L(s) = 1 | + (−0.439 − 0.761i)2-s + (0.702 − 1.21i)3-s + (0.613 − 1.06i)4-s + (−0.5 − 0.866i)5-s − 1.23·6-s + (−1.97 − 1.76i)7-s − 2.83·8-s + (0.514 + 0.890i)9-s + (−0.439 + 0.761i)10-s + (−1.30 + 2.26i)11-s + (−0.860 − 1.49i)12-s − 1.85·13-s + (−0.475 + 2.27i)14-s − 1.40·15-s + (0.0222 + 0.0385i)16-s + (−0.331 + 0.573i)17-s + ⋯ |
L(s) = 1 | + (−0.311 − 0.538i)2-s + (0.405 − 0.702i)3-s + (0.306 − 0.530i)4-s + (−0.223 − 0.387i)5-s − 0.504·6-s + (−0.745 − 0.666i)7-s − 1.00·8-s + (0.171 + 0.296i)9-s + (−0.139 + 0.240i)10-s + (−0.394 + 0.683i)11-s + (−0.248 − 0.430i)12-s − 0.514·13-s + (−0.127 + 0.608i)14-s − 0.362·15-s + (0.00556 + 0.00964i)16-s + (−0.0803 + 0.139i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.251 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.251 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4498017391\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4498017391\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (1.97 + 1.76i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (0.439 + 0.761i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.702 + 1.21i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.30 - 2.26i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 1.85T + 13T^{2} \) |
| 17 | \( 1 + (0.331 - 0.573i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.727 - 1.26i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.25 + 3.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 10.4T + 29T^{2} \) |
| 31 | \( 1 + (1.32 - 2.29i)T + (-15.5 - 26.8i)T^{2} \) |
| 41 | \( 1 + 5.51T + 41T^{2} \) |
| 43 | \( 1 - 4.15T + 43T^{2} \) |
| 47 | \( 1 + (1.35 + 2.34i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.93 + 10.2i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.47 - 7.74i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.25 + 5.64i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.610 + 1.05i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.7T + 71T^{2} \) |
| 73 | \( 1 + (-1.15 + 2.00i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2.61 + 4.53i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 11.5T + 83T^{2} \) |
| 89 | \( 1 + (3.80 + 6.58i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 0.968T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.250704005171113448873390238494, −8.272846100193563807500973360702, −7.34900152062507390790002000078, −6.89588184563192117420476173995, −5.80116460866843701585812346364, −4.77590541020750578337236042416, −3.58176266914387962246765047891, −2.39927817565684699497512956216, −1.60811393010505494542583842416, −0.18121941819249932900879265674,
2.47035274106600934478190350853, 3.28579908714294688200317538748, 3.91796429329525102580802893198, 5.41682107884457350062528323592, 6.18867462183746677275658468616, 7.09602979810636894710501199495, 7.76183450298044964772951712843, 8.714159672226003854856397558888, 9.322474831557907600421823845651, 9.876722293521982997398156358496