Properties

Label 9065.2.a.s.1.13
Level $9065$
Weight $2$
Character 9065.1
Self dual yes
Analytic conductor $72.384$
Analytic rank $1$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9065,2,Mod(1,9065)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9065.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9065, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 9065 = 5 \cdot 7^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9065.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,-3,1,11,-19,4,0,-9,12,3,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.3843894323\)
Analytic rank: \(1\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 3 x^{18} - 20 x^{17} + 62 x^{16} + 161 x^{15} - 522 x^{14} - 670 x^{13} + 2318 x^{12} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1295)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Root \(-0.879722\) of defining polynomial
Character \(\chi\) \(=\) 9065.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.879722 q^{2} +1.40421 q^{3} -1.22609 q^{4} -1.00000 q^{5} +1.23531 q^{6} -2.83806 q^{8} -1.02820 q^{9} -0.879722 q^{10} +2.61877 q^{11} -1.72168 q^{12} +1.85392 q^{13} -1.40421 q^{15} -0.0445300 q^{16} -0.662500 q^{17} -0.904534 q^{18} +1.45539 q^{19} +1.22609 q^{20} +2.30379 q^{22} +4.51770 q^{23} -3.98523 q^{24} +1.00000 q^{25} +1.63094 q^{26} -5.65643 q^{27} -10.4288 q^{29} -1.23531 q^{30} -2.65051 q^{31} +5.63695 q^{32} +3.67729 q^{33} -0.582816 q^{34} +1.26067 q^{36} +1.00000 q^{37} +1.28034 q^{38} +2.60329 q^{39} +2.83806 q^{40} +5.51742 q^{41} +4.15401 q^{43} -3.21084 q^{44} +1.02820 q^{45} +3.97432 q^{46} -2.70302 q^{47} -0.0625294 q^{48} +0.879722 q^{50} -0.930286 q^{51} -2.27307 q^{52} -11.8740 q^{53} -4.97609 q^{54} -2.61877 q^{55} +2.04367 q^{57} -9.17448 q^{58} -8.94848 q^{59} +1.72168 q^{60} -6.51506 q^{61} -2.33171 q^{62} +5.04801 q^{64} -1.85392 q^{65} +3.23499 q^{66} -1.22004 q^{67} +0.812283 q^{68} +6.34378 q^{69} +11.7319 q^{71} +2.91811 q^{72} +2.31731 q^{73} +0.879722 q^{74} +1.40421 q^{75} -1.78444 q^{76} +2.29017 q^{78} +5.23574 q^{79} +0.0445300 q^{80} -4.85819 q^{81} +4.85380 q^{82} +11.5498 q^{83} +0.662500 q^{85} +3.65437 q^{86} -14.6442 q^{87} -7.43222 q^{88} -7.60131 q^{89} +0.904534 q^{90} -5.53910 q^{92} -3.72186 q^{93} -2.37791 q^{94} -1.45539 q^{95} +7.91544 q^{96} +0.968186 q^{97} -2.69262 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q - 3 q^{2} + q^{3} + 11 q^{4} - 19 q^{5} + 4 q^{6} - 9 q^{8} + 12 q^{9} + 3 q^{10} - 13 q^{11} + 4 q^{12} + 3 q^{13} - q^{15} - 5 q^{16} + 2 q^{17} - 11 q^{18} + 12 q^{19} - 11 q^{20} - 10 q^{22}+ \cdots - 71 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.879722 0.622058 0.311029 0.950400i \(-0.399326\pi\)
0.311029 + 0.950400i \(0.399326\pi\)
\(3\) 1.40421 0.810719 0.405360 0.914157i \(-0.367146\pi\)
0.405360 + 0.914157i \(0.367146\pi\)
\(4\) −1.22609 −0.613044
\(5\) −1.00000 −0.447214
\(6\) 1.23531 0.504314
\(7\) 0 0
\(8\) −2.83806 −1.00341
\(9\) −1.02820 −0.342734
\(10\) −0.879722 −0.278193
\(11\) 2.61877 0.789588 0.394794 0.918770i \(-0.370816\pi\)
0.394794 + 0.918770i \(0.370816\pi\)
\(12\) −1.72168 −0.497007
\(13\) 1.85392 0.514186 0.257093 0.966387i \(-0.417235\pi\)
0.257093 + 0.966387i \(0.417235\pi\)
\(14\) 0 0
\(15\) −1.40421 −0.362565
\(16\) −0.0445300 −0.0111325
\(17\) −0.662500 −0.160680 −0.0803399 0.996768i \(-0.525601\pi\)
−0.0803399 + 0.996768i \(0.525601\pi\)
\(18\) −0.904534 −0.213201
\(19\) 1.45539 0.333890 0.166945 0.985966i \(-0.446610\pi\)
0.166945 + 0.985966i \(0.446610\pi\)
\(20\) 1.22609 0.274162
\(21\) 0 0
\(22\) 2.30379 0.491169
\(23\) 4.51770 0.942005 0.471003 0.882132i \(-0.343892\pi\)
0.471003 + 0.882132i \(0.343892\pi\)
\(24\) −3.98523 −0.813481
\(25\) 1.00000 0.200000
\(26\) 1.63094 0.319853
\(27\) −5.65643 −1.08858
\(28\) 0 0
\(29\) −10.4288 −1.93659 −0.968293 0.249818i \(-0.919629\pi\)
−0.968293 + 0.249818i \(0.919629\pi\)
\(30\) −1.23531 −0.225536
\(31\) −2.65051 −0.476045 −0.238023 0.971260i \(-0.576499\pi\)
−0.238023 + 0.971260i \(0.576499\pi\)
\(32\) 5.63695 0.996481
\(33\) 3.67729 0.640134
\(34\) −0.582816 −0.0999521
\(35\) 0 0
\(36\) 1.26067 0.210111
\(37\) 1.00000 0.164399
\(38\) 1.28034 0.207699
\(39\) 2.60329 0.416860
\(40\) 2.83806 0.448737
\(41\) 5.51742 0.861677 0.430838 0.902429i \(-0.358218\pi\)
0.430838 + 0.902429i \(0.358218\pi\)
\(42\) 0 0
\(43\) 4.15401 0.633480 0.316740 0.948512i \(-0.397412\pi\)
0.316740 + 0.948512i \(0.397412\pi\)
\(44\) −3.21084 −0.484052
\(45\) 1.02820 0.153276
\(46\) 3.97432 0.585982
\(47\) −2.70302 −0.394276 −0.197138 0.980376i \(-0.563165\pi\)
−0.197138 + 0.980376i \(0.563165\pi\)
\(48\) −0.0625294 −0.00902534
\(49\) 0 0
\(50\) 0.879722 0.124412
\(51\) −0.930286 −0.130266
\(52\) −2.27307 −0.315219
\(53\) −11.8740 −1.63101 −0.815507 0.578748i \(-0.803542\pi\)
−0.815507 + 0.578748i \(0.803542\pi\)
\(54\) −4.97609 −0.677160
\(55\) −2.61877 −0.353114
\(56\) 0 0
\(57\) 2.04367 0.270691
\(58\) −9.17448 −1.20467
\(59\) −8.94848 −1.16499 −0.582496 0.812833i \(-0.697924\pi\)
−0.582496 + 0.812833i \(0.697924\pi\)
\(60\) 1.72168 0.222268
\(61\) −6.51506 −0.834168 −0.417084 0.908868i \(-0.636948\pi\)
−0.417084 + 0.908868i \(0.636948\pi\)
\(62\) −2.33171 −0.296128
\(63\) 0 0
\(64\) 5.04801 0.631001
\(65\) −1.85392 −0.229951
\(66\) 3.23499 0.398200
\(67\) −1.22004 −0.149052 −0.0745259 0.997219i \(-0.523744\pi\)
−0.0745259 + 0.997219i \(0.523744\pi\)
\(68\) 0.812283 0.0985038
\(69\) 6.34378 0.763702
\(70\) 0 0
\(71\) 11.7319 1.39231 0.696157 0.717889i \(-0.254892\pi\)
0.696157 + 0.717889i \(0.254892\pi\)
\(72\) 2.91811 0.343902
\(73\) 2.31731 0.271220 0.135610 0.990762i \(-0.456701\pi\)
0.135610 + 0.990762i \(0.456701\pi\)
\(74\) 0.879722 0.102266
\(75\) 1.40421 0.162144
\(76\) −1.78444 −0.204689
\(77\) 0 0
\(78\) 2.29017 0.259311
\(79\) 5.23574 0.589066 0.294533 0.955641i \(-0.404836\pi\)
0.294533 + 0.955641i \(0.404836\pi\)
\(80\) 0.0445300 0.00497861
\(81\) −4.85819 −0.539799
\(82\) 4.85380 0.536013
\(83\) 11.5498 1.26776 0.633880 0.773431i \(-0.281461\pi\)
0.633880 + 0.773431i \(0.281461\pi\)
\(84\) 0 0
\(85\) 0.662500 0.0718582
\(86\) 3.65437 0.394061
\(87\) −14.6442 −1.57003
\(88\) −7.43222 −0.792278
\(89\) −7.60131 −0.805738 −0.402869 0.915258i \(-0.631987\pi\)
−0.402869 + 0.915258i \(0.631987\pi\)
\(90\) 0.904534 0.0953462
\(91\) 0 0
\(92\) −5.53910 −0.577491
\(93\) −3.72186 −0.385939
\(94\) −2.37791 −0.245262
\(95\) −1.45539 −0.149320
\(96\) 7.91544 0.807867
\(97\) 0.968186 0.0983044 0.0491522 0.998791i \(-0.484348\pi\)
0.0491522 + 0.998791i \(0.484348\pi\)
\(98\) 0 0
\(99\) −2.69262 −0.270619
\(100\) −1.22609 −0.122609
\(101\) −0.787221 −0.0783314 −0.0391657 0.999233i \(-0.512470\pi\)
−0.0391657 + 0.999233i \(0.512470\pi\)
\(102\) −0.818394 −0.0810331
\(103\) 0.715193 0.0704700 0.0352350 0.999379i \(-0.488782\pi\)
0.0352350 + 0.999379i \(0.488782\pi\)
\(104\) −5.26155 −0.515938
\(105\) 0 0
\(106\) −10.4458 −1.01458
\(107\) 2.91415 0.281721 0.140861 0.990029i \(-0.455013\pi\)
0.140861 + 0.990029i \(0.455013\pi\)
\(108\) 6.93528 0.667348
\(109\) −16.6276 −1.59264 −0.796319 0.604877i \(-0.793222\pi\)
−0.796319 + 0.604877i \(0.793222\pi\)
\(110\) −2.30379 −0.219658
\(111\) 1.40421 0.133281
\(112\) 0 0
\(113\) 8.86284 0.833746 0.416873 0.908965i \(-0.363126\pi\)
0.416873 + 0.908965i \(0.363126\pi\)
\(114\) 1.79786 0.168385
\(115\) −4.51770 −0.421278
\(116\) 12.7867 1.18721
\(117\) −1.90621 −0.176229
\(118\) −7.87218 −0.724692
\(119\) 0 0
\(120\) 3.98523 0.363800
\(121\) −4.14206 −0.376551
\(122\) −5.73145 −0.518901
\(123\) 7.74760 0.698578
\(124\) 3.24976 0.291837
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −17.2232 −1.52831 −0.764157 0.645030i \(-0.776845\pi\)
−0.764157 + 0.645030i \(0.776845\pi\)
\(128\) −6.83305 −0.603962
\(129\) 5.83309 0.513575
\(130\) −1.63094 −0.143043
\(131\) −18.6561 −1.62999 −0.814994 0.579470i \(-0.803260\pi\)
−0.814994 + 0.579470i \(0.803260\pi\)
\(132\) −4.50868 −0.392430
\(133\) 0 0
\(134\) −1.07330 −0.0927188
\(135\) 5.65643 0.486828
\(136\) 1.88022 0.161227
\(137\) 8.75628 0.748100 0.374050 0.927409i \(-0.377969\pi\)
0.374050 + 0.927409i \(0.377969\pi\)
\(138\) 5.58077 0.475067
\(139\) −8.49623 −0.720640 −0.360320 0.932829i \(-0.617333\pi\)
−0.360320 + 0.932829i \(0.617333\pi\)
\(140\) 0 0
\(141\) −3.79560 −0.319647
\(142\) 10.3208 0.866100
\(143\) 4.85499 0.405995
\(144\) 0.0457859 0.00381549
\(145\) 10.4288 0.866067
\(146\) 2.03859 0.168715
\(147\) 0 0
\(148\) −1.22609 −0.100784
\(149\) −16.4471 −1.34740 −0.673700 0.739005i \(-0.735296\pi\)
−0.673700 + 0.739005i \(0.735296\pi\)
\(150\) 1.23531 0.100863
\(151\) −3.82972 −0.311659 −0.155829 0.987784i \(-0.549805\pi\)
−0.155829 + 0.987784i \(0.549805\pi\)
\(152\) −4.13050 −0.335028
\(153\) 0.681184 0.0550705
\(154\) 0 0
\(155\) 2.65051 0.212894
\(156\) −3.19187 −0.255554
\(157\) 1.36906 0.109263 0.0546315 0.998507i \(-0.482602\pi\)
0.0546315 + 0.998507i \(0.482602\pi\)
\(158\) 4.60599 0.366433
\(159\) −16.6735 −1.32229
\(160\) −5.63695 −0.445640
\(161\) 0 0
\(162\) −4.27386 −0.335786
\(163\) −3.75902 −0.294429 −0.147215 0.989105i \(-0.547031\pi\)
−0.147215 + 0.989105i \(0.547031\pi\)
\(164\) −6.76485 −0.528246
\(165\) −3.67729 −0.286277
\(166\) 10.1607 0.788620
\(167\) 22.0658 1.70751 0.853753 0.520678i \(-0.174321\pi\)
0.853753 + 0.520678i \(0.174321\pi\)
\(168\) 0 0
\(169\) −9.56297 −0.735613
\(170\) 0.582816 0.0446999
\(171\) −1.49644 −0.114436
\(172\) −5.09318 −0.388352
\(173\) −13.5155 −1.02756 −0.513782 0.857921i \(-0.671756\pi\)
−0.513782 + 0.857921i \(0.671756\pi\)
\(174\) −12.8829 −0.976647
\(175\) 0 0
\(176\) −0.116614 −0.00879009
\(177\) −12.5655 −0.944482
\(178\) −6.68704 −0.501215
\(179\) 23.0584 1.72347 0.861734 0.507361i \(-0.169379\pi\)
0.861734 + 0.507361i \(0.169379\pi\)
\(180\) −1.26067 −0.0939647
\(181\) 0.407733 0.0303066 0.0151533 0.999885i \(-0.495176\pi\)
0.0151533 + 0.999885i \(0.495176\pi\)
\(182\) 0 0
\(183\) −9.14849 −0.676276
\(184\) −12.8215 −0.945214
\(185\) −1.00000 −0.0735215
\(186\) −3.27420 −0.240076
\(187\) −1.73493 −0.126871
\(188\) 3.31414 0.241709
\(189\) 0 0
\(190\) −1.28034 −0.0928858
\(191\) −16.6147 −1.20220 −0.601098 0.799175i \(-0.705270\pi\)
−0.601098 + 0.799175i \(0.705270\pi\)
\(192\) 7.08845 0.511565
\(193\) −21.1323 −1.52113 −0.760567 0.649259i \(-0.775079\pi\)
−0.760567 + 0.649259i \(0.775079\pi\)
\(194\) 0.851735 0.0611510
\(195\) −2.60329 −0.186426
\(196\) 0 0
\(197\) −15.7226 −1.12019 −0.560095 0.828428i \(-0.689235\pi\)
−0.560095 + 0.828428i \(0.689235\pi\)
\(198\) −2.36876 −0.168341
\(199\) 3.20391 0.227119 0.113560 0.993531i \(-0.463775\pi\)
0.113560 + 0.993531i \(0.463775\pi\)
\(200\) −2.83806 −0.200681
\(201\) −1.71319 −0.120839
\(202\) −0.692536 −0.0487266
\(203\) 0 0
\(204\) 1.14061 0.0798589
\(205\) −5.51742 −0.385354
\(206\) 0.629171 0.0438364
\(207\) −4.64511 −0.322858
\(208\) −0.0825553 −0.00572418
\(209\) 3.81133 0.263636
\(210\) 0 0
\(211\) −7.07225 −0.486874 −0.243437 0.969917i \(-0.578275\pi\)
−0.243437 + 0.969917i \(0.578275\pi\)
\(212\) 14.5585 0.999883
\(213\) 16.4739 1.12878
\(214\) 2.56364 0.175247
\(215\) −4.15401 −0.283301
\(216\) 16.0533 1.09229
\(217\) 0 0
\(218\) −14.6277 −0.990713
\(219\) 3.25398 0.219883
\(220\) 3.21084 0.216475
\(221\) −1.22822 −0.0826193
\(222\) 1.23531 0.0829087
\(223\) −2.44022 −0.163409 −0.0817045 0.996657i \(-0.526036\pi\)
−0.0817045 + 0.996657i \(0.526036\pi\)
\(224\) 0 0
\(225\) −1.02820 −0.0685469
\(226\) 7.79684 0.518638
\(227\) −13.6836 −0.908212 −0.454106 0.890948i \(-0.650041\pi\)
−0.454106 + 0.890948i \(0.650041\pi\)
\(228\) −2.50572 −0.165946
\(229\) −7.71274 −0.509672 −0.254836 0.966984i \(-0.582021\pi\)
−0.254836 + 0.966984i \(0.582021\pi\)
\(230\) −3.97432 −0.262059
\(231\) 0 0
\(232\) 29.5977 1.94318
\(233\) −9.32576 −0.610951 −0.305475 0.952200i \(-0.598815\pi\)
−0.305475 + 0.952200i \(0.598815\pi\)
\(234\) −1.67694 −0.109625
\(235\) 2.70302 0.176326
\(236\) 10.9716 0.714192
\(237\) 7.35206 0.477567
\(238\) 0 0
\(239\) −21.9382 −1.41907 −0.709533 0.704672i \(-0.751094\pi\)
−0.709533 + 0.704672i \(0.751094\pi\)
\(240\) 0.0625294 0.00403625
\(241\) 1.51458 0.0975630 0.0487815 0.998809i \(-0.484466\pi\)
0.0487815 + 0.998809i \(0.484466\pi\)
\(242\) −3.64387 −0.234237
\(243\) 10.1474 0.650955
\(244\) 7.98804 0.511382
\(245\) 0 0
\(246\) 6.81574 0.434556
\(247\) 2.69819 0.171682
\(248\) 7.52231 0.477667
\(249\) 16.2184 1.02780
\(250\) −0.879722 −0.0556385
\(251\) 28.9786 1.82911 0.914556 0.404459i \(-0.132540\pi\)
0.914556 + 0.404459i \(0.132540\pi\)
\(252\) 0 0
\(253\) 11.8308 0.743796
\(254\) −15.1517 −0.950700
\(255\) 0.930286 0.0582568
\(256\) −16.1072 −1.00670
\(257\) −25.5519 −1.59388 −0.796941 0.604057i \(-0.793550\pi\)
−0.796941 + 0.604057i \(0.793550\pi\)
\(258\) 5.13150 0.319473
\(259\) 0 0
\(260\) 2.27307 0.140970
\(261\) 10.7230 0.663735
\(262\) −16.4122 −1.01395
\(263\) −18.9298 −1.16726 −0.583630 0.812020i \(-0.698368\pi\)
−0.583630 + 0.812020i \(0.698368\pi\)
\(264\) −10.4364 −0.642315
\(265\) 11.8740 0.729411
\(266\) 0 0
\(267\) −10.6738 −0.653227
\(268\) 1.49588 0.0913753
\(269\) 21.4422 1.30735 0.653676 0.756775i \(-0.273226\pi\)
0.653676 + 0.756775i \(0.273226\pi\)
\(270\) 4.97609 0.302835
\(271\) −30.1732 −1.83289 −0.916444 0.400162i \(-0.868954\pi\)
−0.916444 + 0.400162i \(0.868954\pi\)
\(272\) 0.0295011 0.00178877
\(273\) 0 0
\(274\) 7.70310 0.465361
\(275\) 2.61877 0.157918
\(276\) −7.77804 −0.468183
\(277\) −11.8692 −0.713149 −0.356574 0.934267i \(-0.616055\pi\)
−0.356574 + 0.934267i \(0.616055\pi\)
\(278\) −7.47432 −0.448280
\(279\) 2.72526 0.163157
\(280\) 0 0
\(281\) −1.92744 −0.114981 −0.0574907 0.998346i \(-0.518310\pi\)
−0.0574907 + 0.998346i \(0.518310\pi\)
\(282\) −3.33907 −0.198839
\(283\) 18.1887 1.08121 0.540603 0.841278i \(-0.318196\pi\)
0.540603 + 0.841278i \(0.318196\pi\)
\(284\) −14.3843 −0.853551
\(285\) −2.04367 −0.121057
\(286\) 4.27105 0.252552
\(287\) 0 0
\(288\) −5.79593 −0.341529
\(289\) −16.5611 −0.974182
\(290\) 9.17448 0.538744
\(291\) 1.35953 0.0796972
\(292\) −2.84122 −0.166270
\(293\) −23.8905 −1.39570 −0.697850 0.716244i \(-0.745860\pi\)
−0.697850 + 0.716244i \(0.745860\pi\)
\(294\) 0 0
\(295\) 8.94848 0.521000
\(296\) −2.83806 −0.164959
\(297\) −14.8129 −0.859530
\(298\) −14.4689 −0.838160
\(299\) 8.37547 0.484366
\(300\) −1.72168 −0.0994013
\(301\) 0 0
\(302\) −3.36909 −0.193870
\(303\) −1.10542 −0.0635047
\(304\) −0.0648087 −0.00371703
\(305\) 6.51506 0.373051
\(306\) 0.599253 0.0342570
\(307\) −5.64062 −0.321927 −0.160964 0.986960i \(-0.551460\pi\)
−0.160964 + 0.986960i \(0.551460\pi\)
\(308\) 0 0
\(309\) 1.00428 0.0571314
\(310\) 2.33171 0.132432
\(311\) 15.1742 0.860450 0.430225 0.902722i \(-0.358434\pi\)
0.430225 + 0.902722i \(0.358434\pi\)
\(312\) −7.38831 −0.418281
\(313\) −32.4050 −1.83164 −0.915819 0.401592i \(-0.868457\pi\)
−0.915819 + 0.401592i \(0.868457\pi\)
\(314\) 1.20439 0.0679679
\(315\) 0 0
\(316\) −6.41947 −0.361124
\(317\) −2.31606 −0.130083 −0.0650416 0.997883i \(-0.520718\pi\)
−0.0650416 + 0.997883i \(0.520718\pi\)
\(318\) −14.6680 −0.822543
\(319\) −27.3107 −1.52910
\(320\) −5.04801 −0.282192
\(321\) 4.09206 0.228397
\(322\) 0 0
\(323\) −0.964197 −0.0536494
\(324\) 5.95657 0.330920
\(325\) 1.85392 0.102837
\(326\) −3.30690 −0.183152
\(327\) −23.3486 −1.29118
\(328\) −15.6588 −0.864612
\(329\) 0 0
\(330\) −3.23499 −0.178081
\(331\) 1.76521 0.0970248 0.0485124 0.998823i \(-0.484552\pi\)
0.0485124 + 0.998823i \(0.484552\pi\)
\(332\) −14.1611 −0.777193
\(333\) −1.02820 −0.0563452
\(334\) 19.4118 1.06217
\(335\) 1.22004 0.0666580
\(336\) 0 0
\(337\) −13.8878 −0.756517 −0.378258 0.925700i \(-0.623477\pi\)
−0.378258 + 0.925700i \(0.623477\pi\)
\(338\) −8.41275 −0.457594
\(339\) 12.4453 0.675934
\(340\) −0.812283 −0.0440522
\(341\) −6.94106 −0.375879
\(342\) −1.31645 −0.0711856
\(343\) 0 0
\(344\) −11.7893 −0.635638
\(345\) −6.34378 −0.341538
\(346\) −11.8899 −0.639204
\(347\) −8.02642 −0.430881 −0.215440 0.976517i \(-0.569119\pi\)
−0.215440 + 0.976517i \(0.569119\pi\)
\(348\) 17.9551 0.962496
\(349\) 16.2924 0.872115 0.436057 0.899919i \(-0.356374\pi\)
0.436057 + 0.899919i \(0.356374\pi\)
\(350\) 0 0
\(351\) −10.4866 −0.559733
\(352\) 14.7619 0.786810
\(353\) 13.4808 0.717511 0.358756 0.933432i \(-0.383201\pi\)
0.358756 + 0.933432i \(0.383201\pi\)
\(354\) −11.0542 −0.587522
\(355\) −11.7319 −0.622662
\(356\) 9.31988 0.493953
\(357\) 0 0
\(358\) 20.2850 1.07210
\(359\) −31.6816 −1.67209 −0.836045 0.548661i \(-0.815138\pi\)
−0.836045 + 0.548661i \(0.815138\pi\)
\(360\) −2.91811 −0.153798
\(361\) −16.8818 −0.888517
\(362\) 0.358692 0.0188524
\(363\) −5.81631 −0.305277
\(364\) 0 0
\(365\) −2.31731 −0.121293
\(366\) −8.04813 −0.420683
\(367\) −27.7286 −1.44742 −0.723711 0.690103i \(-0.757565\pi\)
−0.723711 + 0.690103i \(0.757565\pi\)
\(368\) −0.201173 −0.0104869
\(369\) −5.67303 −0.295326
\(370\) −0.879722 −0.0457346
\(371\) 0 0
\(372\) 4.56333 0.236598
\(373\) 17.5203 0.907166 0.453583 0.891214i \(-0.350146\pi\)
0.453583 + 0.891214i \(0.350146\pi\)
\(374\) −1.52626 −0.0789209
\(375\) −1.40421 −0.0725129
\(376\) 7.67134 0.395619
\(377\) −19.3343 −0.995765
\(378\) 0 0
\(379\) 22.4681 1.15411 0.577054 0.816706i \(-0.304202\pi\)
0.577054 + 0.816706i \(0.304202\pi\)
\(380\) 1.78444 0.0915399
\(381\) −24.1850 −1.23903
\(382\) −14.6163 −0.747835
\(383\) 28.8633 1.47485 0.737423 0.675431i \(-0.236043\pi\)
0.737423 + 0.675431i \(0.236043\pi\)
\(384\) −9.59502 −0.489644
\(385\) 0 0
\(386\) −18.5905 −0.946233
\(387\) −4.27117 −0.217116
\(388\) −1.18708 −0.0602649
\(389\) −6.13581 −0.311098 −0.155549 0.987828i \(-0.549715\pi\)
−0.155549 + 0.987828i \(0.549715\pi\)
\(390\) −2.29017 −0.115968
\(391\) −2.99297 −0.151361
\(392\) 0 0
\(393\) −26.1970 −1.32146
\(394\) −13.8315 −0.696823
\(395\) −5.23574 −0.263438
\(396\) 3.30140 0.165901
\(397\) 18.8253 0.944812 0.472406 0.881381i \(-0.343386\pi\)
0.472406 + 0.881381i \(0.343386\pi\)
\(398\) 2.81855 0.141281
\(399\) 0 0
\(400\) −0.0445300 −0.00222650
\(401\) −35.5937 −1.77746 −0.888732 0.458427i \(-0.848413\pi\)
−0.888732 + 0.458427i \(0.848413\pi\)
\(402\) −1.50713 −0.0751689
\(403\) −4.91384 −0.244776
\(404\) 0.965202 0.0480206
\(405\) 4.85819 0.241405
\(406\) 0 0
\(407\) 2.61877 0.129807
\(408\) 2.64021 0.130710
\(409\) 19.9848 0.988185 0.494093 0.869409i \(-0.335500\pi\)
0.494093 + 0.869409i \(0.335500\pi\)
\(410\) −4.85380 −0.239712
\(411\) 12.2956 0.606499
\(412\) −0.876889 −0.0432012
\(413\) 0 0
\(414\) −4.08641 −0.200836
\(415\) −11.5498 −0.566959
\(416\) 10.4505 0.512377
\(417\) −11.9305 −0.584237
\(418\) 3.35292 0.163997
\(419\) −5.57361 −0.272288 −0.136144 0.990689i \(-0.543471\pi\)
−0.136144 + 0.990689i \(0.543471\pi\)
\(420\) 0 0
\(421\) 15.7722 0.768691 0.384346 0.923189i \(-0.374427\pi\)
0.384346 + 0.923189i \(0.374427\pi\)
\(422\) −6.22161 −0.302863
\(423\) 2.77925 0.135132
\(424\) 33.6990 1.63657
\(425\) −0.662500 −0.0321360
\(426\) 14.4925 0.702164
\(427\) 0 0
\(428\) −3.57300 −0.172707
\(429\) 6.81742 0.329148
\(430\) −3.65437 −0.176230
\(431\) 5.72242 0.275639 0.137820 0.990457i \(-0.455991\pi\)
0.137820 + 0.990457i \(0.455991\pi\)
\(432\) 0.251881 0.0121186
\(433\) 3.41219 0.163979 0.0819896 0.996633i \(-0.473873\pi\)
0.0819896 + 0.996633i \(0.473873\pi\)
\(434\) 0 0
\(435\) 14.6442 0.702137
\(436\) 20.3869 0.976358
\(437\) 6.57503 0.314526
\(438\) 2.86260 0.136780
\(439\) 21.4458 1.02355 0.511776 0.859119i \(-0.328988\pi\)
0.511776 + 0.859119i \(0.328988\pi\)
\(440\) 7.43222 0.354317
\(441\) 0 0
\(442\) −1.08050 −0.0513940
\(443\) 31.8502 1.51325 0.756624 0.653851i \(-0.226848\pi\)
0.756624 + 0.653851i \(0.226848\pi\)
\(444\) −1.72168 −0.0817074
\(445\) 7.60131 0.360337
\(446\) −2.14671 −0.101650
\(447\) −23.0951 −1.09236
\(448\) 0 0
\(449\) −14.2049 −0.670370 −0.335185 0.942152i \(-0.608799\pi\)
−0.335185 + 0.942152i \(0.608799\pi\)
\(450\) −0.904534 −0.0426401
\(451\) 14.4488 0.680369
\(452\) −10.8666 −0.511123
\(453\) −5.37772 −0.252668
\(454\) −12.0378 −0.564960
\(455\) 0 0
\(456\) −5.80007 −0.271613
\(457\) 15.9495 0.746084 0.373042 0.927814i \(-0.378315\pi\)
0.373042 + 0.927814i \(0.378315\pi\)
\(458\) −6.78507 −0.317045
\(459\) 3.74738 0.174913
\(460\) 5.53910 0.258262
\(461\) 29.2431 1.36199 0.680993 0.732290i \(-0.261548\pi\)
0.680993 + 0.732290i \(0.261548\pi\)
\(462\) 0 0
\(463\) −11.6477 −0.541313 −0.270657 0.962676i \(-0.587241\pi\)
−0.270657 + 0.962676i \(0.587241\pi\)
\(464\) 0.464396 0.0215591
\(465\) 3.72186 0.172597
\(466\) −8.20408 −0.380047
\(467\) −6.21356 −0.287529 −0.143765 0.989612i \(-0.545921\pi\)
−0.143765 + 0.989612i \(0.545921\pi\)
\(468\) 2.33718 0.108036
\(469\) 0 0
\(470\) 2.37791 0.109685
\(471\) 1.92245 0.0885816
\(472\) 25.3963 1.16896
\(473\) 10.8784 0.500188
\(474\) 6.46777 0.297074
\(475\) 1.45539 0.0667780
\(476\) 0 0
\(477\) 12.2088 0.559004
\(478\) −19.2995 −0.882741
\(479\) 0.355614 0.0162484 0.00812422 0.999967i \(-0.497414\pi\)
0.00812422 + 0.999967i \(0.497414\pi\)
\(480\) −7.91544 −0.361289
\(481\) 1.85392 0.0845317
\(482\) 1.33241 0.0606898
\(483\) 0 0
\(484\) 5.07854 0.230843
\(485\) −0.968186 −0.0439630
\(486\) 8.92689 0.404932
\(487\) −0.485476 −0.0219990 −0.0109995 0.999940i \(-0.503501\pi\)
−0.0109995 + 0.999940i \(0.503501\pi\)
\(488\) 18.4902 0.837010
\(489\) −5.27845 −0.238700
\(490\) 0 0
\(491\) 20.6425 0.931584 0.465792 0.884894i \(-0.345769\pi\)
0.465792 + 0.884894i \(0.345769\pi\)
\(492\) −9.49925 −0.428259
\(493\) 6.90910 0.311170
\(494\) 2.37366 0.106796
\(495\) 2.69262 0.121024
\(496\) 0.118027 0.00529958
\(497\) 0 0
\(498\) 14.2677 0.639349
\(499\) 12.3036 0.550783 0.275391 0.961332i \(-0.411193\pi\)
0.275391 + 0.961332i \(0.411193\pi\)
\(500\) 1.22609 0.0548323
\(501\) 30.9850 1.38431
\(502\) 25.4931 1.13781
\(503\) 16.4357 0.732830 0.366415 0.930451i \(-0.380585\pi\)
0.366415 + 0.930451i \(0.380585\pi\)
\(504\) 0 0
\(505\) 0.787221 0.0350309
\(506\) 10.4078 0.462684
\(507\) −13.4284 −0.596375
\(508\) 21.1172 0.936925
\(509\) −13.0898 −0.580197 −0.290099 0.956997i \(-0.593688\pi\)
−0.290099 + 0.956997i \(0.593688\pi\)
\(510\) 0.818394 0.0362391
\(511\) 0 0
\(512\) −0.503772 −0.0222638
\(513\) −8.23233 −0.363466
\(514\) −22.4786 −0.991487
\(515\) −0.715193 −0.0315152
\(516\) −7.15188 −0.314844
\(517\) −7.07858 −0.311315
\(518\) 0 0
\(519\) −18.9786 −0.833066
\(520\) 5.26155 0.230734
\(521\) 36.5549 1.60150 0.800750 0.598999i \(-0.204434\pi\)
0.800750 + 0.598999i \(0.204434\pi\)
\(522\) 9.43323 0.412881
\(523\) 34.6300 1.51426 0.757132 0.653262i \(-0.226600\pi\)
0.757132 + 0.653262i \(0.226600\pi\)
\(524\) 22.8740 0.999254
\(525\) 0 0
\(526\) −16.6529 −0.726103
\(527\) 1.75596 0.0764908
\(528\) −0.163750 −0.00712630
\(529\) −2.59040 −0.112626
\(530\) 10.4458 0.453736
\(531\) 9.20085 0.399283
\(532\) 0 0
\(533\) 10.2289 0.443062
\(534\) −9.38999 −0.406345
\(535\) −2.91415 −0.125989
\(536\) 3.46255 0.149560
\(537\) 32.3788 1.39725
\(538\) 18.8631 0.813248
\(539\) 0 0
\(540\) −6.93528 −0.298447
\(541\) −43.2188 −1.85812 −0.929061 0.369927i \(-0.879383\pi\)
−0.929061 + 0.369927i \(0.879383\pi\)
\(542\) −26.5440 −1.14016
\(543\) 0.572542 0.0245701
\(544\) −3.73448 −0.160114
\(545\) 16.6276 0.712249
\(546\) 0 0
\(547\) 11.9097 0.509220 0.254610 0.967044i \(-0.418053\pi\)
0.254610 + 0.967044i \(0.418053\pi\)
\(548\) −10.7360 −0.458618
\(549\) 6.69881 0.285898
\(550\) 2.30379 0.0982338
\(551\) −15.1781 −0.646607
\(552\) −18.0041 −0.766303
\(553\) 0 0
\(554\) −10.4416 −0.443620
\(555\) −1.40421 −0.0596053
\(556\) 10.4171 0.441784
\(557\) 7.25288 0.307314 0.153657 0.988124i \(-0.450895\pi\)
0.153657 + 0.988124i \(0.450895\pi\)
\(558\) 2.39747 0.101493
\(559\) 7.70122 0.325727
\(560\) 0 0
\(561\) −2.43620 −0.102857
\(562\) −1.69561 −0.0715250
\(563\) 29.4309 1.24036 0.620181 0.784459i \(-0.287059\pi\)
0.620181 + 0.784459i \(0.287059\pi\)
\(564\) 4.65374 0.195958
\(565\) −8.86284 −0.372863
\(566\) 16.0010 0.672572
\(567\) 0 0
\(568\) −33.2957 −1.39706
\(569\) −22.6006 −0.947466 −0.473733 0.880669i \(-0.657094\pi\)
−0.473733 + 0.880669i \(0.657094\pi\)
\(570\) −1.79786 −0.0753043
\(571\) −22.7982 −0.954077 −0.477038 0.878882i \(-0.658290\pi\)
−0.477038 + 0.878882i \(0.658290\pi\)
\(572\) −5.95265 −0.248893
\(573\) −23.3304 −0.974643
\(574\) 0 0
\(575\) 4.51770 0.188401
\(576\) −5.19038 −0.216266
\(577\) −27.8583 −1.15976 −0.579879 0.814703i \(-0.696900\pi\)
−0.579879 + 0.814703i \(0.696900\pi\)
\(578\) −14.5692 −0.605997
\(579\) −29.6741 −1.23321
\(580\) −12.7867 −0.530938
\(581\) 0 0
\(582\) 1.19601 0.0495763
\(583\) −31.0951 −1.28783
\(584\) −6.57666 −0.272144
\(585\) 1.90621 0.0788121
\(586\) −21.0170 −0.868206
\(587\) 30.0899 1.24194 0.620972 0.783833i \(-0.286738\pi\)
0.620972 + 0.783833i \(0.286738\pi\)
\(588\) 0 0
\(589\) −3.85753 −0.158947
\(590\) 7.87218 0.324092
\(591\) −22.0778 −0.908160
\(592\) −0.0445300 −0.00183017
\(593\) 11.5979 0.476269 0.238134 0.971232i \(-0.423464\pi\)
0.238134 + 0.971232i \(0.423464\pi\)
\(594\) −13.0312 −0.534677
\(595\) 0 0
\(596\) 20.1656 0.826016
\(597\) 4.49895 0.184130
\(598\) 7.36809 0.301304
\(599\) −10.5940 −0.432859 −0.216429 0.976298i \(-0.569441\pi\)
−0.216429 + 0.976298i \(0.569441\pi\)
\(600\) −3.98523 −0.162696
\(601\) −19.9386 −0.813312 −0.406656 0.913581i \(-0.633305\pi\)
−0.406656 + 0.913581i \(0.633305\pi\)
\(602\) 0 0
\(603\) 1.25445 0.0510852
\(604\) 4.69558 0.191060
\(605\) 4.14206 0.168399
\(606\) −0.972463 −0.0395036
\(607\) 19.6674 0.798275 0.399138 0.916891i \(-0.369310\pi\)
0.399138 + 0.916891i \(0.369310\pi\)
\(608\) 8.20398 0.332715
\(609\) 0 0
\(610\) 5.73145 0.232059
\(611\) −5.01119 −0.202731
\(612\) −0.835192 −0.0337606
\(613\) −17.0577 −0.688954 −0.344477 0.938795i \(-0.611944\pi\)
−0.344477 + 0.938795i \(0.611944\pi\)
\(614\) −4.96218 −0.200257
\(615\) −7.74760 −0.312414
\(616\) 0 0
\(617\) 15.0250 0.604886 0.302443 0.953168i \(-0.402198\pi\)
0.302443 + 0.953168i \(0.402198\pi\)
\(618\) 0.883486 0.0355390
\(619\) −8.86844 −0.356453 −0.178226 0.983990i \(-0.557036\pi\)
−0.178226 + 0.983990i \(0.557036\pi\)
\(620\) −3.24976 −0.130513
\(621\) −25.5541 −1.02545
\(622\) 13.3491 0.535249
\(623\) 0 0
\(624\) −0.115925 −0.00464070
\(625\) 1.00000 0.0400000
\(626\) −28.5074 −1.13938
\(627\) 5.35190 0.213734
\(628\) −1.67859 −0.0669831
\(629\) −0.662500 −0.0264156
\(630\) 0 0
\(631\) 4.20432 0.167371 0.0836856 0.996492i \(-0.473331\pi\)
0.0836856 + 0.996492i \(0.473331\pi\)
\(632\) −14.8593 −0.591073
\(633\) −9.93090 −0.394718
\(634\) −2.03749 −0.0809192
\(635\) 17.2232 0.683483
\(636\) 20.4432 0.810624
\(637\) 0 0
\(638\) −24.0258 −0.951191
\(639\) −12.0627 −0.477194
\(640\) 6.83305 0.270100
\(641\) 27.8569 1.10028 0.550141 0.835072i \(-0.314574\pi\)
0.550141 + 0.835072i \(0.314574\pi\)
\(642\) 3.59988 0.142076
\(643\) 18.4951 0.729374 0.364687 0.931130i \(-0.381176\pi\)
0.364687 + 0.931130i \(0.381176\pi\)
\(644\) 0 0
\(645\) −5.83309 −0.229678
\(646\) −0.848226 −0.0333730
\(647\) −15.1084 −0.593972 −0.296986 0.954882i \(-0.595981\pi\)
−0.296986 + 0.954882i \(0.595981\pi\)
\(648\) 13.7878 0.541637
\(649\) −23.4340 −0.919864
\(650\) 1.63094 0.0639707
\(651\) 0 0
\(652\) 4.60890 0.180498
\(653\) −19.8998 −0.778739 −0.389369 0.921082i \(-0.627307\pi\)
−0.389369 + 0.921082i \(0.627307\pi\)
\(654\) −20.5403 −0.803190
\(655\) 18.6561 0.728952
\(656\) −0.245691 −0.00959262
\(657\) −2.38266 −0.0929565
\(658\) 0 0
\(659\) −22.9674 −0.894683 −0.447342 0.894363i \(-0.647629\pi\)
−0.447342 + 0.894363i \(0.647629\pi\)
\(660\) 4.50868 0.175500
\(661\) −9.31371 −0.362261 −0.181131 0.983459i \(-0.557976\pi\)
−0.181131 + 0.983459i \(0.557976\pi\)
\(662\) 1.55290 0.0603550
\(663\) −1.72468 −0.0669810
\(664\) −32.7792 −1.27208
\(665\) 0 0
\(666\) −0.904534 −0.0350500
\(667\) −47.1143 −1.82427
\(668\) −27.0547 −1.04678
\(669\) −3.42657 −0.132479
\(670\) 1.07330 0.0414651
\(671\) −17.0614 −0.658649
\(672\) 0 0
\(673\) 29.2926 1.12915 0.564573 0.825383i \(-0.309041\pi\)
0.564573 + 0.825383i \(0.309041\pi\)
\(674\) −12.2174 −0.470597
\(675\) −5.65643 −0.217716
\(676\) 11.7250 0.450963
\(677\) −14.0090 −0.538411 −0.269206 0.963083i \(-0.586761\pi\)
−0.269206 + 0.963083i \(0.586761\pi\)
\(678\) 10.9484 0.420470
\(679\) 0 0
\(680\) −1.88022 −0.0721030
\(681\) −19.2146 −0.736305
\(682\) −6.10621 −0.233819
\(683\) 8.32325 0.318480 0.159240 0.987240i \(-0.449096\pi\)
0.159240 + 0.987240i \(0.449096\pi\)
\(684\) 1.83477 0.0701541
\(685\) −8.75628 −0.334560
\(686\) 0 0
\(687\) −10.8303 −0.413201
\(688\) −0.184978 −0.00705223
\(689\) −22.0134 −0.838644
\(690\) −5.58077 −0.212456
\(691\) 26.6380 1.01336 0.506678 0.862135i \(-0.330873\pi\)
0.506678 + 0.862135i \(0.330873\pi\)
\(692\) 16.5712 0.629943
\(693\) 0 0
\(694\) −7.06102 −0.268033
\(695\) 8.49623 0.322280
\(696\) 41.5613 1.57538
\(697\) −3.65529 −0.138454
\(698\) 14.3328 0.542506
\(699\) −13.0953 −0.495310
\(700\) 0 0
\(701\) 24.1312 0.911423 0.455711 0.890128i \(-0.349385\pi\)
0.455711 + 0.890128i \(0.349385\pi\)
\(702\) −9.22529 −0.348186
\(703\) 1.45539 0.0548912
\(704\) 13.2196 0.498231
\(705\) 3.79560 0.142951
\(706\) 11.8594 0.446333
\(707\) 0 0
\(708\) 15.4064 0.579009
\(709\) 17.7141 0.665268 0.332634 0.943056i \(-0.392063\pi\)
0.332634 + 0.943056i \(0.392063\pi\)
\(710\) −10.3208 −0.387332
\(711\) −5.38340 −0.201893
\(712\) 21.5730 0.808482
\(713\) −11.9742 −0.448437
\(714\) 0 0
\(715\) −4.85499 −0.181566
\(716\) −28.2717 −1.05656
\(717\) −30.8058 −1.15046
\(718\) −27.8710 −1.04014
\(719\) 37.5186 1.39921 0.699603 0.714531i \(-0.253360\pi\)
0.699603 + 0.714531i \(0.253360\pi\)
\(720\) −0.0457859 −0.00170634
\(721\) 0 0
\(722\) −14.8513 −0.552709
\(723\) 2.12679 0.0790962
\(724\) −0.499917 −0.0185793
\(725\) −10.4288 −0.387317
\(726\) −5.11674 −0.189900
\(727\) 37.0709 1.37488 0.687442 0.726239i \(-0.258733\pi\)
0.687442 + 0.726239i \(0.258733\pi\)
\(728\) 0 0
\(729\) 28.8236 1.06754
\(730\) −2.03859 −0.0754515
\(731\) −2.75203 −0.101787
\(732\) 11.2169 0.414587
\(733\) −1.97390 −0.0729078 −0.0364539 0.999335i \(-0.511606\pi\)
−0.0364539 + 0.999335i \(0.511606\pi\)
\(734\) −24.3935 −0.900381
\(735\) 0 0
\(736\) 25.4660 0.938691
\(737\) −3.19500 −0.117689
\(738\) −4.99069 −0.183710
\(739\) −22.4746 −0.826742 −0.413371 0.910563i \(-0.635649\pi\)
−0.413371 + 0.910563i \(0.635649\pi\)
\(740\) 1.22609 0.0450719
\(741\) 3.78881 0.139186
\(742\) 0 0
\(743\) 29.4497 1.08040 0.540202 0.841535i \(-0.318348\pi\)
0.540202 + 0.841535i \(0.318348\pi\)
\(744\) 10.5629 0.387254
\(745\) 16.4471 0.602575
\(746\) 15.4130 0.564309
\(747\) −11.8756 −0.434505
\(748\) 2.12718 0.0777774
\(749\) 0 0
\(750\) −1.23531 −0.0451072
\(751\) 2.24684 0.0819884 0.0409942 0.999159i \(-0.486947\pi\)
0.0409942 + 0.999159i \(0.486947\pi\)
\(752\) 0.120366 0.00438928
\(753\) 40.6919 1.48290
\(754\) −17.0088 −0.619423
\(755\) 3.82972 0.139378
\(756\) 0 0
\(757\) 30.1017 1.09406 0.547032 0.837112i \(-0.315757\pi\)
0.547032 + 0.837112i \(0.315757\pi\)
\(758\) 19.7657 0.717921
\(759\) 16.6129 0.603010
\(760\) 4.13050 0.149829
\(761\) 1.00475 0.0364223 0.0182111 0.999834i \(-0.494203\pi\)
0.0182111 + 0.999834i \(0.494203\pi\)
\(762\) −21.2761 −0.770751
\(763\) 0 0
\(764\) 20.3711 0.736999
\(765\) −0.681184 −0.0246283
\(766\) 25.3917 0.917439
\(767\) −16.5898 −0.599023
\(768\) −22.6179 −0.816152
\(769\) 34.7250 1.25222 0.626108 0.779737i \(-0.284647\pi\)
0.626108 + 0.779737i \(0.284647\pi\)
\(770\) 0 0
\(771\) −35.8801 −1.29219
\(772\) 25.9100 0.932523
\(773\) −6.07902 −0.218647 −0.109324 0.994006i \(-0.534868\pi\)
−0.109324 + 0.994006i \(0.534868\pi\)
\(774\) −3.75744 −0.135058
\(775\) −2.65051 −0.0952090
\(776\) −2.74777 −0.0986392
\(777\) 0 0
\(778\) −5.39781 −0.193521
\(779\) 8.03002 0.287705
\(780\) 3.19187 0.114287
\(781\) 30.7230 1.09935
\(782\) −2.63299 −0.0941554
\(783\) 58.9900 2.10813
\(784\) 0 0
\(785\) −1.36906 −0.0488639
\(786\) −23.0461 −0.822026
\(787\) −2.37626 −0.0847044 −0.0423522 0.999103i \(-0.513485\pi\)
−0.0423522 + 0.999103i \(0.513485\pi\)
\(788\) 19.2773 0.686726
\(789\) −26.5813 −0.946320
\(790\) −4.60599 −0.163874
\(791\) 0 0
\(792\) 7.64184 0.271541
\(793\) −12.0784 −0.428918
\(794\) 16.5610 0.587728
\(795\) 16.6735 0.591348
\(796\) −3.92828 −0.139234
\(797\) 42.8422 1.51755 0.758774 0.651354i \(-0.225799\pi\)
0.758774 + 0.651354i \(0.225799\pi\)
\(798\) 0 0
\(799\) 1.79075 0.0633522
\(800\) 5.63695 0.199296
\(801\) 7.81570 0.276154
\(802\) −31.3126 −1.10569
\(803\) 6.06848 0.214152
\(804\) 2.10052 0.0740797
\(805\) 0 0
\(806\) −4.32281 −0.152265
\(807\) 30.1092 1.05989
\(808\) 2.23418 0.0785982
\(809\) −45.3307 −1.59374 −0.796871 0.604149i \(-0.793513\pi\)
−0.796871 + 0.604149i \(0.793513\pi\)
\(810\) 4.27386 0.150168
\(811\) −13.4410 −0.471977 −0.235988 0.971756i \(-0.575833\pi\)
−0.235988 + 0.971756i \(0.575833\pi\)
\(812\) 0 0
\(813\) −42.3693 −1.48596
\(814\) 2.30379 0.0807477
\(815\) 3.75902 0.131673
\(816\) 0.0414257 0.00145019
\(817\) 6.04572 0.211513
\(818\) 17.5811 0.614708
\(819\) 0 0
\(820\) 6.76485 0.236239
\(821\) −15.3028 −0.534072 −0.267036 0.963686i \(-0.586044\pi\)
−0.267036 + 0.963686i \(0.586044\pi\)
\(822\) 10.8167 0.377277
\(823\) 41.0609 1.43129 0.715646 0.698463i \(-0.246132\pi\)
0.715646 + 0.698463i \(0.246132\pi\)
\(824\) −2.02976 −0.0707101
\(825\) 3.67729 0.128027
\(826\) 0 0
\(827\) 18.9159 0.657769 0.328884 0.944370i \(-0.393327\pi\)
0.328884 + 0.944370i \(0.393327\pi\)
\(828\) 5.69532 0.197926
\(829\) −34.4593 −1.19682 −0.598411 0.801189i \(-0.704201\pi\)
−0.598411 + 0.801189i \(0.704201\pi\)
\(830\) −10.1607 −0.352681
\(831\) −16.6668 −0.578164
\(832\) 9.35863 0.324452
\(833\) 0 0
\(834\) −10.4955 −0.363429
\(835\) −22.0658 −0.763620
\(836\) −4.67303 −0.161620
\(837\) 14.9924 0.518214
\(838\) −4.90323 −0.169379
\(839\) −1.24446 −0.0429634 −0.0214817 0.999769i \(-0.506838\pi\)
−0.0214817 + 0.999769i \(0.506838\pi\)
\(840\) 0 0
\(841\) 79.7606 2.75036
\(842\) 13.8752 0.478170
\(843\) −2.70652 −0.0932176
\(844\) 8.67120 0.298475
\(845\) 9.56297 0.328976
\(846\) 2.44497 0.0840599
\(847\) 0 0
\(848\) 0.528748 0.0181573
\(849\) 25.5407 0.876554
\(850\) −0.582816 −0.0199904
\(851\) 4.51770 0.154865
\(852\) −20.1985 −0.691990
\(853\) −38.3071 −1.31161 −0.655804 0.754931i \(-0.727670\pi\)
−0.655804 + 0.754931i \(0.727670\pi\)
\(854\) 0 0
\(855\) 1.49644 0.0511772
\(856\) −8.27053 −0.282681
\(857\) −11.9468 −0.408094 −0.204047 0.978961i \(-0.565410\pi\)
−0.204047 + 0.978961i \(0.565410\pi\)
\(858\) 5.99743 0.204749
\(859\) −12.5285 −0.427468 −0.213734 0.976892i \(-0.568563\pi\)
−0.213734 + 0.976892i \(0.568563\pi\)
\(860\) 5.09318 0.173676
\(861\) 0 0
\(862\) 5.03414 0.171464
\(863\) 34.8951 1.18784 0.593921 0.804523i \(-0.297579\pi\)
0.593921 + 0.804523i \(0.297579\pi\)
\(864\) −31.8850 −1.08475
\(865\) 13.5155 0.459541
\(866\) 3.00178 0.102005
\(867\) −23.2552 −0.789788
\(868\) 0 0
\(869\) 13.7112 0.465119
\(870\) 12.8829 0.436770
\(871\) −2.26186 −0.0766403
\(872\) 47.1902 1.59806
\(873\) −0.995492 −0.0336923
\(874\) 5.78420 0.195653
\(875\) 0 0
\(876\) −3.98966 −0.134798
\(877\) 25.8780 0.873839 0.436919 0.899501i \(-0.356069\pi\)
0.436919 + 0.899501i \(0.356069\pi\)
\(878\) 18.8664 0.636709
\(879\) −33.5473 −1.13152
\(880\) 0.116614 0.00393105
\(881\) −43.0360 −1.44992 −0.724960 0.688790i \(-0.758142\pi\)
−0.724960 + 0.688790i \(0.758142\pi\)
\(882\) 0 0
\(883\) −26.8171 −0.902467 −0.451233 0.892406i \(-0.649016\pi\)
−0.451233 + 0.892406i \(0.649016\pi\)
\(884\) 1.50591 0.0506493
\(885\) 12.5655 0.422385
\(886\) 28.0193 0.941327
\(887\) 43.9701 1.47637 0.738186 0.674597i \(-0.235682\pi\)
0.738186 + 0.674597i \(0.235682\pi\)
\(888\) −3.98523 −0.133735
\(889\) 0 0
\(890\) 6.68704 0.224150
\(891\) −12.7225 −0.426218
\(892\) 2.99192 0.100177
\(893\) −3.93396 −0.131645
\(894\) −20.3173 −0.679513
\(895\) −23.0584 −0.770758
\(896\) 0 0
\(897\) 11.7609 0.392685
\(898\) −12.4964 −0.417009
\(899\) 27.6417 0.921902
\(900\) 1.26067 0.0420223
\(901\) 7.86649 0.262071
\(902\) 12.7110 0.423229
\(903\) 0 0
\(904\) −25.1533 −0.836586
\(905\) −0.407733 −0.0135535
\(906\) −4.73090 −0.157174
\(907\) −19.5143 −0.647961 −0.323980 0.946064i \(-0.605021\pi\)
−0.323980 + 0.946064i \(0.605021\pi\)
\(908\) 16.7773 0.556774
\(909\) 0.809423 0.0268469
\(910\) 0 0
\(911\) −16.7608 −0.555311 −0.277655 0.960681i \(-0.589557\pi\)
−0.277655 + 0.960681i \(0.589557\pi\)
\(912\) −0.0910048 −0.00301347
\(913\) 30.2463 1.00101
\(914\) 14.0311 0.464107
\(915\) 9.14849 0.302440
\(916\) 9.45650 0.312451
\(917\) 0 0
\(918\) 3.29666 0.108806
\(919\) 12.4241 0.409835 0.204917 0.978779i \(-0.434307\pi\)
0.204917 + 0.978779i \(0.434307\pi\)
\(920\) 12.8215 0.422713
\(921\) −7.92059 −0.260992
\(922\) 25.7258 0.847234
\(923\) 21.7500 0.715909
\(924\) 0 0
\(925\) 1.00000 0.0328798
\(926\) −10.2467 −0.336728
\(927\) −0.735363 −0.0241525
\(928\) −58.7868 −1.92977
\(929\) −39.4594 −1.29462 −0.647310 0.762227i \(-0.724106\pi\)
−0.647310 + 0.762227i \(0.724106\pi\)
\(930\) 3.27420 0.107365
\(931\) 0 0
\(932\) 11.4342 0.374540
\(933\) 21.3077 0.697583
\(934\) −5.46621 −0.178860
\(935\) 1.73493 0.0567383
\(936\) 5.40995 0.176830
\(937\) 7.43644 0.242938 0.121469 0.992595i \(-0.461239\pi\)
0.121469 + 0.992595i \(0.461239\pi\)
\(938\) 0 0
\(939\) −45.5033 −1.48494
\(940\) −3.31414 −0.108095
\(941\) 10.1584 0.331154 0.165577 0.986197i \(-0.447051\pi\)
0.165577 + 0.986197i \(0.447051\pi\)
\(942\) 1.69122 0.0551029
\(943\) 24.9261 0.811704
\(944\) 0.398476 0.0129693
\(945\) 0 0
\(946\) 9.56995 0.311146
\(947\) 52.3157 1.70003 0.850015 0.526758i \(-0.176593\pi\)
0.850015 + 0.526758i \(0.176593\pi\)
\(948\) −9.01427 −0.292770
\(949\) 4.29611 0.139458
\(950\) 1.28034 0.0415398
\(951\) −3.25223 −0.105461
\(952\) 0 0
\(953\) 16.5930 0.537499 0.268750 0.963210i \(-0.413390\pi\)
0.268750 + 0.963210i \(0.413390\pi\)
\(954\) 10.7404 0.347733
\(955\) 16.6147 0.537638
\(956\) 26.8982 0.869950
\(957\) −38.3498 −1.23967
\(958\) 0.312842 0.0101075
\(959\) 0 0
\(960\) −7.08845 −0.228779
\(961\) −23.9748 −0.773381
\(962\) 1.63094 0.0525836
\(963\) −2.99633 −0.0965555
\(964\) −1.85701 −0.0598104
\(965\) 21.1323 0.680272
\(966\) 0 0
\(967\) 13.1962 0.424360 0.212180 0.977231i \(-0.431944\pi\)
0.212180 + 0.977231i \(0.431944\pi\)
\(968\) 11.7554 0.377834
\(969\) −1.35393 −0.0434946
\(970\) −0.851735 −0.0273475
\(971\) −4.51276 −0.144821 −0.0724107 0.997375i \(-0.523069\pi\)
−0.0724107 + 0.997375i \(0.523069\pi\)
\(972\) −12.4416 −0.399065
\(973\) 0 0
\(974\) −0.427084 −0.0136847
\(975\) 2.60329 0.0833721
\(976\) 0.290116 0.00928638
\(977\) −44.9853 −1.43921 −0.719604 0.694385i \(-0.755677\pi\)
−0.719604 + 0.694385i \(0.755677\pi\)
\(978\) −4.64357 −0.148485
\(979\) −19.9061 −0.636200
\(980\) 0 0
\(981\) 17.0966 0.545852
\(982\) 18.1597 0.579499
\(983\) −24.0442 −0.766892 −0.383446 0.923563i \(-0.625263\pi\)
−0.383446 + 0.923563i \(0.625263\pi\)
\(984\) −21.9882 −0.700958
\(985\) 15.7226 0.500964
\(986\) 6.07809 0.193566
\(987\) 0 0
\(988\) −3.30822 −0.105248
\(989\) 18.7666 0.596742
\(990\) 2.36876 0.0752842
\(991\) −42.3789 −1.34621 −0.673105 0.739547i \(-0.735040\pi\)
−0.673105 + 0.739547i \(0.735040\pi\)
\(992\) −14.9408 −0.474370
\(993\) 2.47872 0.0786599
\(994\) 0 0
\(995\) −3.20391 −0.101571
\(996\) −19.8852 −0.630085
\(997\) −20.4053 −0.646244 −0.323122 0.946357i \(-0.604732\pi\)
−0.323122 + 0.946357i \(0.604732\pi\)
\(998\) 10.8237 0.342619
\(999\) −5.65643 −0.178962
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9065.2.a.s.1.13 19
7.3 odd 6 1295.2.j.a.926.7 yes 38
7.5 odd 6 1295.2.j.a.186.7 38
7.6 odd 2 9065.2.a.r.1.13 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1295.2.j.a.186.7 38 7.5 odd 6
1295.2.j.a.926.7 yes 38 7.3 odd 6
9065.2.a.r.1.13 19 7.6 odd 2
9065.2.a.s.1.13 19 1.1 even 1 trivial