Defining parameters
Level: | \( N \) | \(=\) | \( 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 13.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(4\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(13))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5 | 3 | 2 |
Cusp forms | 3 | 3 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(13\) | Dim. |
---|---|
\(+\) | \(2\) |
\(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 13 | |||||||
13.4.a.a | $1$ | $0.767$ | \(\Q\) | None | \(-5\) | \(-7\) | \(-7\) | \(-13\) | $-$ | \(q-5q^{2}-7q^{3}+17q^{4}-7q^{5}+35q^{6}+\cdots\) | |
13.4.a.b | $2$ | $0.767$ | \(\Q(\sqrt{17}) \) | None | \(1\) | \(5\) | \(-3\) | \(-9\) | $+$ | \(q+\beta q^{2}+(4-3\beta )q^{3}+(-4+\beta )q^{4}+\cdots\) |