L(s) = 1 | + (1.20 + 2.09i)2-s + (0.744 − 1.28i)3-s + (−1.92 + 3.33i)4-s + (−0.5 − 0.866i)5-s + 3.59·6-s + (−1.93 − 1.80i)7-s − 4.46·8-s + (0.392 + 0.679i)9-s + (1.20 − 2.09i)10-s + (−1.94 + 3.37i)11-s + (2.86 + 4.96i)12-s + 6.09·13-s + (1.45 − 6.23i)14-s − 1.48·15-s + (−1.55 − 2.69i)16-s + (1.95 − 3.38i)17-s + ⋯ |
L(s) = 1 | + (0.854 + 1.48i)2-s + (0.429 − 0.744i)3-s + (−0.962 + 1.66i)4-s + (−0.223 − 0.387i)5-s + 1.46·6-s + (−0.729 − 0.683i)7-s − 1.58·8-s + (0.130 + 0.226i)9-s + (0.382 − 0.662i)10-s + (−0.586 + 1.01i)11-s + (0.826 + 1.43i)12-s + 1.69·13-s + (0.388 − 1.66i)14-s − 0.384·15-s + (−0.388 − 0.673i)16-s + (0.474 − 0.821i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.748357626\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.748357626\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (1.93 + 1.80i)T \) |
| 37 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-1.20 - 2.09i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.744 + 1.28i)T + (-1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.94 - 3.37i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 6.09T + 13T^{2} \) |
| 17 | \( 1 + (-1.95 + 3.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.37 - 5.83i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 - 4.10i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 1.37T + 29T^{2} \) |
| 31 | \( 1 + (0.687 - 1.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 41 | \( 1 + 2.65T + 41T^{2} \) |
| 43 | \( 1 - 3.20T + 43T^{2} \) |
| 47 | \( 1 + (6.26 + 10.8i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.23 + 2.13i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.871 - 1.50i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.50 - 7.80i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.07 + 3.60i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.11T + 71T^{2} \) |
| 73 | \( 1 + (-1.74 + 3.02i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.44 - 9.43i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 8.09T + 83T^{2} \) |
| 89 | \( 1 + (2.52 + 4.37i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.680678495308676978962037046781, −8.565869306587437867995685818751, −7.905778788011836560869320549808, −7.30222382737993333264481733175, −6.80933269884179574334926104296, −5.77225468036534123907648312057, −5.03336215647822826450611367899, −3.96367551705224386722063855012, −3.24019786447130454782588933868, −1.40765281299409748360962807735,
0.966985398822360081550444989345, 2.67709665423594617478679149268, 3.26248237103764099725064246979, 3.76685616643070266336750990642, 4.84109466813143983109174978078, 5.83451267581171162321592816672, 6.55525765877608315969027012587, 8.209583382850193976278151313617, 8.987516398686728159219344508814, 9.595104979593029244551355177778