L(s) = 1 | + (−0.0342 + 0.0592i)2-s + (1.52 + 2.64i)3-s + (0.997 + 1.72i)4-s + (−0.5 + 0.866i)5-s − 0.208·6-s + (−2.27 − 1.34i)7-s − 0.273·8-s + (−3.14 + 5.45i)9-s + (−0.0342 − 0.0592i)10-s + (0.902 + 1.56i)11-s + (−3.04 + 5.26i)12-s + 1.04·13-s + (0.157 − 0.0890i)14-s − 3.04·15-s + (−1.98 + 3.43i)16-s + (0.286 + 0.495i)17-s + ⋯ |
L(s) = 1 | + (−0.0241 + 0.0418i)2-s + (0.880 + 1.52i)3-s + (0.498 + 0.863i)4-s + (−0.223 + 0.387i)5-s − 0.0851·6-s + (−0.861 − 0.507i)7-s − 0.0966·8-s + (−1.04 + 1.81i)9-s + (−0.0108 − 0.0187i)10-s + (0.272 + 0.471i)11-s + (−0.877 + 1.52i)12-s + 0.289·13-s + (0.0421 − 0.0238i)14-s − 0.787·15-s + (−0.496 + 0.859i)16-s + (0.0693 + 0.120i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0543i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0543i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.890264080\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.890264080\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (2.27 + 1.34i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (0.0342 - 0.0592i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.52 - 2.64i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (-0.902 - 1.56i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.04T + 13T^{2} \) |
| 17 | \( 1 + (-0.286 - 0.495i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.411 - 0.712i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.12 + 3.67i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.61T + 29T^{2} \) |
| 31 | \( 1 + (0.735 + 1.27i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 - 2.41T + 41T^{2} \) |
| 43 | \( 1 - 4.47T + 43T^{2} \) |
| 47 | \( 1 + (0.424 - 0.735i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.836 - 1.44i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.17 - 10.6i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.37 + 2.38i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.03 - 5.26i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.49T + 71T^{2} \) |
| 73 | \( 1 + (3.00 + 5.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.51 + 7.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3.55T + 83T^{2} \) |
| 89 | \( 1 + (2.60 - 4.51i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 8.36T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06413885225055227957961855356, −9.223366886993802002586401253001, −8.626124526449867328200444889284, −7.69763956465944964691445570315, −6.99784887644757129050535489763, −5.96325066804804824631895244707, −4.49740006984741227770545677716, −3.88210213274759023055036739512, −3.22868101956403805288419735050, −2.40414224814384087198453863269,
0.68362745409456409304696208972, 1.75133860483721670850198592924, 2.71184777978147620949529800861, 3.61599354194800062268102049622, 5.38626335810959511337543589374, 6.12163724655386657514785298416, 6.82455766193163232075018305451, 7.48587585599952208465723507994, 8.476630785684855097876799532424, 9.132284538368975160426268787707