 6.00000i 0.302372 + 0.226779i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) −20.0000 4.00000i −0.754851 0.150970i
\(703\) −24.0000 + 24.0000i −0.905177 + 0.905177i
\(704\) −1.00000 1.00000i −0.0376889 0.0376889i
\(705\) −10.0000 + 30.0000i −0.376622 + 1.12987i
\(706\) 4.00000i 0.150542i
\(707\) −24.0000 −0.902613
\(708\) 18.0000i 0.676481i
\(709\) 33.0000 33.0000i 1.23934 1.23934i 0.279070 0.960271i \(-0.409974\pi\)
0.960271 0.279070i \(-0.0900263\pi\)
\(710\) 15.0000 + 5.00000i 0.562940 + 0.187647i
\(711\) 10.0000 0.375029
\(712\) 11.0000 11.0000i 0.412242 0.412242i
\(713\) −2.00000 −0.0749006
\(714\) 4.00000 0.149696
\(715\) 3.00000 + 11.0000i 0.112194 + 0.411377i
\(716\) −20.0000 −0.747435
\(717\) −2.00000 −0.0746914
\(718\) −5.00000 + 5.00000i −0.186598 + 0.186598i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 2.00000 1.00000i 0.0745356 0.0372678i
\(721\) −10.0000 + 10.0000i −0.372419 + 0.372419i
\(722\) 1.00000i 0.0372161i
\(723\) 2.00000 0.0743808
\(724\) 16.0000i 0.594635i
\(725\) −32.0000 24.0000i −1.18845 0.891338i
\(726\) 9.00000 + 9.00000i 0.334021 + 0.334021i
\(727\) 1.00000 1.00000i 0.0370879 0.0370879i −0.688320 0.725408i \(-0.741651\pi\)
0.725408 + 0.688320i \(0.241651\pi\)
\(728\) 4.00000 + 6.00000i 0.148250 + 0.222375i
\(729\) 29.0000i 1.07407i
\(730\) 6.00000 + 12.0000i 0.222070 + 0.444140i
\(731\) −2.00000 −0.0739727
\(732\) 2.00000 2.00000i 0.0739221 0.0739221i
\(733\) 20.0000i 0.738717i −0.929287 0.369358i \(-0.879577\pi\)
0.929287 0.369358i \(-0.120423\pi\)
\(734\) 21.0000 + 21.0000i 0.775124 + 0.775124i
\(735\) −9.00000 3.00000i −0.331970 0.110657i
\(736\) 1.00000 + 1.00000i 0.0368605 + 0.0368605i
\(737\) 12.0000 + 12.0000i 0.442026 + 0.442026i
\(738\) 7.00000 + 7.00000i 0.257674 + 0.257674i
\(739\) 5.00000 5.00000i 0.183928 0.183928i −0.609137 0.793065i \(-0.708484\pi\)
0.793065 + 0.609137i \(0.208484\pi\)
\(740\) 16.0000 8.00000i 0.588172 0.294086i
\(741\) 18.0000 12.0000i 0.661247 0.440831i
\(742\) 2.00000 + 2.00000i 0.0734223 + 0.0734223i
\(743\) 18.0000i 0.660356i −0.943919 0.330178i \(-0.892891\pi\)
0.943919 0.330178i \(-0.107109\pi\)
\(744\) 2.00000i 0.0733236i
\(745\) 1.00000 3.00000i 0.0366372 0.109911i
\(746\) −5.00000 + 5.00000i −0.183063 + 0.183063i
\(747\) −18.0000 −0.658586
\(748\) −2.00000 −0.0731272
\(749\) −2.00000 + 2.00000i −0.0730784 + 0.0730784i
\(750\) −13.0000 + 9.00000i −0.474693 + 0.328634i
\(751\) 38.0000i 1.38664i 0.720630 + 0.693320i \(0.243853\pi\)
−0.720630 + 0.693320i \(0.756147\pi\)
\(752\) 10.0000i 0.364662i
\(753\) 18.0000 + 18.0000i 0.655956 + 0.655956i
\(754\) −16.0000 24.0000i −0.582686 0.874028i
\(755\) 3.00000 9.00000i 0.109181 0.327544i
\(756\) 8.00000 8.00000i 0.290957 0.290957i
\(757\) 25.0000 + 25.0000i 0.908640 + 0.908640i 0.996163 0.0875221i \(-0.0278948\pi\)
−0.0875221 + 0.996163i \(0.527895\pi\)
\(758\) −23.0000 23.0000i −0.835398 0.835398i
\(759\) 2.00000 + 2.00000i 0.0725954 + 0.0725954i
\(760\) −3.00000 + 9.00000i −0.108821 + 0.326464i
\(761\) 1.00000 + 1.00000i 0.0362500 + 0.0362500i 0.724999 0.688749i \(-0.241840\pi\)
−0.688749 + 0.724999i \(0.741840\pi\)
\(762\) 6.00000i 0.217357i
\(763\) 10.0000 10.0000i 0.362024 0.362024i
\(764\) 8.00000 0.289430
\(765\) 1.00000 3.00000i 0.0361551 0.108465i
\(766\) 18.0000i 0.650366i
\(767\) 9.00000 45.0000i 0.324971 1.62486i
\(768\) 1.00000 1.00000i 0.0360844 0.0360844i
\(769\) −23.0000 23.0000i −0.829401 0.829401i 0.158033 0.987434i \(-0.449485\pi\)
−0.987434 + 0.158033i \(0.949485\pi\)
\(770\) −6.00000 2.00000i −0.216225 0.0720750i
\(771\) 42.0000i 1.51259i
\(772\) 2.00000 0.0719816
\(773\) 24.0000i 0.863220i −0.902060 0.431610i \(-0.857946\pi\)
0.902060 0.431610i \(-0.142054\pi\)
\(774\) −1.00000 + 1.00000i −0.0359443 + 0.0359443i
\(775\) 1.00000 + 7.00000i 0.0359211 + 0.251447i
\(776\) 14.0000 0.502571
\(777\) 16.0000 16.0000i 0.573997 0.573997i
\(778\) 2.00000 0.0717035
\(779\) −42.0000 −1.50481
\(780\) −11.0000 + 3.00000i −0.393863 + 0.107417i
\(781\) −10.0000 −0.357828
\(782\) 2.00000 0.0715199
\(783\) −32.0000 + 32.0000i −1.14359 + 1.14359i
\(784\) 3.00000 0.107143
\(785\) −15.0000 + 45.0000i −0.535373 + 1.60612i
\(786\) −12.0000 + 12.0000i −0.428026 + 0.428026i
\(787\) 30.0000i 1.06938i −0.845047 0.534692i \(-0.820428\pi\)
0.845047 0.534692i \(-0.179572\pi\)
\(788\) 6.00000 0.213741
\(789\) 6.00000i 0.213606i
\(790\) 20.0000 10.0000i 0.711568 0.355784i
\(791\) 6.00000 + 6.00000i 0.213335 + 0.213335i
\(792\) −1.00000 + 1.00000i −0.0355335 + 0.0355335i
\(793\) 6.00000 4.00000i 0.213066 0.142044i
\(794\) 8.00000i 0.283909i
\(795\) −4.00000 + 2.00000i −0.141865 + 0.0709327i
\(796\) −24.0000 −0.850657
\(797\) 5.00000 5.00000i 0.177109 0.177109i −0.612985 0.790094i \(-0.710032\pi\)
0.790094 + 0.612985i \(0.210032\pi\)
\(798\) 12.0000i 0.424795i
\(799\) −10.0000 10.0000i −0.353775 0.353775i
\(800\) 3.00000 4.00000i 0.106066 0.141421i
\(801\) −11.0000 11.0000i −0.388666 0.388666i
\(802\) 19.0000 + 19.0000i 0.670913 + 0.670913i
\(803\) −6.00000 6.00000i −0.211735 0.211735i
\(804\) −12.0000 + 12.0000i −0.423207 + 0.423207i
\(805\) 6.00000 + 2.00000i 0.211472 + 0.0704907i
\(806\) −1.00000 + 5.00000i −0.0352235 + 0.176117i
\(807\) 4.00000 + 4.00000i 0.140807 + 0.140807i
\(808\) 12.0000i 0.422159i
\(809\) 12.0000i 0.421898i 0.977497 + 0.210949i \(0.0676553\pi\)
−0.977497 + 0.210949i \(0.932345\pi\)
\(810\) 5.00000 + 10.0000i 0.175682 + 0.351364i
\(811\) 5.00000 5.00000i 0.175574 0.175574i −0.613849 0.789423i \(-0.710380\pi\)
0.789423 + 0.613849i \(0.210380\pi\)
\(812\) 16.0000 0.561490
\(813\) 6.00000 0.210429
\(814\) −8.00000 + 8.00000i −0.280400 + 0.280400i
\(815\) 20.0000 + 40.0000i 0.700569 + 1.40114i
\(816\) 2.00000i 0.0700140i
\(817\) 6.00000i 0.209913i
\(818\) −9.00000 9.00000i −0.314678 0.314678i
\(819\) 6.00000 4.00000i 0.209657 0.139771i
\(820\) 21.0000 + 7.00000i 0.733352 + 0.244451i
\(821\) −19.0000 + 19.0000i −0.663105 + 0.663105i −0.956111 0.293006i \(-0.905344\pi\)
0.293006 + 0.956111i \(0.405344\pi\)
\(822\) 0 0
\(823\) 3.00000 + 3.00000i 0.104573 + 0.104573i 0.757458 0.652884i \(-0.226441\pi\)
−0.652884 + 0.757458i \(0.726441\pi\)
\(824\) 5.00000 + 5.00000i 0.174183 + 0.174183i
\(825\) 6.00000 8.00000i 0.208893 0.278524i
\(826\) 18.0000 + 18.0000i 0.626300 + 0.626300i
\(827\) 26.0000i 0.904109i 0.891990 + 0.452054i \(0.149309\pi\)
−0.891990 + 0.452054i \(0.850691\pi\)
\(828\) 1.00000 1.00000i 0.0347524 0.0347524i
\(829\) 18.0000 0.625166 0.312583 0.949890i \(-0.398806\pi\)
0.312583 + 0.949890i \(0.398806\pi\)
\(830\) −36.0000 + 18.0000i −1.24958 + 0.624789i
\(831\) 22.0000i 0.763172i
\(832\) 3.00000 2.00000i 0.104006 0.0693375i
\(833\) 3.00000 3.00000i 0.103944 0.103944i
\(834\) −2.00000 2.00000i −0.0692543 0.0692543i
\(835\) 28.0000 14.0000i 0.968980 0.484490i
\(836\) 6.00000i 0.207514i
\(837\) 8.00000 0.276520
\(838\) 22.0000i 0.759977i
\(839\) −7.00000 + 7.00000i −0.241667 + 0.241667i −0.817539 0.575873i \(-0.804662\pi\)
0.575873 + 0.817539i \(0.304662\pi\)
\(840\) 2.00000 6.00000i 0.0690066 0.207020i
\(841\) −35.0000 −1.20690
\(842\) −9.00000 + 9.00000i −0.310160 + 0.310160i
\(843\) 18.0000 0.619953
\(844\) −12.0000 −0.413057
\(845\) −29.0000 + 2.00000i −0.997630 + 0.0688021i
\(846\) −10.0000 −0.343807
\(847\) −18.0000 −0.618487
\(848\) 1.00000 1.00000i 0.0343401 0.0343401i
\(849\) 30.0000 1.02960
\(850\) −1.00000 7.00000i −0.0342997 0.240098i
\(851\) 8.00000 8.00000i 0.274236 0.274236i
\(852\) 10.0000i 0.342594i
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 4.00000i 0.136877i
\(855\) 9.00000 + 3.00000i 0.307794 + 0.102598i
\(856\) 1.00000 + 1.00000i 0.0341793 + 0.0341793i
\(857\) −11.0000 + 11.0000i −0.375753 + 0.375753i −0.869567 0.493814i \(-0.835602\pi\)
0.493814 + 0.869567i \(0.335602\pi\)
\(858\) 6.00000 4.00000i 0.204837 0.136558i
\(859\) 34.0000i 1.16007i 0.814593 + 0.580033i \(0.196960\pi\)
−0.814593 + 0.580033i \(0.803040\pi\)
\(860\) −1.00000 + 3.00000i −0.0340997 + 0.102299i
\(861\) 28.0000 0.954237
\(862\) 15.0000 15.0000i 0.510902 0.510902i
\(863\) 34.0000i 1.15737i −0.815550 0.578687i \(-0.803565\pi\)
0.815550 0.578687i \(-0.196435\pi\)
\(864\) −4.00000 4.00000i −0.136083 0.136083i
\(865\) 9.00000 27.0000i 0.306009 0.918028i
\(866\) −9.00000 9.00000i −0.305832 0.305832i
\(867\) 15.0000 + 15.0000i 0.509427 + 0.509427i
\(868\) −2.00000 2.00000i −0.0678844 0.0678844i
\(869\) −10.0000 + 10.0000i −0.339227 + 0.339227i
\(870\) −8.00000 + 24.0000i −0.271225 + 0.813676i
\(871\) −36.0000 + 24.0000i −1.21981 + 0.813209i
\(872\) −5.00000 5.00000i −0.169321 0.169321i
\(873\) 14.0000i 0.473828i
\(874\) 6.00000i 0.202953i
\(875\) 4.00000 22.0000i 0.135225 0.743736i
\(876\) 6.00000 6.00000i 0.202721 0.202721i
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) 32.0000 1.07995
\(879\) −22.0000 + 22.0000i −0.742042 + 0.742042i
\(880\) −1.00000 + 3.00000i −0.0337100 + 0.101130i
\(881\) 20.0000i 0.673817i −0.941537 0.336909i \(-0.890619\pi\)
0.941537 0.336909i \(-0.109381\pi\)
\(882\) 3.00000i 0.101015i
\(883\) −25.0000 25.0000i −0.841317 0.841317i 0.147713 0.989030i \(-0.452809\pi\)
−0.989030 + 0.147713i \(0.952809\pi\)
\(884\) 1.00000 5.00000i 0.0336336 0.168168i
\(885\) −36.0000 + 18.0000i −1.21013 + 0.605063i
\(886\) −17.0000 + 17.0000i −0.571126 + 0.571126i
\(887\) 19.0000 + 19.0000i 0.637958 + 0.637958i 0.950051 0.312094i \(-0.101030\pi\)
−0.312094 + 0.950051i \(0.601030\pi\)
\(888\) −8.00000 8.00000i −0.268462 0.268462i
\(889\) 6.00000 + 6.00000i 0.201234 + 0.201234i
\(890\) −33.0000 11.0000i −1.10616 0.368721i
\(891\) −5.00000 5.00000i −0.167506 0.167506i
\(892\) 18.0000i 0.602685i
\(893\) 30.0000 30.0000i 1.00391 1.00391i
\(894\) −2.00000 −0.0668900
\(895\) 20.0000 + 40.0000i 0.668526 + 1.33705i
\(896\) 2.00000i 0.0668153i
\(897\) −6.00000 + 4.00000i −0.200334 + 0.133556i
\(898\) −13.0000 + 13.0000i −0.433816 + 0.433816i
\(899\) 8.00000 + 8.00000i 0.266815 + 0.266815i
\(900\) −4.00000 3.00000i −0.133333 0.100000i
\(901\) 2.00000i 0.0666297i
\(902\) −14.0000 −0.466149
\(903\) 4.00000i 0.133112i
\(904\) 3.00000 3.00000i 0.0997785 0.0997785i
\(905\) 32.0000 16.0000i 1.06372 0.531858i
\(906\) −6.00000 −0.199337
\(907\) −7.00000 + 7.00000i −0.232431 + 0.232431i −0.813707 0.581276i \(-0.802554\pi\)
0.581276 + 0.813707i \(0.302554\pi\)
\(908\) 12.0000 0.398234
\(909\) 12.0000 0.398015
\(910\) 8.00000 14.0000i 0.265197 0.464095i
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 6.00000 0.198680
\(913\) 18.0000 18.0000i 0.595713 0.595713i
\(914\) −2.00000 −0.0661541
\(915\) −6.00000 2.00000i −0.198354 0.0661180i
\(916\) −15.0000 + 15.0000i −0.495614 + 0.495614i
\(917\) 24.0000i 0.792550i
\(918\) −8.00000 −0.264039
\(919\) 14.0000i 0.461817i 0.972975 + 0.230909i \(0.0741699\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(920\) 1.00000 3.00000i 0.0329690 0.0989071i
\(921\) 10.0000 + 10.0000i 0.329511 + 0.329511i
\(922\) 11.0000 11.0000i 0.362266 0.362266i
\(923\) 5.00000 25.0000i 0.164577 0.822885i
\(924\) 4.00000i 0.131590i
\(925\) −32.0000 24.0000i −1.05215 0.789115i
\(926\) 16.0000 0.525793
\(927\) 5.00000 5.00000i 0.164222 0.164222i
\(928\) 8.00000i 0.262613i
\(929\) 13.0000 + 13.0000i 0.426516 + 0.426516i 0.887440 0.460924i \(-0.152482\pi\)
−0.460924 + 0.887440i \(0.652482\pi\)
\(930\) 4.00000 2.00000i 0.131165 0.0655826i
\(931\) 9.00000 + 9.00000i 0.294963 + 0.294963i
\(932\) 1.00000 + 1.00000i 0.0327561 + 0.0327561i
\(933\) −2.00000 2.00000i −0.0654771 0.0654771i
\(934\) 7.00000 7.00000i 0.229047 0.229047i
\(935\) 2.00000 + 4.00000i 0.0654070 + 0.130814i
\(936\) −2.00000 3.00000i −0.0653720 0.0980581i
\(937\) 9.00000 + 9.00000i 0.294017 + 0.294017i 0.838665 0.544648i \(-0.183337\pi\)
−0.544648 + 0.838665i \(0.683337\pi\)
\(938\) 24.0000i 0.783628i
\(939\) 18.0000i 0.587408i
\(940\) −20.0000 + 10.0000i −0.652328 + 0.326164i
\(941\) 17.0000 17.0000i 0.554184 0.554184i −0.373462 0.927646i \(-0.621829\pi\)
0.927646 + 0.373462i \(0.121829\pi\)
\(942\) 30.0000 0.977453
\(943\) 14.0000 0.455903
\(944\) 9.00000 9.00000i 0.292925 0.292925i
\(945\) −24.0000 8.00000i −0.780720 0.260240i
\(946\) 2.00000i 0.0650256i
\(947\) 10.0000i 0.324956i 0.986712 + 0.162478i \(0.0519487\pi\)
−0.986712 + 0.162478i \(0.948051\pi\)
\(948\) −10.0000 10.0000i −0.324785 0.324785i
\(949\) 18.0000 12.0000i 0.584305 0.389536i
\(950\) 21.0000 3.00000i 0.681330 0.0973329i
\(951\) 2.00000 2.00000i 0.0648544 0.0648544i
\(952\) 2.00000 + 2.00000i 0.0648204 + 0.0648204i
\(953\) 5.00000 + 5.00000i 0.161966 + 0.161966i 0.783437 0.621471i \(-0.213465\pi\)
−0.621471 + 0.783437i \(0.713465\pi\)
\(954\) −1.00000 1.00000i −0.0323762 0.0323762i
\(955\) −8.00000 16.0000i −0.258874 0.517748i
\(956\) −1.00000 1.00000i −0.0323423 0.0323423i
\(957\) 16.0000i 0.517207i
\(958\) 19.0000 19.0000i 0.613862 0.613862i
\(959\) 0 0
\(960\) −3.00000 1.00000i −0.0968246 0.0322749i
\(961\) 29.0000i 0.935484i
\(962\) −16.0000 24.0000i −0.515861 0.773791i
\(963\) 1.00000 1.00000i 0.0322245 0.0322245i
\(964\) 1.00000 + 1.00000i 0.0322078 + 0.0322078i
\(965\) −2.00000 4.00000i −0.0643823 0.128765i
\(966\) 4.00000i 0.128698i
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 9.00000i 0.289271i
\(969\) 6.00000 6.00000i 0.192748 0.192748i
\(970\) −14.0000 28.0000i −0.449513 0.899026i
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) −7.00000 + 7.00000i −0.224525 + 0.224525i
\(973\) 4.00000 0.128234
\(974\) 8.00000 0.256337
\(975\) 17.0000 + 19.0000i 0.544436 + 0.608487i
\(976\) 2.00000 0.0640184
\(977\) −2.00000 −0.0639857 −0.0319928 0.999488i \(-0.510185\pi\)
−0.0319928 + 0.999488i \(0.510185\pi\)
\(978\) 20.0000 20.0000i 0.639529 0.639529i
\(979\) 22.0000 0.703123
\(980\) −3.00000 6.00000i −0.0958315 0.191663i
\(981\) −5.00000 + 5.00000i −0.159638 + 0.159638i
\(982\) 38.0000i 1.21263i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 14.0000i 0.446304i
\(985\) −6.00000 12.0000i −0.191176 0.382352i
\(986\) −8.00000 8.00000i −0.254772 0.254772i
\(987\) −20.0000 + 20.0000i −0.636607 + 0.636607i
\(988\) 15.0000 + 3.00000i 0.477214 + 0.0954427i
\(989\) 2.00000i 0.0635963i
\(990\) 3.00000 + 1.00000i 0.0953463 + 0.0317821i
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) −1.00000 + 1.00000i −0.0317500 + 0.0317500i
\(993\) 42.0000i 1.33283i
\(994\) 10.0000 + 10.0000i 0.317181 + 0.317181i
\(995\) 24.0000 + 48.0000i 0.760851 + 1.52170i
\(996\) 18.0000 + 18.0000i 0.570352 + 0.570352i
\(997\) 13.0000 + 13.0000i 0.411714 + 0.411714i 0.882335 0.470621i \(-0.155970\pi\)
−0.470621 + 0.882335i \(0.655970\pi\)
\(998\) −19.0000 19.0000i −0.601434 0.601434i
\(999\) −32.0000 + 32.0000i −1.01244 + 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.g.b.57.1 2
3.2 odd 2 1170.2.m.b.577.1 2
4.3 odd 2 1040.2.bg.b.577.1 2
5.2 odd 4 650.2.j.a.343.1 2
5.3 odd 4 130.2.j.c.83.1 yes 2
5.4 even 2 650.2.g.c.57.1 2
13.8 odd 4 130.2.j.c.47.1 yes 2
15.8 even 4 1170.2.w.a.343.1 2
20.3 even 4 1040.2.cd.c.993.1 2
39.8 even 4 1170.2.w.a.307.1 2
52.47 even 4 1040.2.cd.c.177.1 2
65.8 even 4 inner 130.2.g.b.73.1 yes 2
65.34 odd 4 650.2.j.a.307.1 2
65.47 even 4 650.2.g.c.593.1 2
195.8 odd 4 1170.2.m.b.73.1 2
260.203 odd 4 1040.2.bg.b.593.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.b.57.1 2 1.1 even 1 trivial
130.2.g.b.73.1 yes 2 65.8 even 4 inner
130.2.j.c.47.1 yes 2 13.8 odd 4
130.2.j.c.83.1 yes 2 5.3 odd 4
650.2.g.c.57.1 2 5.4 even 2
650.2.g.c.593.1 2 65.47 even 4
650.2.j.a.307.1 2 65.34 odd 4
650.2.j.a.343.1 2 5.2 odd 4
1040.2.bg.b.577.1 2 4.3 odd 2
1040.2.bg.b.593.1 2 260.203 odd 4
1040.2.cd.c.177.1 2 52.47 even 4
1040.2.cd.c.993.1 2 20.3 even 4
1170.2.m.b.73.1 2 195.8 odd 4
1170.2.m.b.577.1 2 3.2 odd 2
1170.2.w.a.307.1 2 39.8 even 4
1170.2.w.a.343.1 2 15.8 even 4