Properties

Label 13.4
Level 13
Weight 4
Dimension 15
Nonzero newspaces 4
Newform subspaces 7
Sturm bound 56
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 7 \)
Sturm bound: \(56\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(13))\).

Total New Old
Modular forms 27 25 2
Cusp forms 15 15 0
Eisenstein series 12 10 2

Trace form

\( 15 q - 6 q^{2} - 6 q^{3} - 6 q^{4} - 6 q^{5} - 6 q^{6} - 42 q^{7} - 78 q^{8} - 6 q^{9} + 84 q^{10} + 54 q^{11} + 228 q^{12} + 138 q^{13} + 108 q^{14} + 66 q^{15} - 6 q^{16} - 195 q^{17} - 834 q^{18} - 450 q^{19}+ \cdots + 5190 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
13.4.a \(\chi_{13}(1, \cdot)\) 13.4.a.a 1 1
13.4.a.b 2
13.4.b \(\chi_{13}(12, \cdot)\) 13.4.b.a 2 1
13.4.c \(\chi_{13}(3, \cdot)\) 13.4.c.a 2 2
13.4.c.b 4
13.4.e \(\chi_{13}(4, \cdot)\) 13.4.e.a 2 2
13.4.e.b 2