Properties

Label 1295.2.j.a.186.7
Level $1295$
Weight $2$
Character 1295.186
Analytic conductor $10.341$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1295,2,Mod(186,1295)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1295, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1295.186"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1295 = 5 \cdot 7 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1295.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3406270618\)
Analytic rank: \(0\)
Dimension: \(38\)
Relative dimension: \(19\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 186.7
Character \(\chi\) \(=\) 1295.186
Dual form 1295.2.j.a.926.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.439861 - 0.761862i) q^{2} +(0.702103 - 1.21608i) q^{3} +(0.613044 - 1.06182i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.23531 q^{6} +(-1.97238 - 1.76344i) q^{7} -2.83806 q^{8} +(0.514102 + 0.890450i) q^{9} +(-0.439861 + 0.761862i) q^{10} +(-1.30938 + 2.26792i) q^{11} +(-0.860841 - 1.49102i) q^{12} -1.85392 q^{13} +(-0.475927 + 2.27835i) q^{14} -1.40421 q^{15} +(0.0222650 + 0.0385641i) q^{16} +(-0.331250 + 0.573741i) q^{17} +(0.452267 - 0.783349i) q^{18} +(0.727697 + 1.26041i) q^{19} -1.22609 q^{20} +(-3.52930 + 1.16045i) q^{21} +2.30379 q^{22} +(-2.25885 - 3.91244i) q^{23} +(-1.99261 + 3.45131i) q^{24} +(-0.500000 + 0.866025i) q^{25} +(0.815469 + 1.41243i) q^{26} +5.65643 q^{27} +(-3.08162 + 1.01325i) q^{28} -10.4288 q^{29} +(0.617656 + 1.06981i) q^{30} +(-1.32525 + 2.29541i) q^{31} +(-2.81848 + 4.88174i) q^{32} +(1.83864 + 3.18463i) q^{33} +0.582816 q^{34} +(-0.540997 + 2.58985i) q^{35} +1.26067 q^{36} +(-0.500000 - 0.866025i) q^{37} +(0.640171 - 1.10881i) q^{38} +(-1.30165 + 2.25452i) q^{39} +(1.41903 + 2.45783i) q^{40} -5.51742 q^{41} +(2.43650 + 2.17840i) q^{42} +4.15401 q^{43} +(1.60542 + 2.78067i) q^{44} +(0.514102 - 0.890450i) q^{45} +(-1.98716 + 3.44186i) q^{46} +(-1.35151 - 2.34088i) q^{47} +0.0625294 q^{48} +(0.780546 + 6.95635i) q^{49} +0.879722 q^{50} +(0.465143 + 0.805652i) q^{51} +(-1.13654 + 1.96854i) q^{52} +(5.93698 - 10.2831i) q^{53} +(-2.48804 - 4.30942i) q^{54} +2.61877 q^{55} +(5.59773 + 5.00476i) q^{56} +2.04367 q^{57} +(4.58724 + 7.94533i) q^{58} +(-4.47424 + 7.74961i) q^{59} +(-0.860841 + 1.49102i) q^{60} +(-3.25753 - 5.64221i) q^{61} +2.33171 q^{62} +(0.556255 - 2.66289i) q^{63} +5.04801 q^{64} +(0.926962 + 1.60555i) q^{65} +(1.61750 - 2.80159i) q^{66} +(0.610021 - 1.05659i) q^{67} +(0.406142 + 0.703458i) q^{68} -6.34378 q^{69} +(2.21107 - 0.727010i) q^{70} +11.7319 q^{71} +(-1.45905 - 2.52715i) q^{72} +(1.15865 - 2.00685i) q^{73} +(-0.439861 + 0.761862i) q^{74} +(0.702103 + 1.21608i) q^{75} +1.78444 q^{76} +(6.58194 - 2.16417i) q^{77} +2.29017 q^{78} +(-2.61787 - 4.53428i) q^{79} +(0.0222650 - 0.0385641i) q^{80} +(2.42909 - 4.20731i) q^{81} +(2.42690 + 4.20351i) q^{82} -11.5498 q^{83} +(-0.931424 + 4.45890i) q^{84} +0.662500 q^{85} +(-1.82719 - 3.16478i) q^{86} +(-7.32212 + 12.6823i) q^{87} +(3.71611 - 6.43649i) q^{88} +(-3.80066 - 6.58293i) q^{89} -0.904534 q^{90} +(3.65664 + 3.26929i) q^{91} -5.53910 q^{92} +(1.86093 + 3.22323i) q^{93} +(-1.18895 + 2.05933i) q^{94} +(0.727697 - 1.26041i) q^{95} +(3.95772 + 6.85498i) q^{96} -0.968186 q^{97} +(4.95644 - 3.65450i) q^{98} -2.69262 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 3 q^{2} + q^{3} - 11 q^{4} - 19 q^{5} - 8 q^{6} - 18 q^{8} - 12 q^{9} + 3 q^{10} + 13 q^{11} + 4 q^{12} - 6 q^{13} - q^{14} - 2 q^{15} + 5 q^{16} + 2 q^{17} + 11 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots - 142 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1295\mathbb{Z}\right)^\times\).

\(n\) \(556\) \(631\) \(1037\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.439861 0.761862i −0.311029 0.538718i 0.667557 0.744559i \(-0.267340\pi\)
−0.978585 + 0.205841i \(0.934007\pi\)
\(3\) 0.702103 1.21608i 0.405360 0.702103i −0.589004 0.808130i \(-0.700480\pi\)
0.994363 + 0.106027i \(0.0338130\pi\)
\(4\) 0.613044 1.06182i 0.306522 0.530912i
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) −1.23531 −0.504314
\(7\) −1.97238 1.76344i −0.745489 0.666518i
\(8\) −2.83806 −1.00341
\(9\) 0.514102 + 0.890450i 0.171367 + 0.296817i
\(10\) −0.439861 + 0.761862i −0.139096 + 0.240922i
\(11\) −1.30938 + 2.26792i −0.394794 + 0.683803i −0.993075 0.117483i \(-0.962517\pi\)
0.598281 + 0.801286i \(0.295851\pi\)
\(12\) −0.860841 1.49102i −0.248503 0.430420i
\(13\) −1.85392 −0.514186 −0.257093 0.966387i \(-0.582765\pi\)
−0.257093 + 0.966387i \(0.582765\pi\)
\(14\) −0.475927 + 2.27835i −0.127197 + 0.608914i
\(15\) −1.40421 −0.362565
\(16\) 0.0222650 + 0.0385641i 0.00556625 + 0.00964103i
\(17\) −0.331250 + 0.573741i −0.0803399 + 0.139153i −0.903396 0.428807i \(-0.858934\pi\)
0.823056 + 0.567960i \(0.192267\pi\)
\(18\) 0.452267 0.783349i 0.106600 0.184637i
\(19\) 0.727697 + 1.26041i 0.166945 + 0.289157i 0.937344 0.348404i \(-0.113276\pi\)
−0.770399 + 0.637562i \(0.779943\pi\)
\(20\) −1.22609 −0.274162
\(21\) −3.52930 + 1.16045i −0.770156 + 0.253231i
\(22\) 2.30379 0.491169
\(23\) −2.25885 3.91244i −0.471003 0.815801i 0.528447 0.848966i \(-0.322774\pi\)
−0.999450 + 0.0331656i \(0.989441\pi\)
\(24\) −1.99261 + 3.45131i −0.406740 + 0.704495i
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0.815469 + 1.41243i 0.159927 + 0.277001i
\(27\) 5.65643 1.08858
\(28\) −3.08162 + 1.01325i −0.582371 + 0.191486i
\(29\) −10.4288 −1.93659 −0.968293 0.249818i \(-0.919629\pi\)
−0.968293 + 0.249818i \(0.919629\pi\)
\(30\) 0.617656 + 1.06981i 0.112768 + 0.195320i
\(31\) −1.32525 + 2.29541i −0.238023 + 0.412267i −0.960147 0.279496i \(-0.909833\pi\)
0.722124 + 0.691763i \(0.243166\pi\)
\(32\) −2.81848 + 4.88174i −0.498241 + 0.862978i
\(33\) 1.83864 + 3.18463i 0.320067 + 0.554372i
\(34\) 0.582816 0.0999521
\(35\) −0.540997 + 2.58985i −0.0914451 + 0.437765i
\(36\) 1.26067 0.210111
\(37\) −0.500000 0.866025i −0.0821995 0.142374i
\(38\) 0.640171 1.10881i 0.103849 0.179873i
\(39\) −1.30165 + 2.25452i −0.208430 + 0.361012i
\(40\) 1.41903 + 2.45783i 0.224369 + 0.388618i
\(41\) −5.51742 −0.861677 −0.430838 0.902429i \(-0.641782\pi\)
−0.430838 + 0.902429i \(0.641782\pi\)
\(42\) 2.43650 + 2.17840i 0.375960 + 0.336135i
\(43\) 4.15401 0.633480 0.316740 0.948512i \(-0.397412\pi\)
0.316740 + 0.948512i \(0.397412\pi\)
\(44\) 1.60542 + 2.78067i 0.242026 + 0.419202i
\(45\) 0.514102 0.890450i 0.0766378 0.132740i
\(46\) −1.98716 + 3.44186i −0.292991 + 0.507475i
\(47\) −1.35151 2.34088i −0.197138 0.341453i 0.750461 0.660914i \(-0.229831\pi\)
−0.947599 + 0.319461i \(0.896498\pi\)
\(48\) 0.0625294 0.00902534
\(49\) 0.780546 + 6.95635i 0.111507 + 0.993764i
\(50\) 0.879722 0.124412
\(51\) 0.465143 + 0.805652i 0.0651331 + 0.112814i
\(52\) −1.13654 + 1.96854i −0.157609 + 0.272987i
\(53\) 5.93698 10.2831i 0.815507 1.41250i −0.0934570 0.995623i \(-0.529792\pi\)
0.908964 0.416876i \(-0.136875\pi\)
\(54\) −2.48804 4.30942i −0.338580 0.586438i
\(55\) 2.61877 0.353114
\(56\) 5.59773 + 5.00476i 0.748028 + 0.668789i
\(57\) 2.04367 0.270691
\(58\) 4.58724 + 7.94533i 0.602334 + 1.04327i
\(59\) −4.47424 + 7.74961i −0.582496 + 1.00891i 0.412686 + 0.910873i \(0.364591\pi\)
−0.995182 + 0.0980398i \(0.968743\pi\)
\(60\) −0.860841 + 1.49102i −0.111134 + 0.192490i
\(61\) −3.25753 5.64221i −0.417084 0.722411i 0.578561 0.815639i \(-0.303615\pi\)
−0.995645 + 0.0932285i \(0.970281\pi\)
\(62\) 2.33171 0.296128
\(63\) 0.556255 2.66289i 0.0700815 0.335493i
\(64\) 5.04801 0.631001
\(65\) 0.926962 + 1.60555i 0.114975 + 0.199143i
\(66\) 1.61750 2.80159i 0.199100 0.344851i
\(67\) 0.610021 1.05659i 0.0745259 0.129083i −0.826354 0.563151i \(-0.809589\pi\)
0.900880 + 0.434068i \(0.142922\pi\)
\(68\) 0.406142 + 0.703458i 0.0492519 + 0.0853068i
\(69\) −6.34378 −0.763702
\(70\) 2.21107 0.727010i 0.264274 0.0868943i
\(71\) 11.7319 1.39231 0.696157 0.717889i \(-0.254892\pi\)
0.696157 + 0.717889i \(0.254892\pi\)
\(72\) −1.45905 2.52715i −0.171951 0.297828i
\(73\) 1.15865 2.00685i 0.135610 0.234884i −0.790220 0.612823i \(-0.790034\pi\)
0.925830 + 0.377939i \(0.123367\pi\)
\(74\) −0.439861 + 0.761862i −0.0511328 + 0.0885647i
\(75\) 0.702103 + 1.21608i 0.0810719 + 0.140421i
\(76\) 1.78444 0.204689
\(77\) 6.58194 2.16417i 0.750082 0.246630i
\(78\) 2.29017 0.259311
\(79\) −2.61787 4.53428i −0.294533 0.510146i 0.680343 0.732894i \(-0.261831\pi\)
−0.974876 + 0.222747i \(0.928497\pi\)
\(80\) 0.0222650 0.0385641i 0.00248930 0.00431160i
\(81\) 2.42909 4.20731i 0.269899 0.467479i
\(82\) 2.42690 + 4.20351i 0.268006 + 0.464201i
\(83\) −11.5498 −1.26776 −0.633880 0.773431i \(-0.718539\pi\)
−0.633880 + 0.773431i \(0.718539\pi\)
\(84\) −0.931424 + 4.45890i −0.101627 + 0.486506i
\(85\) 0.662500 0.0718582
\(86\) −1.82719 3.16478i −0.197031 0.341267i
\(87\) −7.32212 + 12.6823i −0.785014 + 1.35968i
\(88\) 3.71611 6.43649i 0.396139 0.686132i
\(89\) −3.80066 6.58293i −0.402869 0.697789i 0.591202 0.806523i \(-0.298654\pi\)
−0.994071 + 0.108734i \(0.965320\pi\)
\(90\) −0.904534 −0.0953462
\(91\) 3.65664 + 3.26929i 0.383320 + 0.342714i
\(92\) −5.53910 −0.577491
\(93\) 1.86093 + 3.22323i 0.192969 + 0.334233i
\(94\) −1.18895 + 2.05933i −0.122631 + 0.212403i
\(95\) 0.727697 1.26041i 0.0746601 0.129315i
\(96\) 3.95772 + 6.85498i 0.403933 + 0.699633i
\(97\) −0.968186 −0.0983044 −0.0491522 0.998791i \(-0.515652\pi\)
−0.0491522 + 0.998791i \(0.515652\pi\)
\(98\) 4.95644 3.65450i 0.500676 0.369160i
\(99\) −2.69262 −0.270619
\(100\) 0.613044 + 1.06182i 0.0613044 + 0.106182i
\(101\) −0.393610 + 0.681753i −0.0391657 + 0.0678370i −0.884944 0.465698i \(-0.845803\pi\)
0.845778 + 0.533535i \(0.179137\pi\)
\(102\) 0.409197 0.708750i 0.0405165 0.0701767i
\(103\) 0.357596 + 0.619375i 0.0352350 + 0.0610288i 0.883105 0.469175i \(-0.155449\pi\)
−0.847870 + 0.530204i \(0.822115\pi\)
\(104\) 5.26155 0.515938
\(105\) 2.76963 + 2.47624i 0.270288 + 0.241656i
\(106\) −10.4458 −1.01458
\(107\) −1.45707 2.52372i −0.140861 0.243978i 0.786960 0.617004i \(-0.211654\pi\)
−0.927821 + 0.373026i \(0.878320\pi\)
\(108\) 3.46764 6.00613i 0.333674 0.577940i
\(109\) 8.31381 14.3999i 0.796319 1.37926i −0.125679 0.992071i \(-0.540111\pi\)
0.921998 0.387194i \(-0.126556\pi\)
\(110\) −1.15189 1.99514i −0.109829 0.190229i
\(111\) −1.40421 −0.133281
\(112\) 0.0240906 0.115326i 0.00227635 0.0108973i
\(113\) 8.86284 0.833746 0.416873 0.908965i \(-0.363126\pi\)
0.416873 + 0.908965i \(0.363126\pi\)
\(114\) −0.898932 1.55700i −0.0841927 0.145826i
\(115\) −2.25885 + 3.91244i −0.210639 + 0.364837i
\(116\) −6.39334 + 11.0736i −0.593606 + 1.02816i
\(117\) −0.953106 1.65083i −0.0881146 0.152619i
\(118\) 7.87218 0.724692
\(119\) 1.66511 0.547495i 0.152640 0.0501888i
\(120\) 3.98523 0.363800
\(121\) 2.07103 + 3.58713i 0.188276 + 0.326103i
\(122\) −2.86572 + 4.96358i −0.259450 + 0.449381i
\(123\) −3.87380 + 6.70962i −0.349289 + 0.604986i
\(124\) 1.62488 + 2.81437i 0.145918 + 0.252738i
\(125\) 1.00000 0.0894427
\(126\) −2.27343 + 0.747514i −0.202533 + 0.0665938i
\(127\) −17.2232 −1.52831 −0.764157 0.645030i \(-0.776845\pi\)
−0.764157 + 0.645030i \(0.776845\pi\)
\(128\) 3.41653 + 5.91760i 0.301981 + 0.523047i
\(129\) 2.91654 5.05160i 0.256787 0.444769i
\(130\) 0.815469 1.41243i 0.0715214 0.123879i
\(131\) −9.32803 16.1566i −0.814994 1.41161i −0.909332 0.416070i \(-0.863407\pi\)
0.0943388 0.995540i \(-0.469926\pi\)
\(132\) 4.50868 0.392430
\(133\) 0.787363 3.76925i 0.0682730 0.326835i
\(134\) −1.07330 −0.0927188
\(135\) −2.82822 4.89861i −0.243414 0.421605i
\(136\) 0.940108 1.62831i 0.0806136 0.139627i
\(137\) −4.37814 + 7.58316i −0.374050 + 0.647873i −0.990184 0.139768i \(-0.955364\pi\)
0.616134 + 0.787641i \(0.288698\pi\)
\(138\) 2.79038 + 4.83309i 0.237533 + 0.411420i
\(139\) 8.49623 0.720640 0.360320 0.932829i \(-0.382667\pi\)
0.360320 + 0.932829i \(0.382667\pi\)
\(140\) 2.41831 + 2.16214i 0.204384 + 0.182734i
\(141\) −3.79560 −0.319647
\(142\) −5.16039 8.93805i −0.433050 0.750065i
\(143\) 2.42750 4.20455i 0.202997 0.351602i
\(144\) −0.0228930 + 0.0396518i −0.00190775 + 0.00330431i
\(145\) 5.21442 + 9.03163i 0.433034 + 0.750036i
\(146\) −2.03859 −0.168715
\(147\) 9.00749 + 3.93487i 0.742925 + 0.324542i
\(148\) −1.22609 −0.100784
\(149\) 8.22355 + 14.2436i 0.673700 + 1.16688i 0.976847 + 0.213939i \(0.0686292\pi\)
−0.303147 + 0.952944i \(0.598037\pi\)
\(150\) 0.617656 1.06981i 0.0504314 0.0873498i
\(151\) 1.91486 3.31664i 0.155829 0.269904i −0.777531 0.628844i \(-0.783528\pi\)
0.933361 + 0.358940i \(0.116862\pi\)
\(152\) −2.06525 3.57711i −0.167514 0.290142i
\(153\) −0.681184 −0.0550705
\(154\) −4.54394 4.06259i −0.366161 0.327373i
\(155\) 2.65051 0.212894
\(156\) 1.59593 + 2.76424i 0.127777 + 0.221316i
\(157\) 0.684531 1.18564i 0.0546315 0.0946245i −0.837416 0.546566i \(-0.815935\pi\)
0.892048 + 0.451941i \(0.149268\pi\)
\(158\) −2.30300 + 3.98891i −0.183217 + 0.317340i
\(159\) −8.33674 14.4397i −0.661147 1.14514i
\(160\) 5.63695 0.445640
\(161\) −2.44406 + 11.7002i −0.192619 + 0.922102i
\(162\) −4.27386 −0.335786
\(163\) 1.87951 + 3.25541i 0.147215 + 0.254983i 0.930197 0.367061i \(-0.119636\pi\)
−0.782982 + 0.622044i \(0.786302\pi\)
\(164\) −3.38242 + 5.85853i −0.264123 + 0.457474i
\(165\) 1.83864 3.18463i 0.143138 0.247923i
\(166\) 5.08033 + 8.79939i 0.394310 + 0.682965i
\(167\) −22.0658 −1.70751 −0.853753 0.520678i \(-0.825679\pi\)
−0.853753 + 0.520678i \(0.825679\pi\)
\(168\) 10.0164 3.29342i 0.772779 0.254093i
\(169\) −9.56297 −0.735613
\(170\) −0.291408 0.504733i −0.0223500 0.0387113i
\(171\) −0.748220 + 1.29596i −0.0572178 + 0.0991042i
\(172\) 2.54659 4.41083i 0.194176 0.336322i
\(173\) −6.75775 11.7048i −0.513782 0.889897i −0.999872 0.0159882i \(-0.994911\pi\)
0.486090 0.873909i \(-0.338423\pi\)
\(174\) 12.8829 0.976647
\(175\) 2.51337 0.826408i 0.189993 0.0624706i
\(176\) −0.116614 −0.00879009
\(177\) 6.28276 + 10.8821i 0.472241 + 0.817945i
\(178\) −3.34352 + 5.79115i −0.250608 + 0.434065i
\(179\) −11.5292 + 19.9692i −0.861734 + 1.49257i 0.00852038 + 0.999964i \(0.497288\pi\)
−0.870254 + 0.492603i \(0.836045\pi\)
\(180\) −0.630334 1.09177i −0.0469823 0.0813758i
\(181\) −0.407733 −0.0303066 −0.0151533 0.999885i \(-0.504824\pi\)
−0.0151533 + 0.999885i \(0.504824\pi\)
\(182\) 0.882332 4.22389i 0.0654028 0.313095i
\(183\) −9.14849 −0.676276
\(184\) 6.41076 + 11.1038i 0.472607 + 0.818580i
\(185\) −0.500000 + 0.866025i −0.0367607 + 0.0636715i
\(186\) 1.63710 2.83554i 0.120038 0.207912i
\(187\) −0.867466 1.50249i −0.0634354 0.109873i
\(188\) −3.31414 −0.241709
\(189\) −11.1566 9.97479i −0.811524 0.725559i
\(190\) −1.28034 −0.0928858
\(191\) 8.30734 + 14.3887i 0.601098 + 1.04113i 0.992655 + 0.120978i \(0.0386032\pi\)
−0.391557 + 0.920154i \(0.628064\pi\)
\(192\) 3.54423 6.13878i 0.255782 0.443028i
\(193\) 10.5661 18.3011i 0.760567 1.31734i −0.181991 0.983300i \(-0.558254\pi\)
0.942559 0.334041i \(-0.108412\pi\)
\(194\) 0.425867 + 0.737624i 0.0305755 + 0.0529583i
\(195\) 2.60329 0.186426
\(196\) 7.86492 + 3.43575i 0.561780 + 0.245410i
\(197\) −15.7226 −1.12019 −0.560095 0.828428i \(-0.689235\pi\)
−0.560095 + 0.828428i \(0.689235\pi\)
\(198\) 1.18438 + 2.05141i 0.0841703 + 0.145787i
\(199\) 1.60196 2.77467i 0.113560 0.196691i −0.803643 0.595111i \(-0.797108\pi\)
0.917203 + 0.398420i \(0.130441\pi\)
\(200\) 1.41903 2.45783i 0.100341 0.173795i
\(201\) −0.856595 1.48367i −0.0604196 0.104650i
\(202\) 0.692536 0.0487266
\(203\) 20.5696 + 18.3906i 1.44370 + 1.29077i
\(204\) 1.14061 0.0798589
\(205\) 2.75871 + 4.77823i 0.192677 + 0.333726i
\(206\) 0.314585 0.544878i 0.0219182 0.0379635i
\(207\) 2.32256 4.02279i 0.161429 0.279603i
\(208\) −0.0412776 0.0714950i −0.00286209 0.00495729i
\(209\) −3.81133 −0.263636
\(210\) 0.668300 3.19927i 0.0461171 0.220771i
\(211\) −7.07225 −0.486874 −0.243437 0.969917i \(-0.578275\pi\)
−0.243437 + 0.969917i \(0.578275\pi\)
\(212\) −7.27926 12.6080i −0.499942 0.865924i
\(213\) 8.23697 14.2669i 0.564388 0.977549i
\(214\) −1.28182 + 2.22018i −0.0876234 + 0.151768i
\(215\) −2.07700 3.59748i −0.141651 0.245346i
\(216\) −16.0533 −1.09229
\(217\) 6.66172 2.19040i 0.452227 0.148694i
\(218\) −14.6277 −0.990713
\(219\) −1.62699 2.81803i −0.109942 0.190425i
\(220\) 1.60542 2.78067i 0.108237 0.187473i
\(221\) 0.614112 1.06367i 0.0413096 0.0715504i
\(222\) 0.617656 + 1.06981i 0.0414544 + 0.0718011i
\(223\) 2.44022 0.163409 0.0817045 0.996657i \(-0.473964\pi\)
0.0817045 + 0.996657i \(0.473964\pi\)
\(224\) 14.1678 4.65842i 0.946624 0.311254i
\(225\) −1.02820 −0.0685469
\(226\) −3.89842 6.75226i −0.259319 0.449154i
\(227\) −6.84179 + 11.8503i −0.454106 + 0.786534i −0.998636 0.0522067i \(-0.983375\pi\)
0.544530 + 0.838741i \(0.316708\pi\)
\(228\) 1.25286 2.17002i 0.0829728 0.143713i
\(229\) −3.85637 6.67942i −0.254836 0.441389i 0.710015 0.704187i \(-0.248688\pi\)
−0.964851 + 0.262798i \(0.915355\pi\)
\(230\) 3.97432 0.262059
\(231\) 1.98940 9.52363i 0.130893 0.626609i
\(232\) 29.5977 1.94318
\(233\) 4.66288 + 8.07634i 0.305475 + 0.529099i 0.977367 0.211551i \(-0.0678513\pi\)
−0.671892 + 0.740649i \(0.734518\pi\)
\(234\) −0.838468 + 1.45227i −0.0548124 + 0.0949378i
\(235\) −1.35151 + 2.34088i −0.0881628 + 0.152702i
\(236\) 5.48581 + 9.50171i 0.357096 + 0.618508i
\(237\) −7.35206 −0.477567
\(238\) −1.14953 1.02776i −0.0745131 0.0666199i
\(239\) −21.9382 −1.41907 −0.709533 0.704672i \(-0.751094\pi\)
−0.709533 + 0.704672i \(0.751094\pi\)
\(240\) −0.0312647 0.0541520i −0.00201813 0.00349550i
\(241\) 0.757292 1.31167i 0.0487815 0.0844920i −0.840604 0.541651i \(-0.817800\pi\)
0.889385 + 0.457159i \(0.151133\pi\)
\(242\) 1.82193 3.15568i 0.117118 0.202855i
\(243\) 5.07370 + 8.78790i 0.325478 + 0.563744i
\(244\) −7.98804 −0.511382
\(245\) 5.63410 4.15415i 0.359949 0.265399i
\(246\) 6.81574 0.434556
\(247\) −1.34909 2.33670i −0.0858408 0.148681i
\(248\) 3.76115 6.51451i 0.238833 0.413672i
\(249\) −8.10918 + 14.0455i −0.513899 + 0.890099i
\(250\) −0.439861 0.761862i −0.0278193 0.0481844i
\(251\) −28.9786 −1.82911 −0.914556 0.404459i \(-0.867460\pi\)
−0.914556 + 0.404459i \(0.867460\pi\)
\(252\) −2.48651 2.22312i −0.156636 0.140043i
\(253\) 11.8308 0.743796
\(254\) 7.57583 + 13.1217i 0.475350 + 0.823330i
\(255\) 0.465143 0.805652i 0.0291284 0.0504519i
\(256\) 8.05361 13.9493i 0.503350 0.871828i
\(257\) −12.7759 22.1286i −0.796941 1.38034i −0.921599 0.388143i \(-0.873117\pi\)
0.124658 0.992200i \(-0.460217\pi\)
\(258\) −5.13150 −0.319473
\(259\) −0.540997 + 2.58985i −0.0336159 + 0.160925i
\(260\) 2.27307 0.140970
\(261\) −5.36148 9.28636i −0.331867 0.574811i
\(262\) −8.20608 + 14.2133i −0.506973 + 0.878103i
\(263\) 9.46488 16.3937i 0.583630 1.01088i −0.411415 0.911448i \(-0.634965\pi\)
0.995045 0.0994282i \(-0.0317014\pi\)
\(264\) −5.21819 9.03817i −0.321157 0.556261i
\(265\) −11.8740 −0.729411
\(266\) −3.21798 + 1.05809i −0.197307 + 0.0648754i
\(267\) −10.6738 −0.653227
\(268\) −0.747939 1.29547i −0.0456877 0.0791334i
\(269\) 10.7211 18.5694i 0.653676 1.13220i −0.328548 0.944487i \(-0.606559\pi\)
0.982224 0.187712i \(-0.0601072\pi\)
\(270\) −2.48804 + 4.30942i −0.151418 + 0.262263i
\(271\) −15.0866 26.1307i −0.916444 1.58733i −0.804773 0.593583i \(-0.797713\pi\)
−0.111672 0.993745i \(-0.535620\pi\)
\(272\) −0.0295011 −0.00178877
\(273\) 6.54305 2.15138i 0.396003 0.130208i
\(274\) 7.70310 0.465361
\(275\) −1.30938 2.26792i −0.0789588 0.136761i
\(276\) −3.88902 + 6.73598i −0.234091 + 0.405458i
\(277\) 5.93458 10.2790i 0.356574 0.617605i −0.630812 0.775936i \(-0.717278\pi\)
0.987386 + 0.158331i \(0.0506113\pi\)
\(278\) −3.73716 6.47295i −0.224140 0.388222i
\(279\) −2.72526 −0.163157
\(280\) 1.53538 7.35016i 0.0917566 0.439256i
\(281\) −1.92744 −0.114981 −0.0574907 0.998346i \(-0.518310\pi\)
−0.0574907 + 0.998346i \(0.518310\pi\)
\(282\) 1.66954 + 2.89172i 0.0994195 + 0.172200i
\(283\) 9.09434 15.7519i 0.540603 0.936351i −0.458267 0.888815i \(-0.651530\pi\)
0.998870 0.0475365i \(-0.0151370\pi\)
\(284\) 7.19215 12.4572i 0.426775 0.739197i
\(285\) −1.02184 1.76987i −0.0605284 0.104838i
\(286\) −4.27105 −0.252552
\(287\) 10.8824 + 9.72965i 0.642370 + 0.574323i
\(288\) −5.79593 −0.341529
\(289\) 8.28055 + 14.3423i 0.487091 + 0.843666i
\(290\) 4.58724 7.94533i 0.269372 0.466566i
\(291\) −0.679766 + 1.17739i −0.0398486 + 0.0690198i
\(292\) −1.42061 2.46057i −0.0831350 0.143994i
\(293\) 23.8905 1.39570 0.697850 0.716244i \(-0.254140\pi\)
0.697850 + 0.716244i \(0.254140\pi\)
\(294\) −0.964218 8.59326i −0.0562344 0.501169i
\(295\) 8.94848 0.521000
\(296\) 1.41903 + 2.45783i 0.0824795 + 0.142859i
\(297\) −7.40643 + 12.8283i −0.429765 + 0.744375i
\(298\) 7.23444 12.5304i 0.419080 0.725868i
\(299\) 4.18774 + 7.25337i 0.242183 + 0.419473i
\(300\) 1.72168 0.0994013
\(301\) −8.19327 7.32535i −0.472252 0.422226i
\(302\) −3.36909 −0.193870
\(303\) 0.552710 + 0.957322i 0.0317524 + 0.0549967i
\(304\) −0.0324044 + 0.0561260i −0.00185852 + 0.00321905i
\(305\) −3.25753 + 5.64221i −0.186526 + 0.323072i
\(306\) 0.299627 + 0.518968i 0.0171285 + 0.0296675i
\(307\) 5.64062 0.321927 0.160964 0.986960i \(-0.448540\pi\)
0.160964 + 0.986960i \(0.448540\pi\)
\(308\) 1.73705 8.31559i 0.0989778 0.473825i
\(309\) 1.00428 0.0571314
\(310\) −1.16586 2.01932i −0.0662161 0.114690i
\(311\) 7.58710 13.1412i 0.430225 0.745171i −0.566668 0.823946i \(-0.691768\pi\)
0.996892 + 0.0787753i \(0.0251010\pi\)
\(312\) 3.69415 6.39846i 0.209140 0.362242i
\(313\) −16.2025 28.0635i −0.915819 1.58624i −0.805698 0.592326i \(-0.798210\pi\)
−0.110120 0.993918i \(-0.535124\pi\)
\(314\) −1.20439 −0.0679679
\(315\) −2.58426 + 0.849716i −0.145607 + 0.0478761i
\(316\) −6.41947 −0.361124
\(317\) 1.15803 + 2.00577i 0.0650416 + 0.112655i 0.896712 0.442614i \(-0.145949\pi\)
−0.831671 + 0.555269i \(0.812615\pi\)
\(318\) −7.33402 + 12.7029i −0.411271 + 0.712343i
\(319\) 13.6553 23.6517i 0.764552 1.32424i
\(320\) −2.52401 4.37171i −0.141096 0.244386i
\(321\) −4.09206 −0.228397
\(322\) 9.98896 3.28441i 0.556663 0.183033i
\(323\) −0.964197 −0.0536494
\(324\) −2.97828 5.15854i −0.165460 0.286585i
\(325\) 0.926962 1.60555i 0.0514186 0.0890596i
\(326\) 1.65345 2.86386i 0.0915761 0.158614i
\(327\) −11.6743 20.2205i −0.645591 1.11820i
\(328\) 15.6588 0.864612
\(329\) −1.46232 + 7.00042i −0.0806206 + 0.385945i
\(330\) −3.23499 −0.178081
\(331\) −0.882606 1.52872i −0.0485124 0.0840260i 0.840750 0.541424i \(-0.182115\pi\)
−0.889262 + 0.457398i \(0.848781\pi\)
\(332\) −7.08056 + 12.2639i −0.388596 + 0.673069i
\(333\) 0.514102 0.890450i 0.0281726 0.0487964i
\(334\) 9.70591 + 16.8111i 0.531084 + 0.919864i
\(335\) −1.22004 −0.0666580
\(336\) −0.123332 0.110267i −0.00672829 0.00601555i
\(337\) −13.8878 −0.756517 −0.378258 0.925700i \(-0.623477\pi\)
−0.378258 + 0.925700i \(0.623477\pi\)
\(338\) 4.20638 + 7.28566i 0.228797 + 0.396288i
\(339\) 6.22263 10.7779i 0.337967 0.585376i
\(340\) 0.406142 0.703458i 0.0220261 0.0381504i
\(341\) −3.47053 6.01113i −0.187940 0.325521i
\(342\) 1.31645 0.0711856
\(343\) 10.7276 15.0970i 0.579235 0.815161i
\(344\) −11.7893 −0.635638
\(345\) 3.17189 + 5.49388i 0.170769 + 0.295780i
\(346\) −5.94494 + 10.2969i −0.319602 + 0.553567i
\(347\) 4.01321 6.95108i 0.215440 0.373154i −0.737968 0.674835i \(-0.764215\pi\)
0.953409 + 0.301682i \(0.0975480\pi\)
\(348\) 8.97757 + 15.5496i 0.481248 + 0.833546i
\(349\) −16.2924 −0.872115 −0.436057 0.899919i \(-0.643626\pi\)
−0.436057 + 0.899919i \(0.643626\pi\)
\(350\) −1.73514 1.55134i −0.0927474 0.0829226i
\(351\) −10.4866 −0.559733
\(352\) −7.38093 12.7841i −0.393405 0.681397i
\(353\) 6.74041 11.6747i 0.358756 0.621383i −0.628998 0.777407i \(-0.716534\pi\)
0.987753 + 0.156024i \(0.0498678\pi\)
\(354\) 5.52708 9.57318i 0.293761 0.508809i
\(355\) −5.86593 10.1601i −0.311331 0.539241i
\(356\) −9.31988 −0.493953
\(357\) 0.503282 2.40930i 0.0266365 0.127514i
\(358\) 20.2850 1.07210
\(359\) 15.8408 + 27.4371i 0.836045 + 1.44807i 0.893177 + 0.449706i \(0.148471\pi\)
−0.0571320 + 0.998367i \(0.518196\pi\)
\(360\) −1.45905 + 2.52715i −0.0768988 + 0.133193i
\(361\) 8.44092 14.6201i 0.444259 0.769479i
\(362\) 0.179346 + 0.310637i 0.00942622 + 0.0163267i
\(363\) 5.81631 0.305277
\(364\) 5.71309 1.87849i 0.299447 0.0984595i
\(365\) −2.31731 −0.121293
\(366\) 4.02407 + 6.96989i 0.210341 + 0.364322i
\(367\) −13.8643 + 24.0137i −0.723711 + 1.25351i 0.235791 + 0.971804i \(0.424232\pi\)
−0.959502 + 0.281701i \(0.909101\pi\)
\(368\) 0.100587 0.174221i 0.00524344 0.00908191i
\(369\) −2.83652 4.91299i −0.147663 0.255760i
\(370\) 0.879722 0.0457346
\(371\) −29.8437 + 9.81273i −1.54941 + 0.509452i
\(372\) 4.56333 0.236598
\(373\) −8.76014 15.1730i −0.453583 0.785629i 0.545023 0.838421i \(-0.316521\pi\)
−0.998605 + 0.0527928i \(0.983188\pi\)
\(374\) −0.763129 + 1.32178i −0.0394605 + 0.0683475i
\(375\) 0.702103 1.21608i 0.0362565 0.0627980i
\(376\) 3.83567 + 6.64357i 0.197810 + 0.342616i
\(377\) 19.3343 0.995765
\(378\) −2.69205 + 12.8873i −0.138464 + 0.662852i
\(379\) 22.4681 1.15411 0.577054 0.816706i \(-0.304202\pi\)
0.577054 + 0.816706i \(0.304202\pi\)
\(380\) −0.892220 1.54537i −0.0457699 0.0792759i
\(381\) −12.0925 + 20.9448i −0.619517 + 1.07303i
\(382\) 7.30815 12.6581i 0.373918 0.647644i
\(383\) 14.4317 + 24.9964i 0.737423 + 1.27725i 0.953652 + 0.300911i \(0.0972908\pi\)
−0.216229 + 0.976343i \(0.569376\pi\)
\(384\) 9.59502 0.489644
\(385\) −5.16520 4.61804i −0.263243 0.235357i
\(386\) −18.5905 −0.946233
\(387\) 2.13558 + 3.69894i 0.108558 + 0.188028i
\(388\) −0.593541 + 1.02804i −0.0301325 + 0.0521910i
\(389\) 3.06791 5.31377i 0.155549 0.269419i −0.777710 0.628623i \(-0.783619\pi\)
0.933259 + 0.359205i \(0.116952\pi\)
\(390\) −1.14509 1.98335i −0.0579838 0.100431i
\(391\) 2.99297 0.151361
\(392\) −2.21524 19.7425i −0.111886 0.997149i
\(393\) −26.1970 −1.32146
\(394\) 6.91577 + 11.9785i 0.348411 + 0.603466i
\(395\) −2.61787 + 4.53428i −0.131719 + 0.228144i
\(396\) −1.65070 + 2.85909i −0.0829507 + 0.143675i
\(397\) 9.41263 + 16.3031i 0.472406 + 0.818231i 0.999501 0.0315748i \(-0.0100522\pi\)
−0.527095 + 0.849806i \(0.676719\pi\)
\(398\) −2.81855 −0.141281
\(399\) −4.03089 3.60390i −0.201797 0.180421i
\(400\) −0.0445300 −0.00222650
\(401\) 17.7968 + 30.8250i 0.888732 + 1.53933i 0.841375 + 0.540451i \(0.181746\pi\)
0.0473566 + 0.998878i \(0.484920\pi\)
\(402\) −0.753566 + 1.30521i −0.0375845 + 0.0650982i
\(403\) 2.45692 4.25551i 0.122388 0.211982i
\(404\) 0.482601 + 0.835890i 0.0240103 + 0.0415871i
\(405\) −4.85819 −0.241405
\(406\) 4.96336 23.7605i 0.246327 1.17921i
\(407\) 2.61877 0.129807
\(408\) −1.32011 2.28649i −0.0653550 0.113198i
\(409\) 9.99241 17.3074i 0.494093 0.855794i −0.505884 0.862601i \(-0.668834\pi\)
0.999977 + 0.00680784i \(0.00216702\pi\)
\(410\) 2.42690 4.20351i 0.119856 0.207597i
\(411\) 6.14782 + 10.6483i 0.303249 + 0.525243i
\(412\) 0.876889 0.0432012
\(413\) 22.4909 7.39509i 1.10670 0.363889i
\(414\) −4.08641 −0.200836
\(415\) 5.77492 + 10.0025i 0.283480 + 0.491001i
\(416\) 5.22524 9.05038i 0.256188 0.443731i
\(417\) 5.96523 10.3321i 0.292118 0.505964i
\(418\) 1.67646 + 2.90371i 0.0819983 + 0.142025i
\(419\) 5.57361 0.272288 0.136144 0.990689i \(-0.456529\pi\)
0.136144 + 0.990689i \(0.456529\pi\)
\(420\) 4.32723 1.42281i 0.211147 0.0694261i
\(421\) 15.7722 0.768691 0.384346 0.923189i \(-0.374427\pi\)
0.384346 + 0.923189i \(0.374427\pi\)
\(422\) 3.11081 + 5.38808i 0.151432 + 0.262287i
\(423\) 1.38963 2.40690i 0.0675660 0.117028i
\(424\) −16.8495 + 29.1842i −0.818285 + 1.41731i
\(425\) −0.331250 0.573741i −0.0160680 0.0278305i
\(426\) −14.4925 −0.702164
\(427\) −3.52463 + 16.8730i −0.170569 + 0.816543i
\(428\) −3.57300 −0.172707
\(429\) −3.40871 5.90405i −0.164574 0.285050i
\(430\) −1.82719 + 3.16478i −0.0881148 + 0.152619i
\(431\) −2.86121 + 4.95576i −0.137820 + 0.238711i −0.926671 0.375873i \(-0.877343\pi\)
0.788851 + 0.614584i \(0.210676\pi\)
\(432\) 0.125941 + 0.218135i 0.00605932 + 0.0104950i
\(433\) −3.41219 −0.163979 −0.0819896 0.996633i \(-0.526127\pi\)
−0.0819896 + 0.996633i \(0.526127\pi\)
\(434\) −4.59901 4.11184i −0.220760 0.197374i
\(435\) 14.6442 0.702137
\(436\) −10.1935 17.6556i −0.488179 0.845550i
\(437\) 3.28751 5.69414i 0.157263 0.272388i
\(438\) −1.43130 + 2.47908i −0.0683901 + 0.118455i
\(439\) 10.7229 + 18.5726i 0.511776 + 0.886423i 0.999907 + 0.0136520i \(0.00434570\pi\)
−0.488130 + 0.872771i \(0.662321\pi\)
\(440\) −7.43222 −0.354317
\(441\) −5.79300 + 4.27131i −0.275857 + 0.203396i
\(442\) −1.08050 −0.0513940
\(443\) −15.9251 27.5831i −0.756624 1.31051i −0.944563 0.328330i \(-0.893514\pi\)
0.187940 0.982181i \(-0.439819\pi\)
\(444\) −0.860841 + 1.49102i −0.0408537 + 0.0707607i
\(445\) −3.80066 + 6.58293i −0.180168 + 0.312061i
\(446\) −1.07336 1.85911i −0.0508249 0.0880314i
\(447\) 23.0951 1.09236
\(448\) −9.95659 8.90187i −0.470404 0.420574i
\(449\) −14.2049 −0.670370 −0.335185 0.942152i \(-0.608799\pi\)
−0.335185 + 0.942152i \(0.608799\pi\)
\(450\) 0.452267 + 0.783349i 0.0213201 + 0.0369274i
\(451\) 7.22442 12.5131i 0.340185 0.589217i
\(452\) 5.43331 9.41078i 0.255562 0.442646i
\(453\) −2.68886 4.65725i −0.126334 0.218817i
\(454\) 12.0378 0.564960
\(455\) 1.00297 4.80139i 0.0470198 0.225092i
\(456\) −5.80007 −0.271613
\(457\) −7.97473 13.8126i −0.373042 0.646128i 0.616990 0.786971i \(-0.288352\pi\)
−0.990032 + 0.140843i \(0.955019\pi\)
\(458\) −3.39253 + 5.87604i −0.158523 + 0.274569i
\(459\) −1.87369 + 3.24533i −0.0874564 + 0.151479i
\(460\) 2.76955 + 4.79700i 0.129131 + 0.223661i
\(461\) −29.2431 −1.36199 −0.680993 0.732290i \(-0.738452\pi\)
−0.680993 + 0.732290i \(0.738452\pi\)
\(462\) −8.13075 + 2.67343i −0.378277 + 0.124379i
\(463\) −11.6477 −0.541313 −0.270657 0.962676i \(-0.587241\pi\)
−0.270657 + 0.962676i \(0.587241\pi\)
\(464\) −0.232198 0.402179i −0.0107795 0.0186707i
\(465\) 1.86093 3.22323i 0.0862986 0.149474i
\(466\) 4.10204 7.10494i 0.190023 0.329130i
\(467\) −3.10678 5.38110i −0.143765 0.249008i 0.785147 0.619310i \(-0.212587\pi\)
−0.928911 + 0.370302i \(0.879254\pi\)
\(468\) −2.33718 −0.108036
\(469\) −3.06642 + 1.00825i −0.141594 + 0.0465568i
\(470\) 2.37791 0.109685
\(471\) −0.961223 1.66489i −0.0442908 0.0767139i
\(472\) 12.6982 21.9939i 0.584481 1.01235i
\(473\) −5.43919 + 9.42095i −0.250094 + 0.433176i
\(474\) 3.23388 + 5.60125i 0.148537 + 0.257274i
\(475\) −1.45539 −0.0667780
\(476\) 0.439442 2.10369i 0.0201418 0.0964225i
\(477\) 12.2088 0.559004
\(478\) 9.64977 + 16.7139i 0.441370 + 0.764476i
\(479\) 0.177807 0.307971i 0.00812422 0.0140716i −0.861935 0.507019i \(-0.830747\pi\)
0.870059 + 0.492948i \(0.164081\pi\)
\(480\) 3.95772 6.85498i 0.180644 0.312885i
\(481\) 0.926962 + 1.60555i 0.0422658 + 0.0732066i
\(482\) −1.33241 −0.0606898
\(483\) 12.5123 + 11.1869i 0.569331 + 0.509021i
\(484\) 5.07854 0.230843
\(485\) 0.484093 + 0.838473i 0.0219815 + 0.0380731i
\(486\) 4.46344 7.73091i 0.202466 0.350681i
\(487\) 0.242738 0.420435i 0.0109995 0.0190517i −0.860473 0.509496i \(-0.829832\pi\)
0.871473 + 0.490444i \(0.163165\pi\)
\(488\) 9.24508 + 16.0129i 0.418505 + 0.724872i
\(489\) 5.27845 0.238700
\(490\) −5.64311 2.46516i −0.254930 0.111364i
\(491\) 20.6425 0.931584 0.465792 0.884894i \(-0.345769\pi\)
0.465792 + 0.884894i \(0.345769\pi\)
\(492\) 4.74962 + 8.22659i 0.214130 + 0.370883i
\(493\) 3.45455 5.98345i 0.155585 0.269481i
\(494\) −1.18683 + 2.05565i −0.0533979 + 0.0924879i
\(495\) 1.34631 + 2.33188i 0.0605122 + 0.104810i
\(496\) −0.118027 −0.00529958
\(497\) −23.1396 20.6884i −1.03795 0.928003i
\(498\) 14.2677 0.639349
\(499\) −6.15178 10.6552i −0.275391 0.476992i 0.694842 0.719162i \(-0.255474\pi\)
−0.970234 + 0.242170i \(0.922141\pi\)
\(500\) 0.613044 1.06182i 0.0274162 0.0474862i
\(501\) −15.4925 + 26.8338i −0.692154 + 1.19885i
\(502\) 12.7466 + 22.0777i 0.568907 + 0.985375i
\(503\) −16.4357 −0.732830 −0.366415 0.930451i \(-0.619415\pi\)
−0.366415 + 0.930451i \(0.619415\pi\)
\(504\) −1.57869 + 7.55746i −0.0703202 + 0.336636i
\(505\) 0.787221 0.0350309
\(506\) −5.20391 9.01343i −0.231342 0.400696i
\(507\) −6.71419 + 11.6293i −0.298188 + 0.516476i
\(508\) −10.5586 + 18.2880i −0.468462 + 0.811401i
\(509\) −6.54492 11.3361i −0.290099 0.502466i 0.683734 0.729731i \(-0.260355\pi\)
−0.973833 + 0.227266i \(0.927021\pi\)
\(510\) −0.818394 −0.0362391
\(511\) −5.82426 + 1.91504i −0.257650 + 0.0847164i
\(512\) −0.503772 −0.0222638
\(513\) 4.11617 + 7.12941i 0.181733 + 0.314771i
\(514\) −11.2393 + 19.4670i −0.495743 + 0.858653i
\(515\) 0.357596 0.619375i 0.0157576 0.0272929i
\(516\) −3.57594 6.19371i −0.157422 0.272663i
\(517\) 7.07858 0.311315
\(518\) 2.21107 0.727010i 0.0971489 0.0319430i
\(519\) −18.9786 −0.833066
\(520\) −2.63078 4.55664i −0.115367 0.199822i
\(521\) 18.2775 31.6575i 0.800750 1.38694i −0.118373 0.992969i \(-0.537768\pi\)
0.919123 0.393971i \(-0.128899\pi\)
\(522\) −4.71661 + 8.16942i −0.206441 + 0.357566i
\(523\) 17.3150 + 29.9905i 0.757132 + 1.31139i 0.944307 + 0.329065i \(0.106733\pi\)
−0.187175 + 0.982327i \(0.559933\pi\)
\(524\) −22.8740 −0.999254
\(525\) 0.759671 3.63668i 0.0331548 0.158718i
\(526\) −16.6529 −0.726103
\(527\) −0.877980 1.52071i −0.0382454 0.0662430i
\(528\) −0.0818749 + 0.141811i −0.00356315 + 0.00617155i
\(529\) 1.29520 2.24335i 0.0563129 0.0975369i
\(530\) 5.22289 + 9.04631i 0.226868 + 0.392947i
\(531\) −9.20085 −0.399283
\(532\) −3.51959 3.14676i −0.152594 0.136429i
\(533\) 10.2289 0.443062
\(534\) 4.69500 + 8.13197i 0.203172 + 0.351905i
\(535\) −1.45707 + 2.52372i −0.0629947 + 0.109110i
\(536\) −1.73128 + 2.99866i −0.0747798 + 0.129522i
\(537\) 16.1894 + 28.0409i 0.698624 + 1.21005i
\(538\) −18.8631 −0.813248
\(539\) −16.7985 7.33831i −0.723561 0.316083i
\(540\) −6.93528 −0.298447
\(541\) 21.6094 + 37.4286i 0.929061 + 1.60918i 0.784896 + 0.619627i \(0.212716\pi\)
0.144164 + 0.989554i \(0.453951\pi\)
\(542\) −13.2720 + 22.9878i −0.570081 + 0.987410i
\(543\) −0.286271 + 0.495836i −0.0122851 + 0.0212784i
\(544\) −1.86724 3.23415i −0.0800572 0.138663i
\(545\) −16.6276 −0.712249
\(546\) −4.51709 4.03859i −0.193314 0.172836i
\(547\) 11.9097 0.509220 0.254610 0.967044i \(-0.418053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(548\) 5.36799 + 9.29763i 0.229309 + 0.397175i
\(549\) 3.34940 5.80134i 0.142949 0.247595i
\(550\) −1.15189 + 1.99514i −0.0491169 + 0.0850730i
\(551\) −7.58903 13.1446i −0.323303 0.559978i
\(552\) 18.0041 0.766303
\(553\) −2.83251 + 13.5598i −0.120451 + 0.576620i
\(554\) −10.4416 −0.443620
\(555\) 0.702103 + 1.21608i 0.0298026 + 0.0516197i
\(556\) 5.20856 9.02149i 0.220892 0.382597i
\(557\) −3.62644 + 6.28118i −0.153657 + 0.266142i −0.932569 0.360991i \(-0.882438\pi\)
0.778912 + 0.627133i \(0.215772\pi\)
\(558\) 1.19874 + 2.07627i 0.0507466 + 0.0878956i
\(559\) −7.70122 −0.325727
\(560\) −0.111921 + 0.0368000i −0.00472951 + 0.00155508i
\(561\) −2.43620 −0.102857
\(562\) 0.847806 + 1.46844i 0.0357625 + 0.0619425i
\(563\) 14.7154 25.4879i 0.620181 1.07419i −0.369270 0.929322i \(-0.620392\pi\)
0.989452 0.144863i \(-0.0462743\pi\)
\(564\) −2.32687 + 4.03026i −0.0979789 + 0.169704i
\(565\) −4.43142 7.67545i −0.186431 0.322908i
\(566\) −16.0010 −0.672572
\(567\) −12.2104 + 4.01485i −0.512790 + 0.168608i
\(568\) −33.2957 −1.39706
\(569\) 11.3003 + 19.5727i 0.473733 + 0.820529i 0.999548 0.0300697i \(-0.00957292\pi\)
−0.525815 + 0.850599i \(0.676240\pi\)
\(570\) −0.898932 + 1.55700i −0.0376521 + 0.0652154i
\(571\) 11.3991 19.7439i 0.477038 0.826255i −0.522615 0.852569i \(-0.675044\pi\)
0.999654 + 0.0263139i \(0.00837694\pi\)
\(572\) −2.97633 5.15515i −0.124446 0.215548i
\(573\) 23.3304 0.974643
\(574\) 2.62589 12.5706i 0.109603 0.524687i
\(575\) 4.51770 0.188401
\(576\) 2.59519 + 4.49500i 0.108133 + 0.187292i
\(577\) −13.9292 + 24.1260i −0.579879 + 1.00438i 0.415614 + 0.909541i \(0.363567\pi\)
−0.995493 + 0.0948387i \(0.969766\pi\)
\(578\) 7.28458 12.6173i 0.302999 0.524809i
\(579\) −14.8370 25.6985i −0.616606 1.06799i
\(580\) 12.7867 0.530938
\(581\) 22.7807 + 20.3675i 0.945101 + 0.844985i
\(582\) 1.19601 0.0495763
\(583\) 15.5476 + 26.9292i 0.643914 + 1.11529i
\(584\) −3.28833 + 5.69555i −0.136072 + 0.235684i
\(585\) −0.953106 + 1.65083i −0.0394061 + 0.0682533i
\(586\) −10.5085 18.2013i −0.434103 0.751889i
\(587\) −30.0899 −1.24194 −0.620972 0.783833i \(-0.713262\pi\)
−0.620972 + 0.783833i \(0.713262\pi\)
\(588\) 9.70013 7.15212i 0.400026 0.294948i
\(589\) −3.85753 −0.158947
\(590\) −3.93609 6.81750i −0.162046 0.280672i
\(591\) −11.0389 + 19.1199i −0.454080 + 0.786489i
\(592\) 0.0222650 0.0385641i 0.000915087 0.00158498i
\(593\) 5.79895 + 10.0441i 0.238134 + 0.412461i 0.960179 0.279386i \(-0.0901308\pi\)
−0.722045 + 0.691847i \(0.756797\pi\)
\(594\) 13.0312 0.534677
\(595\) −1.30670 1.16828i −0.0535695 0.0478948i
\(596\) 20.1656 0.826016
\(597\) −2.24948 3.89621i −0.0920649 0.159461i
\(598\) 3.68404 6.38095i 0.150652 0.260937i
\(599\) 5.29699 9.17466i 0.216429 0.374867i −0.737284 0.675582i \(-0.763892\pi\)
0.953714 + 0.300716i \(0.0972256\pi\)
\(600\) −1.99261 3.45131i −0.0813481 0.140899i
\(601\) 19.9386 0.813312 0.406656 0.913581i \(-0.366695\pi\)
0.406656 + 0.913581i \(0.366695\pi\)
\(602\) −1.97700 + 9.46428i −0.0805767 + 0.385735i
\(603\) 1.25445 0.0510852
\(604\) −2.34779 4.06649i −0.0955302 0.165463i
\(605\) 2.07103 3.58713i 0.0841994 0.145838i
\(606\) 0.486232 0.842178i 0.0197518 0.0342111i
\(607\) 9.83370 + 17.0325i 0.399138 + 0.691327i 0.993620 0.112782i \(-0.0359762\pi\)
−0.594482 + 0.804109i \(0.702643\pi\)
\(608\) −8.20398 −0.332715
\(609\) 36.8064 12.1021i 1.49147 0.490403i
\(610\) 5.73145 0.232059
\(611\) 2.50560 + 4.33982i 0.101366 + 0.175570i
\(612\) −0.417596 + 0.723298i −0.0168803 + 0.0292376i
\(613\) 8.52884 14.7724i 0.344477 0.596651i −0.640782 0.767723i \(-0.721390\pi\)
0.985259 + 0.171072i \(0.0547230\pi\)
\(614\) −2.48109 4.29737i −0.100129 0.173428i
\(615\) 7.74760 0.312414
\(616\) −18.6800 + 6.14205i −0.752637 + 0.247470i
\(617\) 15.0250 0.604886 0.302443 0.953168i \(-0.402198\pi\)
0.302443 + 0.953168i \(0.402198\pi\)
\(618\) −0.441743 0.765121i −0.0177695 0.0307777i
\(619\) −4.43422 + 7.68030i −0.178226 + 0.308697i −0.941273 0.337646i \(-0.890369\pi\)
0.763047 + 0.646343i \(0.223703\pi\)
\(620\) 1.62488 2.81437i 0.0652567 0.113028i
\(621\) −12.7770 22.1305i −0.512724 0.888065i
\(622\) −13.3491 −0.535249
\(623\) −4.11228 + 19.6863i −0.164755 + 0.788713i
\(624\) −0.115925 −0.00464070
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) −14.2537 + 24.6881i −0.569692 + 0.986735i
\(627\) −2.67595 + 4.63488i −0.106867 + 0.185099i
\(628\) −0.839295 1.45370i −0.0334915 0.0580090i
\(629\) 0.662500 0.0264156
\(630\) 1.78408 + 1.59509i 0.0710795 + 0.0635500i
\(631\) 4.20432 0.167371 0.0836856 0.996492i \(-0.473331\pi\)
0.0836856 + 0.996492i \(0.473331\pi\)
\(632\) 7.42967 + 12.8686i 0.295536 + 0.511884i
\(633\) −4.96545 + 8.60041i −0.197359 + 0.341836i
\(634\) 1.01875 1.76452i 0.0404596 0.0700781i
\(635\) 8.61162 + 14.9158i 0.341742 + 0.591914i
\(636\) −20.4432 −0.810624
\(637\) −1.44707 12.8965i −0.0573352 0.510979i
\(638\) −24.0258 −0.951191
\(639\) 6.03137 + 10.4466i 0.238597 + 0.413262i
\(640\) 3.41653 5.91760i 0.135050 0.233914i
\(641\) −13.9285 + 24.1248i −0.550141 + 0.952873i 0.448123 + 0.893972i \(0.352093\pi\)
−0.998264 + 0.0589006i \(0.981241\pi\)
\(642\) 1.79994 + 3.11759i 0.0710379 + 0.123041i
\(643\) −18.4951 −0.729374 −0.364687 0.931130i \(-0.618824\pi\)
−0.364687 + 0.931130i \(0.618824\pi\)
\(644\) 10.9252 + 9.76788i 0.430513 + 0.384908i
\(645\) −5.83309 −0.229678
\(646\) 0.424113 + 0.734585i 0.0166865 + 0.0289019i
\(647\) −7.55419 + 13.0842i −0.296986 + 0.514395i −0.975445 0.220243i \(-0.929315\pi\)
0.678459 + 0.734638i \(0.262648\pi\)
\(648\) −6.89392 + 11.9406i −0.270819 + 0.469072i
\(649\) −11.7170 20.2944i −0.459932 0.796625i
\(650\) −1.63094 −0.0639707
\(651\) 2.01351 9.63906i 0.0789158 0.377785i
\(652\) 4.60890 0.180498
\(653\) 9.94990 + 17.2337i 0.389369 + 0.674408i 0.992365 0.123337i \(-0.0393596\pi\)
−0.602995 + 0.797745i \(0.706026\pi\)
\(654\) −10.2702 + 17.7884i −0.401595 + 0.695583i
\(655\) −9.32803 + 16.1566i −0.364476 + 0.631291i
\(656\) −0.122846 0.212775i −0.00479631 0.00830746i
\(657\) 2.38266 0.0929565
\(658\) 5.97657 1.96512i 0.232991 0.0766084i
\(659\) −22.9674 −0.894683 −0.447342 0.894363i \(-0.647629\pi\)
−0.447342 + 0.894363i \(0.647629\pi\)
\(660\) −2.25434 3.90463i −0.0877501 0.151988i
\(661\) −4.65685 + 8.06591i −0.181131 + 0.313728i −0.942266 0.334866i \(-0.891309\pi\)
0.761135 + 0.648593i \(0.224642\pi\)
\(662\) −0.776448 + 1.34485i −0.0301775 + 0.0522690i
\(663\) −0.862340 1.49362i −0.0334905 0.0580073i
\(664\) 32.7792 1.27208
\(665\) −3.65795 + 1.20275i −0.141849 + 0.0466406i
\(666\) −0.904534 −0.0350500
\(667\) 23.5572 + 40.8022i 0.912137 + 1.57987i
\(668\) −13.5273 + 23.4300i −0.523388 + 0.906535i
\(669\) 1.71329 2.96750i 0.0662394 0.114730i
\(670\) 0.536649 + 0.929503i 0.0207326 + 0.0359098i
\(671\) 17.0614 0.658649
\(672\) 4.28223 20.4998i 0.165191 0.790797i
\(673\) 29.2926 1.12915 0.564573 0.825383i \(-0.309041\pi\)
0.564573 + 0.825383i \(0.309041\pi\)
\(674\) 6.10870 + 10.5806i 0.235299 + 0.407549i
\(675\) −2.82822 + 4.89861i −0.108858 + 0.188548i
\(676\) −5.86252 + 10.1542i −0.225482 + 0.390546i
\(677\) −7.00452 12.1322i −0.269206 0.466278i 0.699451 0.714680i \(-0.253428\pi\)
−0.968657 + 0.248403i \(0.920094\pi\)
\(678\) −10.9484 −0.420470
\(679\) 1.90963 + 1.70734i 0.0732848 + 0.0655217i
\(680\) −1.88022 −0.0721030
\(681\) 9.60729 + 16.6403i 0.368152 + 0.637658i
\(682\) −3.05310 + 5.28813i −0.116909 + 0.202493i
\(683\) −4.16162 + 7.20814i −0.159240 + 0.275812i −0.934595 0.355714i \(-0.884238\pi\)
0.775355 + 0.631526i \(0.217571\pi\)
\(684\) 0.917384 + 1.58896i 0.0350771 + 0.0607552i
\(685\) 8.75628 0.334560
\(686\) −16.2205 1.53235i −0.619300 0.0585056i
\(687\) −10.8303 −0.413201
\(688\) 0.0924891 + 0.160196i 0.00352611 + 0.00610741i
\(689\) −11.0067 + 19.0642i −0.419322 + 0.726287i
\(690\) 2.79038 4.83309i 0.106228 0.183992i
\(691\) 13.3190 + 23.0691i 0.506678 + 0.877592i 0.999970 + 0.00772809i \(0.00245995\pi\)
−0.493292 + 0.869864i \(0.664207\pi\)
\(692\) −16.5712 −0.629943
\(693\) 5.31087 + 4.74829i 0.201743 + 0.180372i
\(694\) −7.06102 −0.268033
\(695\) −4.24811 7.35795i −0.161140 0.279103i
\(696\) 20.7806 35.9931i 0.787688 1.36432i
\(697\) 1.82765 3.16557i 0.0692270 0.119905i
\(698\) 7.16641 + 12.4126i 0.271253 + 0.469824i
\(699\) 13.0953 0.495310
\(700\) 0.663310 3.17539i 0.0250707 0.120018i
\(701\) 24.1312 0.911423 0.455711 0.890128i \(-0.349385\pi\)
0.455711 + 0.890128i \(0.349385\pi\)
\(702\) 4.61265 + 7.98934i 0.174093 + 0.301538i
\(703\) 0.727697 1.26041i 0.0274456 0.0475372i
\(704\) −6.60978 + 11.4485i −0.249116 + 0.431481i
\(705\) 1.89780 + 3.28708i 0.0714753 + 0.123799i
\(706\) −11.8594 −0.446333
\(707\) 1.97858 0.650566i 0.0744122 0.0244670i
\(708\) 15.4064 0.579009
\(709\) −8.85706 15.3409i −0.332634 0.576139i 0.650394 0.759597i \(-0.274604\pi\)
−0.983027 + 0.183459i \(0.941271\pi\)
\(710\) −5.16039 + 8.93805i −0.193666 + 0.335439i
\(711\) 2.69170 4.66216i 0.100947 0.174845i
\(712\) 10.7865 + 18.6828i 0.404241 + 0.700166i
\(713\) 11.9742 0.448437
\(714\) −2.05693 + 0.676327i −0.0769787 + 0.0253109i
\(715\) −4.85499 −0.181566
\(716\) 14.1358 + 24.4840i 0.528281 + 0.915009i
\(717\) −15.4029 + 26.6786i −0.575232 + 0.996331i
\(718\) 13.9355 24.1370i 0.520068 0.900784i
\(719\) 18.7593 + 32.4920i 0.699603 + 1.21175i 0.968604 + 0.248609i \(0.0799733\pi\)
−0.269001 + 0.963140i \(0.586693\pi\)
\(720\) 0.0457859 0.00170634
\(721\) 0.386917 1.85224i 0.0144095 0.0689811i
\(722\) −14.8513 −0.552709
\(723\) −1.06339 1.84185i −0.0395481 0.0684993i
\(724\) −0.249959 + 0.432941i −0.00928964 + 0.0160901i
\(725\) 5.21442 9.03163i 0.193659 0.335426i
\(726\) −2.55837 4.43123i −0.0949500 0.164458i
\(727\) −37.0709 −1.37488 −0.687442 0.726239i \(-0.741267\pi\)
−0.687442 + 0.726239i \(0.741267\pi\)
\(728\) −10.3778 9.27844i −0.384626 0.343882i
\(729\) 28.8236 1.06754
\(730\) 1.01929 + 1.76547i 0.0377257 + 0.0653429i
\(731\) −1.37601 + 2.38333i −0.0508937 + 0.0881505i
\(732\) −5.60843 + 9.71409i −0.207294 + 0.359043i
\(733\) −0.986951 1.70945i −0.0364539 0.0631400i 0.847223 0.531238i \(-0.178273\pi\)
−0.883677 + 0.468098i \(0.844940\pi\)
\(734\) 24.3935 0.900381
\(735\) −1.09605 9.76815i −0.0404284 0.360304i
\(736\) 25.4660 0.938691
\(737\) 1.59750 + 2.76695i 0.0588447 + 0.101922i
\(738\) −2.49535 + 4.32207i −0.0918550 + 0.159098i
\(739\) 11.2373 19.4636i 0.413371 0.715980i −0.581885 0.813271i \(-0.697685\pi\)
0.995256 + 0.0972915i \(0.0310179\pi\)
\(740\) 0.613044 + 1.06182i 0.0225360 + 0.0390334i
\(741\) −3.78881 −0.139186
\(742\) 20.6030 + 18.4205i 0.756361 + 0.676239i
\(743\) 29.4497 1.08040 0.540202 0.841535i \(-0.318348\pi\)
0.540202 + 0.841535i \(0.318348\pi\)
\(744\) −5.28144 9.14772i −0.193627 0.335372i
\(745\) 8.22355 14.2436i 0.301288 0.521846i
\(746\) −7.70649 + 13.3480i −0.282155 + 0.488706i
\(747\) −5.93779 10.2846i −0.217253 0.376292i
\(748\) −2.12718 −0.0777774
\(749\) −1.57654 + 7.54720i −0.0576056 + 0.275769i
\(750\) −1.23531 −0.0451072
\(751\) −1.12342 1.94582i −0.0409942 0.0710040i 0.844800 0.535082i \(-0.179719\pi\)
−0.885795 + 0.464078i \(0.846386\pi\)
\(752\) 0.0601828 0.104240i 0.00219464 0.00380123i
\(753\) −20.3460 + 35.2402i −0.741448 + 1.28423i
\(754\) −8.50439 14.7300i −0.309712 0.536436i
\(755\) −3.82972 −0.139378
\(756\) −17.4310 + 5.73138i −0.633958 + 0.208448i
\(757\) 30.1017 1.09406 0.547032 0.837112i \(-0.315757\pi\)
0.547032 + 0.837112i \(0.315757\pi\)
\(758\) −9.88283 17.1176i −0.358961 0.621738i
\(759\) 8.30644 14.3872i 0.301505 0.522222i
\(760\) −2.06525 + 3.57711i −0.0749144 + 0.129756i
\(761\) 0.502376 + 0.870141i 0.0182111 + 0.0315426i 0.874987 0.484146i \(-0.160870\pi\)
−0.856776 + 0.515688i \(0.827536\pi\)
\(762\) 21.2761 0.770751
\(763\) −41.7915 + 13.7412i −1.51295 + 0.497465i
\(764\) 20.3711 0.736999
\(765\) 0.340592 + 0.589923i 0.0123141 + 0.0213287i
\(766\) 12.6958 21.9899i 0.458720 0.794526i
\(767\) 8.29490 14.3672i 0.299511 0.518769i
\(768\) −11.3089 19.5876i −0.408076 0.706808i
\(769\) −34.7250 −1.25222 −0.626108 0.779737i \(-0.715353\pi\)
−0.626108 + 0.779737i \(0.715353\pi\)
\(770\) −1.24634 + 5.96646i −0.0449150 + 0.215016i
\(771\) −35.8801 −1.29219
\(772\) −12.9550 22.4388i −0.466261 0.807588i
\(773\) −3.03951 + 5.26458i −0.109324 + 0.189354i −0.915496 0.402326i \(-0.868202\pi\)
0.806173 + 0.591680i \(0.201535\pi\)
\(774\) 1.87872 3.25404i 0.0675292 0.116964i
\(775\) −1.32525 2.29541i −0.0476045 0.0824534i
\(776\) 2.74777 0.0986392
\(777\) 2.76963 + 2.47624i 0.0993598 + 0.0888345i
\(778\) −5.39781 −0.193521
\(779\) −4.01501 6.95420i −0.143853 0.249160i
\(780\) 1.59593 2.76424i 0.0571436 0.0989756i
\(781\) −15.3615 + 26.6069i −0.549677 + 0.952069i
\(782\) −1.31649 2.28023i −0.0470777 0.0815410i
\(783\) −58.9900 −2.10813
\(784\) −0.250887 + 0.184984i −0.00896024 + 0.00660658i
\(785\) −1.36906 −0.0488639
\(786\) 11.5230 + 19.9585i 0.411013 + 0.711895i
\(787\) −1.18813 + 2.05790i −0.0423522 + 0.0733562i −0.886424 0.462873i \(-0.846818\pi\)
0.844072 + 0.536229i \(0.180152\pi\)
\(788\) −9.63866 + 16.6947i −0.343363 + 0.594722i
\(789\) −13.2907 23.0201i −0.473160 0.819537i
\(790\) 4.60599 0.163874
\(791\) −17.4809 15.6291i −0.621548 0.555707i
\(792\) 7.64184 0.271541
\(793\) 6.03921 + 10.4602i 0.214459 + 0.371454i
\(794\) 8.28050 14.3422i 0.293864 0.508987i
\(795\) −8.33674 + 14.4397i −0.295674 + 0.512122i
\(796\) −1.96414 3.40199i −0.0696170 0.120580i
\(797\) −42.8422 −1.51755 −0.758774 0.651354i \(-0.774201\pi\)
−0.758774 + 0.651354i \(0.774201\pi\)
\(798\) −0.972639 + 4.65620i −0.0344310 + 0.164828i
\(799\) 1.79075 0.0633522
\(800\) −2.81848 4.88174i −0.0996481 0.172596i
\(801\) 3.90785 6.76859i 0.138077 0.239156i
\(802\) 15.6563 27.1175i 0.552843 0.957551i
\(803\) 3.03424 + 5.25546i 0.107076 + 0.185461i
\(804\) −2.10052 −0.0740797
\(805\) 11.3547 3.73346i 0.400199 0.131587i
\(806\) −4.32281 −0.152265
\(807\) −15.0546 26.0753i −0.529947 0.917896i
\(808\) 1.11709 1.93486i 0.0392991 0.0680681i
\(809\) 22.6653 39.2575i 0.796871 1.38022i −0.124773 0.992185i \(-0.539820\pi\)
0.921644 0.388036i \(-0.126846\pi\)
\(810\) 2.13693 + 3.70127i 0.0750840 + 0.130049i
\(811\) 13.4410 0.471977 0.235988 0.971756i \(-0.424167\pi\)
0.235988 + 0.971756i \(0.424167\pi\)
\(812\) 32.1377 10.5670i 1.12781 0.370829i
\(813\) −42.3693 −1.48596
\(814\) −1.15189 1.99514i −0.0403739 0.0699296i
\(815\) 1.87951 3.25541i 0.0658364 0.114032i
\(816\) −0.0207128 + 0.0358757i −0.000725094 + 0.00125590i
\(817\) 3.02286 + 5.23574i 0.105756 + 0.183176i
\(818\) −17.5811 −0.614708
\(819\) −1.03125 + 4.93680i −0.0360349 + 0.172506i
\(820\) 6.76485 0.236239
\(821\) 7.65142 + 13.2526i 0.267036 + 0.462520i 0.968095 0.250583i \(-0.0806223\pi\)
−0.701059 + 0.713103i \(0.747289\pi\)
\(822\) 5.40837 9.36758i 0.188639 0.326732i
\(823\) −20.5304 + 35.5598i −0.715646 + 1.23954i 0.247064 + 0.968999i \(0.420534\pi\)
−0.962710 + 0.270536i \(0.912799\pi\)
\(824\) −1.01488 1.75782i −0.0353550 0.0612367i
\(825\) −3.67729 −0.128027
\(826\) −15.5269 13.8821i −0.540250 0.483021i
\(827\) 18.9159 0.657769 0.328884 0.944370i \(-0.393327\pi\)
0.328884 + 0.944370i \(0.393327\pi\)
\(828\) −2.84766 4.93229i −0.0989630 0.171409i
\(829\) −17.2297 + 29.8426i −0.598411 + 1.03648i 0.394645 + 0.918834i \(0.370868\pi\)
−0.993056 + 0.117644i \(0.962466\pi\)
\(830\) 5.08033 8.79939i 0.176341 0.305431i
\(831\) −8.33338 14.4338i −0.289082 0.500704i
\(832\) −9.35863 −0.324452
\(833\) −4.24970 1.85646i −0.147243 0.0643224i
\(834\) −10.4955 −0.363429
\(835\) 11.0329 + 19.1096i 0.381810 + 0.661314i
\(836\) −2.33652 + 4.04697i −0.0808101 + 0.139967i
\(837\) −7.49621 + 12.9838i −0.259107 + 0.448786i
\(838\) −2.45161 4.24632i −0.0846896 0.146687i
\(839\) 1.24446 0.0429634 0.0214817 0.999769i \(-0.493162\pi\)
0.0214817 + 0.999769i \(0.493162\pi\)
\(840\) −7.86037 7.02771i −0.271209 0.242479i
\(841\) 79.7606 2.75036
\(842\) −6.93759 12.0163i −0.239085 0.414108i
\(843\) −1.35326 + 2.34392i −0.0466088 + 0.0807288i
\(844\) −4.33560 + 7.50948i −0.149238 + 0.258487i
\(845\) 4.78148 + 8.28177i 0.164488 + 0.284902i
\(846\) −2.44497 −0.0840599
\(847\) 2.24084 10.7273i 0.0769962 0.368595i
\(848\) 0.528748 0.0181573
\(849\) −12.7703 22.1189i −0.438277 0.759118i
\(850\) −0.291408 + 0.504733i −0.00999521 + 0.0173122i
\(851\) −2.25885 + 3.91244i −0.0774324 + 0.134117i
\(852\) −10.0993 17.4924i −0.345995 0.599281i
\(853\) 38.3071 1.31161 0.655804 0.754931i \(-0.272330\pi\)
0.655804 + 0.754931i \(0.272330\pi\)
\(854\) 14.4053 4.73651i 0.492938 0.162080i
\(855\) 1.49644 0.0511772
\(856\) 4.13526 + 7.16249i 0.141340 + 0.244809i
\(857\) −5.97339 + 10.3462i −0.204047 + 0.353420i −0.949829 0.312770i \(-0.898743\pi\)
0.745782 + 0.666191i \(0.232076\pi\)
\(858\) −2.99872 + 5.19393i −0.102374 + 0.177318i
\(859\) −6.26427 10.8500i −0.213734 0.370198i 0.739146 0.673545i \(-0.235229\pi\)
−0.952880 + 0.303347i \(0.901896\pi\)
\(860\) −5.09318 −0.173676
\(861\) 19.4726 6.40268i 0.663625 0.218203i
\(862\) 5.03414 0.171464
\(863\) −17.4475 30.2200i −0.593921 1.02870i −0.993698 0.112089i \(-0.964246\pi\)
0.399777 0.916612i \(-0.369088\pi\)
\(864\) −15.9425 + 27.6132i −0.542375 + 0.939421i
\(865\) −6.75775 + 11.7048i −0.229770 + 0.397974i
\(866\) 1.50089 + 2.59961i 0.0510023 + 0.0883385i
\(867\) 23.2552 0.789788
\(868\) 1.75811 8.41638i 0.0596740 0.285671i
\(869\) 13.7112 0.465119
\(870\) −6.44143 11.1569i −0.218385 0.378254i
\(871\) −1.13093 + 1.95883i −0.0383202 + 0.0663725i
\(872\) −23.5951 + 40.8680i −0.799032 + 1.38396i
\(873\) −0.497746 0.862121i −0.0168461 0.0291784i
\(874\) −5.78420 −0.195653
\(875\) −1.97238 1.76344i −0.0666785 0.0596152i
\(876\) −3.98966 −0.134798
\(877\) −12.9390 22.4110i −0.436919 0.756767i 0.560531 0.828134i \(-0.310597\pi\)
−0.997450 + 0.0713670i \(0.977264\pi\)
\(878\) 9.43318 16.3387i 0.318354 0.551406i
\(879\) 16.7736 29.0528i 0.565761 0.979926i
\(880\) 0.0583069 + 0.100990i 0.00196552 + 0.00340439i
\(881\) 43.0360 1.44992 0.724960 0.688790i \(-0.241858\pi\)
0.724960 + 0.688790i \(0.241858\pi\)
\(882\) 5.80226 + 2.53468i 0.195372 + 0.0853472i
\(883\) −26.8171 −0.902467 −0.451233 0.892406i \(-0.649016\pi\)
−0.451233 + 0.892406i \(0.649016\pi\)
\(884\) −0.752956 1.30416i −0.0253246 0.0438636i
\(885\) 6.28276 10.8821i 0.211193 0.365796i
\(886\) −14.0097 + 24.2654i −0.470663 + 0.815213i
\(887\) 21.9851 + 38.0793i 0.738186 + 1.27858i 0.953311 + 0.301990i \(0.0976509\pi\)
−0.215125 + 0.976587i \(0.569016\pi\)
\(888\) 3.98523 0.133735
\(889\) 33.9707 + 30.3722i 1.13934 + 1.01865i
\(890\) 6.68704 0.224150
\(891\) 6.36123 + 11.0180i 0.213109 + 0.369116i
\(892\) 1.49596 2.59108i 0.0500885 0.0867558i
\(893\) 1.96698 3.40691i 0.0658224 0.114008i
\(894\) −10.1587 17.5953i −0.339756 0.588475i
\(895\) 23.0584 0.770758
\(896\) 3.69666 17.6966i 0.123497 0.591201i
\(897\) 11.7609 0.392685
\(898\) 6.24818 + 10.8222i 0.208504 + 0.361140i
\(899\) 13.8209 23.9384i 0.460951 0.798391i
\(900\) −0.630334 + 1.09177i −0.0210111 + 0.0363924i
\(901\) 3.93325 + 6.81258i 0.131035 + 0.226960i
\(902\) −12.7110 −0.423229
\(903\) −14.6607 + 4.82051i −0.487879 + 0.160417i
\(904\) −25.1533 −0.836586
\(905\) 0.203867 + 0.353107i 0.00677676 + 0.0117377i
\(906\) −2.36545 + 4.09708i −0.0785869 + 0.136116i
\(907\) 9.75714 16.8999i 0.323980 0.561150i −0.657325 0.753607i \(-0.728312\pi\)
0.981305 + 0.192457i \(0.0616455\pi\)
\(908\) 8.38864 + 14.5296i 0.278387 + 0.482180i
\(909\) −0.809423 −0.0268469
\(910\) −4.09916 + 1.34782i −0.135886 + 0.0446798i
\(911\) −16.7608 −0.555311 −0.277655 0.960681i \(-0.589557\pi\)
−0.277655 + 0.960681i \(0.589557\pi\)
\(912\) 0.0455024 + 0.0788125i 0.00150674 + 0.00260974i
\(913\) 15.1232 26.1941i 0.500504 0.866898i
\(914\) −7.01555 + 12.1513i −0.232054 + 0.401929i
\(915\) 4.57425 + 7.92283i 0.151220 + 0.261921i
\(916\) −9.45650 −0.312451
\(917\) −10.0929 + 48.3164i −0.333296 + 1.59555i
\(918\) 3.29666 0.108806
\(919\) −6.21207 10.7596i −0.204917 0.354927i 0.745189 0.666853i \(-0.232359\pi\)
−0.950106 + 0.311926i \(0.899026\pi\)
\(920\) 6.41076 11.1038i 0.211356 0.366080i
\(921\) 3.96030 6.85943i 0.130496 0.226026i
\(922\) 12.8629 + 22.2792i 0.423617 + 0.733726i
\(923\) −21.7500 −0.715909
\(924\) −8.89282 7.95080i −0.292552 0.261562i
\(925\) 1.00000 0.0328798
\(926\) 5.12336 + 8.87392i 0.168364 + 0.291615i
\(927\) −0.367682 + 0.636843i −0.0120763 + 0.0209167i
\(928\) 29.3934 50.9109i 0.964886 1.67123i
\(929\) −19.7297 34.1728i −0.647310 1.12117i −0.983763 0.179474i \(-0.942560\pi\)
0.336453 0.941700i \(-0.390773\pi\)
\(930\) −3.27420 −0.107365
\(931\) −8.19983 + 6.04592i −0.268739 + 0.198147i
\(932\) 11.4342 0.374540
\(933\) −10.6539 18.4530i −0.348791 0.604125i
\(934\) −2.73310 + 4.73387i −0.0894299 + 0.154897i
\(935\) −0.867466 + 1.50249i −0.0283692 + 0.0491368i
\(936\) 2.70497 + 4.68515i 0.0884148 + 0.153139i
\(937\) −7.43644 −0.242938 −0.121469 0.992595i \(-0.538761\pi\)
−0.121469 + 0.992595i \(0.538761\pi\)
\(938\) 2.11695 + 1.89270i 0.0691208 + 0.0617988i
\(939\) −45.5033 −1.48494
\(940\) 1.65707 + 2.87013i 0.0540477 + 0.0936133i
\(941\) 5.07920 8.79743i 0.165577 0.286788i −0.771283 0.636492i \(-0.780385\pi\)
0.936860 + 0.349704i \(0.113718\pi\)
\(942\) −0.845609 + 1.46464i −0.0275514 + 0.0477205i
\(943\) 12.4630 + 21.5866i 0.405852 + 0.702956i
\(944\) −0.398476 −0.0129693
\(945\) −3.06011 + 14.6493i −0.0995454 + 0.476542i
\(946\) 9.56995 0.311146
\(947\) −26.1578 45.3067i −0.850015 1.47227i −0.881194 0.472756i \(-0.843259\pi\)
0.0311782 0.999514i \(-0.490074\pi\)
\(948\) −4.50714 + 7.80659i −0.146385 + 0.253546i
\(949\) −2.14806 + 3.72054i −0.0697288 + 0.120774i
\(950\) 0.640171 + 1.10881i 0.0207699 + 0.0359745i
\(951\) 3.25223 0.105461
\(952\) −4.72568 + 1.55383i −0.153160 + 0.0503598i
\(953\) 16.5930 0.537499 0.268750 0.963210i \(-0.413390\pi\)
0.268750 + 0.963210i \(0.413390\pi\)
\(954\) −5.37020 9.30145i −0.173867 0.301146i
\(955\) 8.30734 14.3887i 0.268819 0.465608i
\(956\) −13.4491 + 23.2945i −0.434975 + 0.753399i
\(957\) −19.1749 33.2119i −0.619837 1.07359i
\(958\) −0.312842 −0.0101075
\(959\) 22.0078 7.23627i 0.710670 0.233671i
\(960\) −7.08845 −0.228779
\(961\) 11.9874 + 20.7628i 0.386690 + 0.669768i
\(962\) 0.815469 1.41243i 0.0262918 0.0455387i
\(963\) 1.49817 2.59490i 0.0482778 0.0836195i
\(964\) −0.928507 1.60822i −0.0299052 0.0517973i
\(965\) −21.1323 −0.680272
\(966\) 3.01918 14.4534i 0.0971404 0.465029i
\(967\) 13.1962 0.424360 0.212180 0.977231i \(-0.431944\pi\)
0.212180 + 0.977231i \(0.431944\pi\)
\(968\) −5.87772 10.1805i −0.188917 0.327214i
\(969\) −0.676966 + 1.17254i −0.0217473 + 0.0376674i
\(970\) 0.425867 0.737624i 0.0136738 0.0236837i
\(971\) −2.25638 3.90817i −0.0724107 0.125419i 0.827547 0.561397i \(-0.189736\pi\)
−0.899957 + 0.435978i \(0.856403\pi\)
\(972\) 12.4416 0.399065
\(973\) −16.7578 14.9826i −0.537229 0.480320i
\(974\) −0.427084 −0.0136847
\(975\) −1.30165 2.25452i −0.0416860 0.0722023i
\(976\) 0.145058 0.251248i 0.00464319 0.00804224i
\(977\) 22.4927 38.9584i 0.719604 1.24639i −0.241553 0.970388i \(-0.577657\pi\)
0.961157 0.276003i \(-0.0890099\pi\)
\(978\) −2.32178 4.02145i −0.0742425 0.128592i
\(979\) 19.9061 0.636200
\(980\) −0.957019 8.52910i −0.0305708 0.272452i
\(981\) 17.0966 0.545852
\(982\) −9.07985 15.7268i −0.289750 0.501861i
\(983\) −12.0221 + 20.8229i −0.383446 + 0.664148i −0.991552 0.129708i \(-0.958596\pi\)
0.608106 + 0.793856i \(0.291929\pi\)
\(984\) 10.9941 19.0423i 0.350479 0.607047i
\(985\) 7.86131 + 13.6162i 0.250482 + 0.433848i
\(986\) −6.07809 −0.193566
\(987\) 7.48635 + 6.69332i 0.238293 + 0.213051i
\(988\) −3.30822 −0.105248
\(989\) −9.38328 16.2523i −0.298371 0.516794i
\(990\) 1.18438 2.05141i 0.0376421 0.0651980i
\(991\) 21.1894 36.7012i 0.673105 1.16585i −0.303914 0.952699i \(-0.598294\pi\)
0.977019 0.213152i \(-0.0683731\pi\)
\(992\) −7.47039 12.9391i −0.237185 0.410817i
\(993\) −2.47872 −0.0786599
\(994\) −5.58350 + 26.7293i −0.177098 + 0.847801i
\(995\) −3.20391 −0.101571
\(996\) 9.94258 + 17.2210i 0.315043 + 0.545670i
\(997\) −10.2027 + 17.6716i −0.323122 + 0.559664i −0.981130 0.193347i \(-0.938066\pi\)
0.658009 + 0.753010i \(0.271399\pi\)
\(998\) −5.41186 + 9.37361i −0.171309 + 0.296717i
\(999\) −2.82822 4.89861i −0.0894808 0.154985i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1295.2.j.a.186.7 38
7.2 even 3 inner 1295.2.j.a.926.7 yes 38
7.3 odd 6 9065.2.a.s.1.13 19
7.4 even 3 9065.2.a.r.1.13 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.7 38 1.1 even 1 trivial
1295.2.j.a.926.7 yes 38 7.2 even 3 inner
9065.2.a.r.1.13 19 7.4 even 3
9065.2.a.s.1.13 19 7.3 odd 6