Properties

Label 13.4.a
Level $13$
Weight $4$
Character orbit 13.a
Rep. character $\chi_{13}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $4$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 13.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(4\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(13))\).

Total New Old
Modular forms 5 3 2
Cusp forms 3 3 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(13\)Dim
\(+\)\(2\)
\(-\)\(1\)

Trace form

\( 3 q - 4 q^{2} - 2 q^{3} + 10 q^{4} - 10 q^{5} + 12 q^{6} - 22 q^{7} - 48 q^{8} + 57 q^{9} + 42 q^{10} + 54 q^{11} - 162 q^{12} - 13 q^{13} + 154 q^{14} + 16 q^{15} + 50 q^{16} + 96 q^{17} - 220 q^{18} - 210 q^{19}+ \cdots - 702 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(13))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 13
13.4.a.a 13.a 1.a $1$ $0.767$ \(\Q\) None 13.4.a.a \(-5\) \(-7\) \(-7\) \(-13\) $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-7q^{3}+17q^{4}-7q^{5}+35q^{6}+\cdots\)
13.4.a.b 13.a 1.a $2$ $0.767$ \(\Q(\sqrt{17}) \) None 13.4.a.b \(1\) \(5\) \(-3\) \(-9\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+(4-3\beta )q^{3}+(-4+\beta )q^{4}+\cdots\)