L(s) = 1 | + (1.20 − 2.09i)2-s + (0.744 + 1.28i)3-s + (−1.92 − 3.33i)4-s + (−0.5 + 0.866i)5-s + 3.59·6-s + (−1.93 + 1.80i)7-s − 4.46·8-s + (0.392 − 0.679i)9-s + (1.20 + 2.09i)10-s + (−1.94 − 3.37i)11-s + (2.86 − 4.96i)12-s + 6.09·13-s + (1.45 + 6.23i)14-s − 1.48·15-s + (−1.55 + 2.69i)16-s + (1.95 + 3.38i)17-s + ⋯ |
L(s) = 1 | + (0.854 − 1.48i)2-s + (0.429 + 0.744i)3-s + (−0.962 − 1.66i)4-s + (−0.223 + 0.387i)5-s + 1.46·6-s + (−0.729 + 0.683i)7-s − 1.58·8-s + (0.130 − 0.226i)9-s + (0.382 + 0.662i)10-s + (−0.586 − 1.01i)11-s + (0.826 − 1.43i)12-s + 1.69·13-s + (0.388 + 1.66i)14-s − 0.384·15-s + (−0.388 + 0.673i)16-s + (0.474 + 0.821i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1295 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.748357626\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.748357626\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (1.93 - 1.80i)T \) |
| 37 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-1.20 + 2.09i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.744 - 1.28i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (1.94 + 3.37i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 6.09T + 13T^{2} \) |
| 17 | \( 1 + (-1.95 - 3.38i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.37 + 5.83i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.36 + 4.10i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 1.37T + 29T^{2} \) |
| 31 | \( 1 + (0.687 + 1.18i)T + (-15.5 + 26.8i)T^{2} \) |
| 41 | \( 1 + 2.65T + 41T^{2} \) |
| 43 | \( 1 - 3.20T + 43T^{2} \) |
| 47 | \( 1 + (6.26 - 10.8i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.23 - 2.13i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.871 + 1.50i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.50 + 7.80i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.07 - 3.60i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 8.11T + 71T^{2} \) |
| 73 | \( 1 + (-1.74 - 3.02i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.44 + 9.43i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 8.09T + 83T^{2} \) |
| 89 | \( 1 + (2.52 - 4.37i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 10.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.595104979593029244551355177778, −8.987516398686728159219344508814, −8.209583382850193976278151313617, −6.55525765877608315969027012587, −5.83451267581171162321592816672, −4.84109466813143983109174978078, −3.76685616643070266336750990642, −3.26248237103764099725064246979, −2.67709665423594617478679149268, −0.966985398822360081550444989345,
1.40765281299409748360962807735, 3.24019786447130454782588933868, 3.96367551705224386722063855012, 5.03336215647822826450611367899, 5.77225468036534123907648312057, 6.80933269884179574334926104296, 7.30222382737993333264481733175, 7.905778788011836560869320549808, 8.565869306587437867995685818751, 9.680678495308676978962037046781