Properties

Label 13.4.a.a
Level 1313
Weight 44
Character orbit 13.a
Self dual yes
Analytic conductor 0.7670.767
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [13,4,Mod(1,13)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(13, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("13.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 13 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 13.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.7670248300750.767024830075
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q5q27q3+17q47q5+35q613q745q8+22q9+35q1026q11119q12+13q13+65q14+49q15+89q16+77q17110q18126q19+572q99+O(q100) q - 5 q^{2} - 7 q^{3} + 17 q^{4} - 7 q^{5} + 35 q^{6} - 13 q^{7} - 45 q^{8} + 22 q^{9} + 35 q^{10} - 26 q^{11} - 119 q^{12} + 13 q^{13} + 65 q^{14} + 49 q^{15} + 89 q^{16} + 77 q^{17} - 110 q^{18} - 126 q^{19}+ \cdots - 572 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−5.00000 −7.00000 17.0000 −7.00000 35.0000 −13.0000 −45.0000 22.0000 35.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 13.4.a.a 1
3.b odd 2 1 117.4.a.b 1
4.b odd 2 1 208.4.a.g 1
5.b even 2 1 325.4.a.d 1
5.c odd 4 2 325.4.b.b 2
7.b odd 2 1 637.4.a.a 1
8.b even 2 1 832.4.a.r 1
8.d odd 2 1 832.4.a.a 1
11.b odd 2 1 1573.4.a.a 1
12.b even 2 1 1872.4.a.k 1
13.b even 2 1 169.4.a.e 1
13.c even 3 2 169.4.c.e 2
13.d odd 4 2 169.4.b.a 2
13.e even 6 2 169.4.c.a 2
13.f odd 12 4 169.4.e.e 4
39.d odd 2 1 1521.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.a 1 1.a even 1 1 trivial
117.4.a.b 1 3.b odd 2 1
169.4.a.e 1 13.b even 2 1
169.4.b.a 2 13.d odd 4 2
169.4.c.a 2 13.e even 6 2
169.4.c.e 2 13.c even 3 2
169.4.e.e 4 13.f odd 12 4
208.4.a.g 1 4.b odd 2 1
325.4.a.d 1 5.b even 2 1
325.4.b.b 2 5.c odd 4 2
637.4.a.a 1 7.b odd 2 1
832.4.a.a 1 8.d odd 2 1
832.4.a.r 1 8.b even 2 1
1521.4.a.a 1 39.d odd 2 1
1573.4.a.a 1 11.b odd 2 1
1872.4.a.k 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2+5 T_{2} + 5 acting on S4new(Γ0(13))S_{4}^{\mathrm{new}}(\Gamma_0(13)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+5 T + 5 Copy content Toggle raw display
33 T+7 T + 7 Copy content Toggle raw display
55 T+7 T + 7 Copy content Toggle raw display
77 T+13 T + 13 Copy content Toggle raw display
1111 T+26 T + 26 Copy content Toggle raw display
1313 T13 T - 13 Copy content Toggle raw display
1717 T77 T - 77 Copy content Toggle raw display
1919 T+126 T + 126 Copy content Toggle raw display
2323 T+96 T + 96 Copy content Toggle raw display
2929 T+82 T + 82 Copy content Toggle raw display
3131 T196 T - 196 Copy content Toggle raw display
3737 T+131 T + 131 Copy content Toggle raw display
4141 T336 T - 336 Copy content Toggle raw display
4343 T+201 T + 201 Copy content Toggle raw display
4747 T+105 T + 105 Copy content Toggle raw display
5353 T+432 T + 432 Copy content Toggle raw display
5959 T+294 T + 294 Copy content Toggle raw display
6161 T+56 T + 56 Copy content Toggle raw display
6767 T478 T - 478 Copy content Toggle raw display
7171 T9 T - 9 Copy content Toggle raw display
7373 T98 T - 98 Copy content Toggle raw display
7979 T1304 T - 1304 Copy content Toggle raw display
8383 T+308 T + 308 Copy content Toggle raw display
8989 T+1190 T + 1190 Copy content Toggle raw display
9797 T70 T - 70 Copy content Toggle raw display
show more
show less