Properties

Label 325.4.a.d
Level $325$
Weight $4$
Character orbit 325.a
Self dual yes
Analytic conductor $19.176$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,5,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{2} + 7 q^{3} + 17 q^{4} + 35 q^{6} + 13 q^{7} + 45 q^{8} + 22 q^{9} - 26 q^{11} + 119 q^{12} - 13 q^{13} + 65 q^{14} + 89 q^{16} - 77 q^{17} + 110 q^{18} - 126 q^{19} + 91 q^{21} - 130 q^{22}+ \cdots - 572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
5.00000 7.00000 17.0000 0 35.0000 13.0000 45.0000 22.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.4.a.d 1
5.b even 2 1 13.4.a.a 1
5.c odd 4 2 325.4.b.b 2
15.d odd 2 1 117.4.a.b 1
20.d odd 2 1 208.4.a.g 1
35.c odd 2 1 637.4.a.a 1
40.e odd 2 1 832.4.a.a 1
40.f even 2 1 832.4.a.r 1
55.d odd 2 1 1573.4.a.a 1
60.h even 2 1 1872.4.a.k 1
65.d even 2 1 169.4.a.e 1
65.g odd 4 2 169.4.b.a 2
65.l even 6 2 169.4.c.a 2
65.n even 6 2 169.4.c.e 2
65.s odd 12 4 169.4.e.e 4
195.e odd 2 1 1521.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.a 1 5.b even 2 1
117.4.a.b 1 15.d odd 2 1
169.4.a.e 1 65.d even 2 1
169.4.b.a 2 65.g odd 4 2
169.4.c.a 2 65.l even 6 2
169.4.c.e 2 65.n even 6 2
169.4.e.e 4 65.s odd 12 4
208.4.a.g 1 20.d odd 2 1
325.4.a.d 1 1.a even 1 1 trivial
325.4.b.b 2 5.c odd 4 2
637.4.a.a 1 35.c odd 2 1
832.4.a.a 1 40.e odd 2 1
832.4.a.r 1 40.f even 2 1
1521.4.a.a 1 195.e odd 2 1
1573.4.a.a 1 55.d odd 2 1
1872.4.a.k 1 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(325))\):

\( T_{2} - 5 \) Copy content Toggle raw display
\( T_{3} - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 5 \) Copy content Toggle raw display
$3$ \( T - 7 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 13 \) Copy content Toggle raw display
$11$ \( T + 26 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T + 77 \) Copy content Toggle raw display
$19$ \( T + 126 \) Copy content Toggle raw display
$23$ \( T - 96 \) Copy content Toggle raw display
$29$ \( T + 82 \) Copy content Toggle raw display
$31$ \( T - 196 \) Copy content Toggle raw display
$37$ \( T - 131 \) Copy content Toggle raw display
$41$ \( T - 336 \) Copy content Toggle raw display
$43$ \( T - 201 \) Copy content Toggle raw display
$47$ \( T - 105 \) Copy content Toggle raw display
$53$ \( T - 432 \) Copy content Toggle raw display
$59$ \( T + 294 \) Copy content Toggle raw display
$61$ \( T + 56 \) Copy content Toggle raw display
$67$ \( T + 478 \) Copy content Toggle raw display
$71$ \( T - 9 \) Copy content Toggle raw display
$73$ \( T + 98 \) Copy content Toggle raw display
$79$ \( T - 1304 \) Copy content Toggle raw display
$83$ \( T - 308 \) Copy content Toggle raw display
$89$ \( T + 1190 \) Copy content Toggle raw display
$97$ \( T + 70 \) Copy content Toggle raw display
show more
show less