Newspace parameters
Level: | \( N \) | \(=\) | \( 1295 = 5 \cdot 7 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1295.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.3406270618\) |
Analytic rank: | \(0\) |
Dimension: | \(38\) |
Relative dimension: | \(19\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
186.1 | −1.20852 | − | 2.09322i | −0.326680 | + | 0.565827i | −1.92105 | + | 3.32736i | −0.500000 | − | 0.866025i | 1.57920 | −2.27698 | − | 1.34736i | 4.45245 | 1.28656 | + | 2.22839i | −1.20852 | + | 2.09322i | ||||
186.2 | −1.02244 | − | 1.77091i | 0.873855 | − | 1.51356i | −1.09075 | + | 1.88924i | −0.500000 | − | 0.866025i | −3.57384 | 1.83604 | + | 1.90498i | 0.371155 | −0.0272447 | − | 0.0471893i | −1.02244 | + | 1.77091i | ||||
186.3 | −0.966124 | − | 1.67338i | 1.39627 | − | 2.41841i | −0.866792 | + | 1.50133i | −0.500000 | − | 0.866025i | −5.39588 | −1.04689 | − | 2.42982i | −0.514782 | −2.39913 | − | 4.15542i | −0.966124 | + | 1.67338i | ||||
186.4 | −0.845611 | − | 1.46464i | −1.04410 | + | 1.80844i | −0.430116 | + | 0.744982i | −0.500000 | − | 0.866025i | 3.53162 | 2.57439 | + | 0.610338i | −1.92760 | −0.680306 | − | 1.17832i | −0.845611 | + | 1.46464i | ||||
186.5 | −0.597934 | − | 1.03565i | −1.20438 | + | 2.08605i | 0.284950 | − | 0.493547i | −0.500000 | − | 0.866025i | 2.88056 | −1.59963 | + | 2.10741i | −3.07326 | −1.40107 | − | 2.42672i | −0.597934 | + | 1.03565i | ||||
186.6 | −0.594239 | − | 1.02925i | −0.227438 | + | 0.393934i | 0.293760 | − | 0.508808i | −0.500000 | − | 0.866025i | 0.540610 | 0.915835 | − | 2.48219i | −3.07521 | 1.39654 | + | 2.41888i | −0.594239 | + | 1.02925i | ||||
186.7 | −0.439861 | − | 0.761862i | 0.702103 | − | 1.21608i | 0.613044 | − | 1.06182i | −0.500000 | − | 0.866025i | −1.23531 | −1.97238 | − | 1.76344i | −2.83806 | 0.514102 | + | 0.890450i | −0.439861 | + | 0.761862i | ||||
186.8 | −0.303694 | − | 0.526013i | 0.192036 | − | 0.332615i | 0.815540 | − | 1.41256i | −0.500000 | − | 0.866025i | −0.233280 | 1.01512 | + | 2.44326i | −2.20547 | 1.42624 | + | 2.47033i | −0.303694 | + | 0.526013i | ||||
186.9 | −0.0342024 | − | 0.0592404i | 1.52426 | − | 2.64010i | 0.997660 | − | 1.72800i | −0.500000 | − | 0.866025i | −0.208534 | −2.27935 | + | 1.34334i | −0.273299 | −3.14677 | − | 5.45036i | −0.0342024 | + | 0.0592404i | ||||
186.10 | 0.189789 | + | 0.328725i | −0.313780 | + | 0.543483i | 0.927960 | − | 1.60727i | −0.500000 | − | 0.866025i | −0.238209 | −2.24021 | + | 1.40764i | 1.46363 | 1.30308 | + | 2.25701i | 0.189789 | − | 0.328725i | ||||
186.11 | 0.306680 | + | 0.531185i | −0.923254 | + | 1.59912i | 0.811895 | − | 1.40624i | −0.500000 | − | 0.866025i | −1.13257 | 2.55098 | − | 0.701777i | 2.22269 | −0.204795 | − | 0.354715i | 0.306680 | − | 0.531185i | ||||
186.12 | 0.357733 | + | 0.619611i | 0.00692605 | − | 0.0119963i | 0.744055 | − | 1.28874i | −0.500000 | − | 0.866025i | 0.00991070 | 2.33024 | − | 1.25300i | 2.49562 | 1.49990 | + | 2.59791i | 0.357733 | − | 0.619611i | ||||
186.13 | 0.458759 | + | 0.794593i | 1.13848 | − | 1.97191i | 0.579081 | − | 1.00300i | −0.500000 | − | 0.866025i | 2.08916 | 2.28132 | + | 1.33999i | 2.89767 | −1.09229 | − | 1.89191i | 0.458759 | − | 0.794593i | ||||
186.14 | 0.801447 | + | 1.38815i | −1.11974 | + | 1.93944i | −0.284634 | + | 0.493001i | −0.500000 | − | 0.866025i | −3.58964 | −0.281235 | + | 2.63076i | 2.29331 | −1.00763 | − | 1.74526i | 0.801447 | − | 1.38815i | ||||
186.15 | 0.823521 | + | 1.42638i | −0.748028 | + | 1.29562i | −0.356373 | + | 0.617257i | −0.500000 | − | 0.866025i | −2.46407 | −2.52327 | − | 0.795673i | 2.12016 | 0.380910 | + | 0.659755i | 0.823521 | − | 1.42638i | ||||
186.16 | 0.983510 | + | 1.70349i | −1.61976 | + | 2.80550i | −0.934584 | + | 1.61875i | −0.500000 | − | 0.866025i | −6.37219 | 0.615110 | − | 2.57325i | 0.257349 | −3.74723 | − | 6.49039i | 0.983510 | − | 1.70349i | ||||
186.17 | 1.04486 | + | 1.80975i | 1.31471 | − | 2.27715i | −1.18346 | + | 2.04981i | −0.500000 | − | 0.866025i | 5.49475 | 2.32516 | − | 1.26238i | −0.766757 | −1.95693 | − | 3.38951i | 1.04486 | − | 1.80975i | ||||
186.18 | 1.20914 | + | 2.09428i | 0.744284 | − | 1.28914i | −1.92402 | + | 3.33249i | −0.500000 | − | 0.866025i | 3.59976 | −1.93133 | − | 1.80831i | −4.46904 | 0.392084 | + | 0.679110i | 1.20914 | − | 2.09428i | ||||
186.19 | 1.33719 | + | 2.31608i | 0.134228 | − | 0.232489i | −2.57617 | + | 4.46205i | −0.500000 | − | 0.866025i | 0.717953 | −0.292931 | + | 2.62948i | −8.43054 | 1.46397 | + | 2.53566i | 1.33719 | − | 2.31608i | ||||
926.1 | −1.20852 | + | 2.09322i | −0.326680 | − | 0.565827i | −1.92105 | − | 3.32736i | −0.500000 | + | 0.866025i | 1.57920 | −2.27698 | + | 1.34736i | 4.45245 | 1.28656 | − | 2.22839i | −1.20852 | − | 2.09322i | ||||
See all 38 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1295.2.j.a | ✓ | 38 |
7.c | even | 3 | 1 | inner | 1295.2.j.a | ✓ | 38 |
7.c | even | 3 | 1 | 9065.2.a.r | 19 | ||
7.d | odd | 6 | 1 | 9065.2.a.s | 19 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1295.2.j.a | ✓ | 38 | 1.a | even | 1 | 1 | trivial |
1295.2.j.a | ✓ | 38 | 7.c | even | 3 | 1 | inner |
9065.2.a.r | 19 | 7.c | even | 3 | 1 | ||
9065.2.a.s | 19 | 7.d | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{38} - 3 T_{2}^{37} + 29 T_{2}^{36} - 64 T_{2}^{35} + 425 T_{2}^{34} - 796 T_{2}^{33} + 4158 T_{2}^{32} + \cdots + 81 \)
acting on \(S_{2}^{\mathrm{new}}(1295, [\chi])\).