gp: [N,k,chi] = [13,4,Mod(1,13)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(13, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("13.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
13 13 1 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
T 2 + 5 T_{2} + 5 T 2 + 5
T2 + 5
acting on S 4 n e w ( Γ 0 ( 13 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(13)) S 4 n e w ( Γ 0 ( 1 3 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 5 T + 5 T + 5
T + 5
3 3 3
T + 7 T + 7 T + 7
T + 7
5 5 5
T + 7 T + 7 T + 7
T + 7
7 7 7
T + 13 T + 13 T + 1 3
T + 13
11 11 1 1
T + 26 T + 26 T + 2 6
T + 26
13 13 1 3
T − 13 T - 13 T − 1 3
T - 13
17 17 1 7
T − 77 T - 77 T − 7 7
T - 77
19 19 1 9
T + 126 T + 126 T + 1 2 6
T + 126
23 23 2 3
T + 96 T + 96 T + 9 6
T + 96
29 29 2 9
T + 82 T + 82 T + 8 2
T + 82
31 31 3 1
T − 196 T - 196 T − 1 9 6
T - 196
37 37 3 7
T + 131 T + 131 T + 1 3 1
T + 131
41 41 4 1
T − 336 T - 336 T − 3 3 6
T - 336
43 43 4 3
T + 201 T + 201 T + 2 0 1
T + 201
47 47 4 7
T + 105 T + 105 T + 1 0 5
T + 105
53 53 5 3
T + 432 T + 432 T + 4 3 2
T + 432
59 59 5 9
T + 294 T + 294 T + 2 9 4
T + 294
61 61 6 1
T + 56 T + 56 T + 5 6
T + 56
67 67 6 7
T − 478 T - 478 T − 4 7 8
T - 478
71 71 7 1
T − 9 T - 9 T − 9
T - 9
73 73 7 3
T − 98 T - 98 T − 9 8
T - 98
79 79 7 9
T − 1304 T - 1304 T − 1 3 0 4
T - 1304
83 83 8 3
T + 308 T + 308 T + 3 0 8
T + 308
89 89 8 9
T + 1190 T + 1190 T + 1 1 9 0
T + 1190
97 97 9 7
T − 70 T - 70 T − 7 0
T - 70
show more
show less