Properties

Label 1280.2.j.d.63.6
Level $1280$
Weight $2$
Character 1280.63
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.6
Character \(\chi\) \(=\) 1280.63
Dual form 1280.2.j.d.447.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.939635i q^{3} +(-0.792335 + 2.09098i) q^{5} +(1.01861 - 1.01861i) q^{7} +2.11709 q^{9} +(-3.22205 + 3.22205i) q^{11} +5.40928 q^{13} +(1.96476 + 0.744506i) q^{15} +(-3.10743 + 3.10743i) q^{17} +(-5.93316 + 5.93316i) q^{19} +(-0.957123 - 0.957123i) q^{21} +(-2.19117 - 2.19117i) q^{23} +(-3.74441 - 3.31352i) q^{25} -4.80819i q^{27} +(2.79693 + 2.79693i) q^{29} -1.58447i q^{31} +(3.02755 + 3.02755i) q^{33} +(1.32282 + 2.93698i) q^{35} -1.28350 q^{37} -5.08275i q^{39} +2.45299i q^{41} +6.78310 q^{43} +(-1.67744 + 4.42679i) q^{45} +(4.21863 + 4.21863i) q^{47} +4.92486i q^{49} +(2.91985 + 2.91985i) q^{51} +13.6734i q^{53} +(-4.18430 - 9.29019i) q^{55} +(5.57500 + 5.57500i) q^{57} +(1.51289 + 1.51289i) q^{59} +(0.215294 - 0.215294i) q^{61} +(2.15649 - 2.15649i) q^{63} +(-4.28597 + 11.3107i) q^{65} -10.0394 q^{67} +(-2.05890 + 2.05890i) q^{69} -2.01032 q^{71} +(0.130678 - 0.130678i) q^{73} +(-3.11350 + 3.51838i) q^{75} +6.56403i q^{77} +13.2101 q^{79} +1.83331 q^{81} +8.24281i q^{83} +(-4.03546 - 8.95972i) q^{85} +(2.62809 - 2.62809i) q^{87} -1.49612 q^{89} +(5.50996 - 5.50996i) q^{91} -1.48882 q^{93} +(-7.70508 - 17.1072i) q^{95} +(6.11613 - 6.11613i) q^{97} +(-6.82135 + 6.82135i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.939635i 0.542499i −0.962509 0.271249i \(-0.912563\pi\)
0.962509 0.271249i \(-0.0874368\pi\)
\(4\) 0 0
\(5\) −0.792335 + 2.09098i −0.354343 + 0.935115i
\(6\) 0 0
\(7\) 1.01861 1.01861i 0.384999 0.384999i −0.487900 0.872899i \(-0.662237\pi\)
0.872899 + 0.487900i \(0.162237\pi\)
\(8\) 0 0
\(9\) 2.11709 0.705695
\(10\) 0 0
\(11\) −3.22205 + 3.22205i −0.971484 + 0.971484i −0.999605 0.0281203i \(-0.991048\pi\)
0.0281203 + 0.999605i \(0.491048\pi\)
\(12\) 0 0
\(13\) 5.40928 1.50027 0.750133 0.661287i \(-0.229990\pi\)
0.750133 + 0.661287i \(0.229990\pi\)
\(14\) 0 0
\(15\) 1.96476 + 0.744506i 0.507299 + 0.192231i
\(16\) 0 0
\(17\) −3.10743 + 3.10743i −0.753664 + 0.753664i −0.975161 0.221497i \(-0.928906\pi\)
0.221497 + 0.975161i \(0.428906\pi\)
\(18\) 0 0
\(19\) −5.93316 + 5.93316i −1.36116 + 1.36116i −0.488718 + 0.872442i \(0.662535\pi\)
−0.872442 + 0.488718i \(0.837465\pi\)
\(20\) 0 0
\(21\) −0.957123 0.957123i −0.208861 0.208861i
\(22\) 0 0
\(23\) −2.19117 2.19117i −0.456890 0.456890i 0.440743 0.897633i \(-0.354715\pi\)
−0.897633 + 0.440743i \(0.854715\pi\)
\(24\) 0 0
\(25\) −3.74441 3.31352i −0.748882 0.662703i
\(26\) 0 0
\(27\) 4.80819i 0.925337i
\(28\) 0 0
\(29\) 2.79693 + 2.79693i 0.519377 + 0.519377i 0.917383 0.398006i \(-0.130298\pi\)
−0.398006 + 0.917383i \(0.630298\pi\)
\(30\) 0 0
\(31\) 1.58447i 0.284578i −0.989825 0.142289i \(-0.954554\pi\)
0.989825 0.142289i \(-0.0454463\pi\)
\(32\) 0 0
\(33\) 3.02755 + 3.02755i 0.527029 + 0.527029i
\(34\) 0 0
\(35\) 1.32282 + 2.93698i 0.223597 + 0.496440i
\(36\) 0 0
\(37\) −1.28350 −0.211006 −0.105503 0.994419i \(-0.533645\pi\)
−0.105503 + 0.994419i \(0.533645\pi\)
\(38\) 0 0
\(39\) 5.08275i 0.813892i
\(40\) 0 0
\(41\) 2.45299i 0.383092i 0.981484 + 0.191546i \(0.0613502\pi\)
−0.981484 + 0.191546i \(0.938650\pi\)
\(42\) 0 0
\(43\) 6.78310 1.03441 0.517207 0.855860i \(-0.326972\pi\)
0.517207 + 0.855860i \(0.326972\pi\)
\(44\) 0 0
\(45\) −1.67744 + 4.42679i −0.250058 + 0.659907i
\(46\) 0 0
\(47\) 4.21863 + 4.21863i 0.615351 + 0.615351i 0.944335 0.328985i \(-0.106706\pi\)
−0.328985 + 0.944335i \(0.606706\pi\)
\(48\) 0 0
\(49\) 4.92486i 0.703552i
\(50\) 0 0
\(51\) 2.91985 + 2.91985i 0.408861 + 0.408861i
\(52\) 0 0
\(53\) 13.6734i 1.87818i 0.343665 + 0.939092i \(0.388332\pi\)
−0.343665 + 0.939092i \(0.611668\pi\)
\(54\) 0 0
\(55\) −4.18430 9.29019i −0.564211 1.25269i
\(56\) 0 0
\(57\) 5.57500 + 5.57500i 0.738427 + 0.738427i
\(58\) 0 0
\(59\) 1.51289 + 1.51289i 0.196961 + 0.196961i 0.798696 0.601735i \(-0.205524\pi\)
−0.601735 + 0.798696i \(0.705524\pi\)
\(60\) 0 0
\(61\) 0.215294 0.215294i 0.0275656 0.0275656i −0.693190 0.720755i \(-0.743795\pi\)
0.720755 + 0.693190i \(0.243795\pi\)
\(62\) 0 0
\(63\) 2.15649 2.15649i 0.271692 0.271692i
\(64\) 0 0
\(65\) −4.28597 + 11.3107i −0.531609 + 1.40292i
\(66\) 0 0
\(67\) −10.0394 −1.22651 −0.613253 0.789887i \(-0.710139\pi\)
−0.613253 + 0.789887i \(0.710139\pi\)
\(68\) 0 0
\(69\) −2.05890 + 2.05890i −0.247862 + 0.247862i
\(70\) 0 0
\(71\) −2.01032 −0.238582 −0.119291 0.992859i \(-0.538062\pi\)
−0.119291 + 0.992859i \(0.538062\pi\)
\(72\) 0 0
\(73\) 0.130678 0.130678i 0.0152947 0.0152947i −0.699418 0.714713i \(-0.746557\pi\)
0.714713 + 0.699418i \(0.246557\pi\)
\(74\) 0 0
\(75\) −3.11350 + 3.51838i −0.359516 + 0.406267i
\(76\) 0 0
\(77\) 6.56403i 0.748041i
\(78\) 0 0
\(79\) 13.2101 1.48626 0.743128 0.669150i \(-0.233341\pi\)
0.743128 + 0.669150i \(0.233341\pi\)
\(80\) 0 0
\(81\) 1.83331 0.203701
\(82\) 0 0
\(83\) 8.24281i 0.904766i 0.891824 + 0.452383i \(0.149426\pi\)
−0.891824 + 0.452383i \(0.850574\pi\)
\(84\) 0 0
\(85\) −4.03546 8.95972i −0.437707 0.971818i
\(86\) 0 0
\(87\) 2.62809 2.62809i 0.281761 0.281761i
\(88\) 0 0
\(89\) −1.49612 −0.158588 −0.0792942 0.996851i \(-0.525267\pi\)
−0.0792942 + 0.996851i \(0.525267\pi\)
\(90\) 0 0
\(91\) 5.50996 5.50996i 0.577601 0.577601i
\(92\) 0 0
\(93\) −1.48882 −0.154383
\(94\) 0 0
\(95\) −7.70508 17.1072i −0.790524 1.75516i
\(96\) 0 0
\(97\) 6.11613 6.11613i 0.620999 0.620999i −0.324788 0.945787i \(-0.605293\pi\)
0.945787 + 0.324788i \(0.105293\pi\)
\(98\) 0 0
\(99\) −6.82135 + 6.82135i −0.685572 + 0.685572i
\(100\) 0 0
\(101\) −8.76147 8.76147i −0.871799 0.871799i 0.120869 0.992668i \(-0.461432\pi\)
−0.992668 + 0.120869i \(0.961432\pi\)
\(102\) 0 0
\(103\) 5.89018 + 5.89018i 0.580377 + 0.580377i 0.935007 0.354630i \(-0.115393\pi\)
−0.354630 + 0.935007i \(0.615393\pi\)
\(104\) 0 0
\(105\) 2.75969 1.24296i 0.269318 0.121301i
\(106\) 0 0
\(107\) 7.97349i 0.770827i 0.922744 + 0.385413i \(0.125941\pi\)
−0.922744 + 0.385413i \(0.874059\pi\)
\(108\) 0 0
\(109\) 2.76833 + 2.76833i 0.265158 + 0.265158i 0.827146 0.561988i \(-0.189963\pi\)
−0.561988 + 0.827146i \(0.689963\pi\)
\(110\) 0 0
\(111\) 1.20602i 0.114471i
\(112\) 0 0
\(113\) 11.8837 + 11.8837i 1.11793 + 1.11793i 0.992045 + 0.125881i \(0.0401758\pi\)
0.125881 + 0.992045i \(0.459824\pi\)
\(114\) 0 0
\(115\) 6.31783 2.84555i 0.589141 0.265349i
\(116\) 0 0
\(117\) 11.4519 1.05873
\(118\) 0 0
\(119\) 6.33054i 0.580319i
\(120\) 0 0
\(121\) 9.76320i 0.887563i
\(122\) 0 0
\(123\) 2.30491 0.207827
\(124\) 0 0
\(125\) 9.89533 5.20408i 0.885065 0.465467i
\(126\) 0 0
\(127\) 7.30101 + 7.30101i 0.647860 + 0.647860i 0.952476 0.304615i \(-0.0985279\pi\)
−0.304615 + 0.952476i \(0.598528\pi\)
\(128\) 0 0
\(129\) 6.37364i 0.561168i
\(130\) 0 0
\(131\) −7.57527 7.57527i −0.661854 0.661854i 0.293963 0.955817i \(-0.405026\pi\)
−0.955817 + 0.293963i \(0.905026\pi\)
\(132\) 0 0
\(133\) 12.0872i 1.04809i
\(134\) 0 0
\(135\) 10.0538 + 3.80970i 0.865297 + 0.327887i
\(136\) 0 0
\(137\) −6.67718 6.67718i −0.570470 0.570470i 0.361790 0.932260i \(-0.382166\pi\)
−0.932260 + 0.361790i \(0.882166\pi\)
\(138\) 0 0
\(139\) −6.78143 6.78143i −0.575193 0.575193i 0.358382 0.933575i \(-0.383329\pi\)
−0.933575 + 0.358382i \(0.883329\pi\)
\(140\) 0 0
\(141\) 3.96397 3.96397i 0.333827 0.333827i
\(142\) 0 0
\(143\) −17.4290 + 17.4290i −1.45748 + 1.45748i
\(144\) 0 0
\(145\) −8.06443 + 3.63222i −0.669715 + 0.301640i
\(146\) 0 0
\(147\) 4.62757 0.381676
\(148\) 0 0
\(149\) 3.92575 3.92575i 0.321610 0.321610i −0.527775 0.849384i \(-0.676973\pi\)
0.849384 + 0.527775i \(0.176973\pi\)
\(150\) 0 0
\(151\) −16.4839 −1.34144 −0.670722 0.741709i \(-0.734016\pi\)
−0.670722 + 0.741709i \(0.734016\pi\)
\(152\) 0 0
\(153\) −6.57871 + 6.57871i −0.531857 + 0.531857i
\(154\) 0 0
\(155\) 3.31309 + 1.25543i 0.266114 + 0.100838i
\(156\) 0 0
\(157\) 7.11211i 0.567608i −0.958882 0.283804i \(-0.908403\pi\)
0.958882 0.283804i \(-0.0915965\pi\)
\(158\) 0 0
\(159\) 12.8480 1.01891
\(160\) 0 0
\(161\) −4.46390 −0.351804
\(162\) 0 0
\(163\) 19.9435i 1.56210i −0.624470 0.781048i \(-0.714685\pi\)
0.624470 0.781048i \(-0.285315\pi\)
\(164\) 0 0
\(165\) −8.72939 + 3.93172i −0.679582 + 0.306084i
\(166\) 0 0
\(167\) 13.9919 13.9919i 1.08273 1.08273i 0.0864749 0.996254i \(-0.472440\pi\)
0.996254 0.0864749i \(-0.0275602\pi\)
\(168\) 0 0
\(169\) 16.2604 1.25080
\(170\) 0 0
\(171\) −12.5610 + 12.5610i −0.960564 + 0.960564i
\(172\) 0 0
\(173\) −10.4459 −0.794185 −0.397093 0.917779i \(-0.629981\pi\)
−0.397093 + 0.917779i \(0.629981\pi\)
\(174\) 0 0
\(175\) −7.18928 + 0.438912i −0.543459 + 0.0331786i
\(176\) 0 0
\(177\) 1.42156 1.42156i 0.106851 0.106851i
\(178\) 0 0
\(179\) 6.42941 6.42941i 0.480557 0.480557i −0.424753 0.905309i \(-0.639639\pi\)
0.905309 + 0.424753i \(0.139639\pi\)
\(180\) 0 0
\(181\) −4.96413 4.96413i −0.368981 0.368981i 0.498125 0.867105i \(-0.334022\pi\)
−0.867105 + 0.498125i \(0.834022\pi\)
\(182\) 0 0
\(183\) −0.202298 0.202298i −0.0149543 0.0149543i
\(184\) 0 0
\(185\) 1.01696 2.68378i 0.0747687 0.197315i
\(186\) 0 0
\(187\) 20.0246i 1.46434i
\(188\) 0 0
\(189\) −4.89768 4.89768i −0.356254 0.356254i
\(190\) 0 0
\(191\) 24.2722i 1.75628i −0.478408 0.878138i \(-0.658786\pi\)
0.478408 0.878138i \(-0.341214\pi\)
\(192\) 0 0
\(193\) −3.89887 3.89887i −0.280647 0.280647i 0.552720 0.833367i \(-0.313590\pi\)
−0.833367 + 0.552720i \(0.813590\pi\)
\(194\) 0 0
\(195\) 10.6279 + 4.02725i 0.761083 + 0.288397i
\(196\) 0 0
\(197\) 18.2875 1.30293 0.651466 0.758678i \(-0.274154\pi\)
0.651466 + 0.758678i \(0.274154\pi\)
\(198\) 0 0
\(199\) 0.848017i 0.0601143i 0.999548 + 0.0300572i \(0.00956893\pi\)
−0.999548 + 0.0300572i \(0.990431\pi\)
\(200\) 0 0
\(201\) 9.43335i 0.665377i
\(202\) 0 0
\(203\) 5.69797 0.399919
\(204\) 0 0
\(205\) −5.12915 1.94359i −0.358236 0.135746i
\(206\) 0 0
\(207\) −4.63889 4.63889i −0.322425 0.322425i
\(208\) 0 0
\(209\) 38.2339i 2.64469i
\(210\) 0 0
\(211\) 14.9631 + 14.9631i 1.03011 + 1.03011i 0.999533 + 0.0305732i \(0.00973327\pi\)
0.0305732 + 0.999533i \(0.490267\pi\)
\(212\) 0 0
\(213\) 1.88897i 0.129430i
\(214\) 0 0
\(215\) −5.37449 + 14.1833i −0.366537 + 0.967296i
\(216\) 0 0
\(217\) −1.61395 1.61395i −0.109562 0.109562i
\(218\) 0 0
\(219\) −0.122790 0.122790i −0.00829737 0.00829737i
\(220\) 0 0
\(221\) −16.8090 + 16.8090i −1.13070 + 1.13070i
\(222\) 0 0
\(223\) −15.6462 + 15.6462i −1.04775 + 1.04775i −0.0489455 + 0.998801i \(0.515586\pi\)
−0.998801 + 0.0489455i \(0.984414\pi\)
\(224\) 0 0
\(225\) −7.92724 7.01500i −0.528482 0.467667i
\(226\) 0 0
\(227\) −7.18645 −0.476981 −0.238491 0.971145i \(-0.576653\pi\)
−0.238491 + 0.971145i \(0.576653\pi\)
\(228\) 0 0
\(229\) 19.3337 19.3337i 1.27761 1.27761i 0.335603 0.942004i \(-0.391060\pi\)
0.942004 0.335603i \(-0.108940\pi\)
\(230\) 0 0
\(231\) 6.16779 0.405811
\(232\) 0 0
\(233\) −14.5796 + 14.5796i −0.955143 + 0.955143i −0.999036 0.0438933i \(-0.986024\pi\)
0.0438933 + 0.999036i \(0.486024\pi\)
\(234\) 0 0
\(235\) −12.1637 + 5.47851i −0.793469 + 0.357379i
\(236\) 0 0
\(237\) 12.4127i 0.806291i
\(238\) 0 0
\(239\) −5.38456 −0.348298 −0.174149 0.984719i \(-0.555717\pi\)
−0.174149 + 0.984719i \(0.555717\pi\)
\(240\) 0 0
\(241\) −19.4003 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(242\) 0 0
\(243\) 16.1472i 1.03584i
\(244\) 0 0
\(245\) −10.2978 3.90214i −0.657902 0.249299i
\(246\) 0 0
\(247\) −32.0941 + 32.0941i −2.04210 + 2.04210i
\(248\) 0 0
\(249\) 7.74523 0.490834
\(250\) 0 0
\(251\) −6.79393 + 6.79393i −0.428829 + 0.428829i −0.888229 0.459400i \(-0.848064\pi\)
0.459400 + 0.888229i \(0.348064\pi\)
\(252\) 0 0
\(253\) 14.1201 0.887723
\(254\) 0 0
\(255\) −8.41887 + 3.79186i −0.527210 + 0.237455i
\(256\) 0 0
\(257\) 9.57720 9.57720i 0.597409 0.597409i −0.342213 0.939622i \(-0.611177\pi\)
0.939622 + 0.342213i \(0.111177\pi\)
\(258\) 0 0
\(259\) −1.30739 + 1.30739i −0.0812372 + 0.0812372i
\(260\) 0 0
\(261\) 5.92134 + 5.92134i 0.366522 + 0.366522i
\(262\) 0 0
\(263\) 1.36034 + 1.36034i 0.0838820 + 0.0838820i 0.747803 0.663921i \(-0.231109\pi\)
−0.663921 + 0.747803i \(0.731109\pi\)
\(264\) 0 0
\(265\) −28.5908 10.8339i −1.75632 0.665522i
\(266\) 0 0
\(267\) 1.40581i 0.0860340i
\(268\) 0 0
\(269\) −12.2019 12.2019i −0.743961 0.743961i 0.229377 0.973338i \(-0.426331\pi\)
−0.973338 + 0.229377i \(0.926331\pi\)
\(270\) 0 0
\(271\) 20.2941i 1.23278i 0.787442 + 0.616388i \(0.211405\pi\)
−0.787442 + 0.616388i \(0.788595\pi\)
\(272\) 0 0
\(273\) −5.17735 5.17735i −0.313347 0.313347i
\(274\) 0 0
\(275\) 22.7410 1.38836i 1.37133 0.0837210i
\(276\) 0 0
\(277\) −3.35288 −0.201455 −0.100728 0.994914i \(-0.532117\pi\)
−0.100728 + 0.994914i \(0.532117\pi\)
\(278\) 0 0
\(279\) 3.35445i 0.200826i
\(280\) 0 0
\(281\) 6.11851i 0.365000i 0.983206 + 0.182500i \(0.0584189\pi\)
−0.983206 + 0.182500i \(0.941581\pi\)
\(282\) 0 0
\(283\) 28.6325 1.70203 0.851013 0.525145i \(-0.175989\pi\)
0.851013 + 0.525145i \(0.175989\pi\)
\(284\) 0 0
\(285\) −16.0745 + 7.23996i −0.952171 + 0.428858i
\(286\) 0 0
\(287\) 2.49864 + 2.49864i 0.147490 + 0.147490i
\(288\) 0 0
\(289\) 2.31230i 0.136017i
\(290\) 0 0
\(291\) −5.74693 5.74693i −0.336891 0.336891i
\(292\) 0 0
\(293\) 8.82401i 0.515504i 0.966211 + 0.257752i \(0.0829818\pi\)
−0.966211 + 0.257752i \(0.917018\pi\)
\(294\) 0 0
\(295\) −4.36213 + 1.96470i −0.253973 + 0.114389i
\(296\) 0 0
\(297\) 15.4922 + 15.4922i 0.898951 + 0.898951i
\(298\) 0 0
\(299\) −11.8526 11.8526i −0.685456 0.685456i
\(300\) 0 0
\(301\) 6.90935 6.90935i 0.398248 0.398248i
\(302\) 0 0
\(303\) −8.23259 + 8.23259i −0.472950 + 0.472950i
\(304\) 0 0
\(305\) 0.279591 + 0.620762i 0.0160093 + 0.0355447i
\(306\) 0 0
\(307\) −10.6320 −0.606800 −0.303400 0.952863i \(-0.598122\pi\)
−0.303400 + 0.952863i \(0.598122\pi\)
\(308\) 0 0
\(309\) 5.53462 5.53462i 0.314854 0.314854i
\(310\) 0 0
\(311\) 21.0188 1.19187 0.595934 0.803033i \(-0.296782\pi\)
0.595934 + 0.803033i \(0.296782\pi\)
\(312\) 0 0
\(313\) 5.56786 5.56786i 0.314714 0.314714i −0.532018 0.846733i \(-0.678566\pi\)
0.846733 + 0.532018i \(0.178566\pi\)
\(314\) 0 0
\(315\) 2.80052 + 6.21784i 0.157791 + 0.350335i
\(316\) 0 0
\(317\) 1.15926i 0.0651107i −0.999470 0.0325553i \(-0.989635\pi\)
0.999470 0.0325553i \(-0.0103645\pi\)
\(318\) 0 0
\(319\) −18.0237 −1.00913
\(320\) 0 0
\(321\) 7.49217 0.418172
\(322\) 0 0
\(323\) 36.8738i 2.05171i
\(324\) 0 0
\(325\) −20.2546 17.9238i −1.12352 0.994231i
\(326\) 0 0
\(327\) 2.60122 2.60122i 0.143848 0.143848i
\(328\) 0 0
\(329\) 8.59429 0.473819
\(330\) 0 0
\(331\) 10.2111 10.2111i 0.561251 0.561251i −0.368412 0.929663i \(-0.620098\pi\)
0.929663 + 0.368412i \(0.120098\pi\)
\(332\) 0 0
\(333\) −2.71728 −0.148906
\(334\) 0 0
\(335\) 7.95455 20.9922i 0.434604 1.14692i
\(336\) 0 0
\(337\) 20.8943 20.8943i 1.13819 1.13819i 0.149412 0.988775i \(-0.452262\pi\)
0.988775 0.149412i \(-0.0477380\pi\)
\(338\) 0 0
\(339\) 11.1664 11.1664i 0.606473 0.606473i
\(340\) 0 0
\(341\) 5.10522 + 5.10522i 0.276463 + 0.276463i
\(342\) 0 0
\(343\) 12.1468 + 12.1468i 0.655865 + 0.655865i
\(344\) 0 0
\(345\) −2.67378 5.93646i −0.143951 0.319608i
\(346\) 0 0
\(347\) 8.32389i 0.446850i −0.974721 0.223425i \(-0.928276\pi\)
0.974721 0.223425i \(-0.0717237\pi\)
\(348\) 0 0
\(349\) −20.1777 20.1777i −1.08009 1.08009i −0.996501 0.0835867i \(-0.973362\pi\)
−0.0835867 0.996501i \(-0.526638\pi\)
\(350\) 0 0
\(351\) 26.0089i 1.38825i
\(352\) 0 0
\(353\) 0.383759 + 0.383759i 0.0204254 + 0.0204254i 0.717246 0.696820i \(-0.245403\pi\)
−0.696820 + 0.717246i \(0.745403\pi\)
\(354\) 0 0
\(355\) 1.59285 4.20355i 0.0845397 0.223101i
\(356\) 0 0
\(357\) 5.94839 0.314822
\(358\) 0 0
\(359\) 18.0846i 0.954469i 0.878776 + 0.477235i \(0.158361\pi\)
−0.878776 + 0.477235i \(0.841639\pi\)
\(360\) 0 0
\(361\) 51.4047i 2.70551i
\(362\) 0 0
\(363\) −9.17384 −0.481502
\(364\) 0 0
\(365\) 0.169705 + 0.376787i 0.00888276 + 0.0197219i
\(366\) 0 0
\(367\) 13.2373 + 13.2373i 0.690979 + 0.690979i 0.962447 0.271468i \(-0.0875092\pi\)
−0.271468 + 0.962447i \(0.587509\pi\)
\(368\) 0 0
\(369\) 5.19319i 0.270347i
\(370\) 0 0
\(371\) 13.9279 + 13.9279i 0.723099 + 0.723099i
\(372\) 0 0
\(373\) 6.42208i 0.332523i −0.986082 0.166261i \(-0.946830\pi\)
0.986082 0.166261i \(-0.0531695\pi\)
\(374\) 0 0
\(375\) −4.88993 9.29800i −0.252515 0.480147i
\(376\) 0 0
\(377\) 15.1294 + 15.1294i 0.779203 + 0.779203i
\(378\) 0 0
\(379\) −8.86295 8.86295i −0.455259 0.455259i 0.441837 0.897096i \(-0.354327\pi\)
−0.897096 + 0.441837i \(0.854327\pi\)
\(380\) 0 0
\(381\) 6.86029 6.86029i 0.351463 0.351463i
\(382\) 0 0
\(383\) 10.4938 10.4938i 0.536208 0.536208i −0.386205 0.922413i \(-0.626214\pi\)
0.922413 + 0.386205i \(0.126214\pi\)
\(384\) 0 0
\(385\) −13.7253 5.20091i −0.699504 0.265063i
\(386\) 0 0
\(387\) 14.3604 0.729981
\(388\) 0 0
\(389\) 19.2034 19.2034i 0.973649 0.973649i −0.0260124 0.999662i \(-0.508281\pi\)
0.999662 + 0.0260124i \(0.00828093\pi\)
\(390\) 0 0
\(391\) 13.6178 0.688683
\(392\) 0 0
\(393\) −7.11799 + 7.11799i −0.359055 + 0.359055i
\(394\) 0 0
\(395\) −10.4669 + 27.6221i −0.526644 + 1.38982i
\(396\) 0 0
\(397\) 7.01030i 0.351837i −0.984405 0.175918i \(-0.943711\pi\)
0.984405 0.175918i \(-0.0562895\pi\)
\(398\) 0 0
\(399\) 11.3575 0.568587
\(400\) 0 0
\(401\) −2.47101 −0.123396 −0.0616981 0.998095i \(-0.519652\pi\)
−0.0616981 + 0.998095i \(0.519652\pi\)
\(402\) 0 0
\(403\) 8.57082i 0.426943i
\(404\) 0 0
\(405\) −1.45260 + 3.83342i −0.0721801 + 0.190484i
\(406\) 0 0
\(407\) 4.13551 4.13551i 0.204989 0.204989i
\(408\) 0 0
\(409\) −24.3365 −1.20336 −0.601680 0.798737i \(-0.705502\pi\)
−0.601680 + 0.798737i \(0.705502\pi\)
\(410\) 0 0
\(411\) −6.27411 + 6.27411i −0.309479 + 0.309479i
\(412\) 0 0
\(413\) 3.08208 0.151659
\(414\) 0 0
\(415\) −17.2356 6.53107i −0.846061 0.320598i
\(416\) 0 0
\(417\) −6.37206 + 6.37206i −0.312041 + 0.312041i
\(418\) 0 0
\(419\) −16.9042 + 16.9042i −0.825824 + 0.825824i −0.986936 0.161112i \(-0.948492\pi\)
0.161112 + 0.986936i \(0.448492\pi\)
\(420\) 0 0
\(421\) −12.9762 12.9762i −0.632422 0.632422i 0.316253 0.948675i \(-0.397575\pi\)
−0.948675 + 0.316253i \(0.897575\pi\)
\(422\) 0 0
\(423\) 8.93120 + 8.93120i 0.434250 + 0.434250i
\(424\) 0 0
\(425\) 21.9320 1.33897i 1.06386 0.0649496i
\(426\) 0 0
\(427\) 0.438602i 0.0212255i
\(428\) 0 0
\(429\) 16.3769 + 16.3769i 0.790683 + 0.790683i
\(430\) 0 0
\(431\) 12.4393i 0.599182i 0.954068 + 0.299591i \(0.0968502\pi\)
−0.954068 + 0.299591i \(0.903150\pi\)
\(432\) 0 0
\(433\) 27.0966 + 27.0966i 1.30218 + 1.30218i 0.926919 + 0.375261i \(0.122447\pi\)
0.375261 + 0.926919i \(0.377553\pi\)
\(434\) 0 0
\(435\) 3.41296 + 7.57762i 0.163639 + 0.363319i
\(436\) 0 0
\(437\) 26.0011 1.24380
\(438\) 0 0
\(439\) 15.5428i 0.741816i −0.928670 0.370908i \(-0.879047\pi\)
0.928670 0.370908i \(-0.120953\pi\)
\(440\) 0 0
\(441\) 10.4264i 0.496493i
\(442\) 0 0
\(443\) −16.7942 −0.797917 −0.398959 0.916969i \(-0.630628\pi\)
−0.398959 + 0.916969i \(0.630628\pi\)
\(444\) 0 0
\(445\) 1.18543 3.12836i 0.0561947 0.148298i
\(446\) 0 0
\(447\) −3.68877 3.68877i −0.174473 0.174473i
\(448\) 0 0
\(449\) 4.54035i 0.214272i 0.994244 + 0.107136i \(0.0341681\pi\)
−0.994244 + 0.107136i \(0.965832\pi\)
\(450\) 0 0
\(451\) −7.90365 7.90365i −0.372168 0.372168i
\(452\) 0 0
\(453\) 15.4889i 0.727731i
\(454\) 0 0
\(455\) 7.15549 + 15.8870i 0.335454 + 0.744792i
\(456\) 0 0
\(457\) −4.83585 4.83585i −0.226212 0.226212i 0.584896 0.811108i \(-0.301135\pi\)
−0.811108 + 0.584896i \(0.801135\pi\)
\(458\) 0 0
\(459\) 14.9411 + 14.9411i 0.697393 + 0.697393i
\(460\) 0 0
\(461\) −7.74413 + 7.74413i −0.360680 + 0.360680i −0.864063 0.503383i \(-0.832088\pi\)
0.503383 + 0.864063i \(0.332088\pi\)
\(462\) 0 0
\(463\) −16.6931 + 16.6931i −0.775795 + 0.775795i −0.979113 0.203318i \(-0.934828\pi\)
0.203318 + 0.979113i \(0.434828\pi\)
\(464\) 0 0
\(465\) 1.17964 3.11309i 0.0547047 0.144366i
\(466\) 0 0
\(467\) −23.9174 −1.10677 −0.553383 0.832927i \(-0.686663\pi\)
−0.553383 + 0.832927i \(0.686663\pi\)
\(468\) 0 0
\(469\) −10.2262 + 10.2262i −0.472203 + 0.472203i
\(470\) 0 0
\(471\) −6.68279 −0.307927
\(472\) 0 0
\(473\) −21.8555 + 21.8555i −1.00492 + 1.00492i
\(474\) 0 0
\(475\) 41.8758 2.55655i 1.92139 0.117303i
\(476\) 0 0
\(477\) 28.9477i 1.32543i
\(478\) 0 0
\(479\) 25.0247 1.14341 0.571703 0.820460i \(-0.306283\pi\)
0.571703 + 0.820460i \(0.306283\pi\)
\(480\) 0 0
\(481\) −6.94283 −0.316566
\(482\) 0 0
\(483\) 4.19443i 0.190853i
\(484\) 0 0
\(485\) 7.94269 + 17.6347i 0.360659 + 0.800753i
\(486\) 0 0
\(487\) 11.3049 11.3049i 0.512274 0.512274i −0.402949 0.915223i \(-0.632015\pi\)
0.915223 + 0.402949i \(0.132015\pi\)
\(488\) 0 0
\(489\) −18.7396 −0.847435
\(490\) 0 0
\(491\) 17.0233 17.0233i 0.768250 0.768250i −0.209548 0.977798i \(-0.567199\pi\)
0.977798 + 0.209548i \(0.0671993\pi\)
\(492\) 0 0
\(493\) −17.3825 −0.782870
\(494\) 0 0
\(495\) −8.85853 19.6681i −0.398161 0.884017i
\(496\) 0 0
\(497\) −2.04774 + 2.04774i −0.0918536 + 0.0918536i
\(498\) 0 0
\(499\) −11.4673 + 11.4673i −0.513347 + 0.513347i −0.915550 0.402204i \(-0.868244\pi\)
0.402204 + 0.915550i \(0.368244\pi\)
\(500\) 0 0
\(501\) −13.1473 13.1473i −0.587379 0.587379i
\(502\) 0 0
\(503\) −14.5339 14.5339i −0.648033 0.648033i 0.304484 0.952517i \(-0.401516\pi\)
−0.952517 + 0.304484i \(0.901516\pi\)
\(504\) 0 0
\(505\) 25.2621 11.3781i 1.12415 0.506317i
\(506\) 0 0
\(507\) 15.2788i 0.678556i
\(508\) 0 0
\(509\) 12.9000 + 12.9000i 0.571783 + 0.571783i 0.932627 0.360843i \(-0.117511\pi\)
−0.360843 + 0.932627i \(0.617511\pi\)
\(510\) 0 0
\(511\) 0.266221i 0.0117769i
\(512\) 0 0
\(513\) 28.5278 + 28.5278i 1.25953 + 1.25953i
\(514\) 0 0
\(515\) −16.9833 + 7.64927i −0.748372 + 0.337067i
\(516\) 0 0
\(517\) −27.1853 −1.19561
\(518\) 0 0
\(519\) 9.81531i 0.430844i
\(520\) 0 0
\(521\) 16.8361i 0.737601i 0.929509 + 0.368801i \(0.120231\pi\)
−0.929509 + 0.368801i \(0.879769\pi\)
\(522\) 0 0
\(523\) 5.88217 0.257209 0.128605 0.991696i \(-0.458950\pi\)
0.128605 + 0.991696i \(0.458950\pi\)
\(524\) 0 0
\(525\) 0.412417 + 6.75530i 0.0179993 + 0.294826i
\(526\) 0 0
\(527\) 4.92362 + 4.92362i 0.214476 + 0.214476i
\(528\) 0 0
\(529\) 13.3976i 0.582503i
\(530\) 0 0
\(531\) 3.20291 + 3.20291i 0.138994 + 0.138994i
\(532\) 0 0
\(533\) 13.2689i 0.574741i
\(534\) 0 0
\(535\) −16.6724 6.31768i −0.720812 0.273137i
\(536\) 0 0
\(537\) −6.04130 6.04130i −0.260701 0.260701i
\(538\) 0 0
\(539\) −15.8681 15.8681i −0.683489 0.683489i
\(540\) 0 0
\(541\) 25.5334 25.5334i 1.09777 1.09777i 0.103097 0.994671i \(-0.467125\pi\)
0.994671 0.103097i \(-0.0328752\pi\)
\(542\) 0 0
\(543\) −4.66447 + 4.66447i −0.200171 + 0.200171i
\(544\) 0 0
\(545\) −7.98197 + 3.59508i −0.341910 + 0.153996i
\(546\) 0 0
\(547\) 33.9517 1.45167 0.725835 0.687869i \(-0.241454\pi\)
0.725835 + 0.687869i \(0.241454\pi\)
\(548\) 0 0
\(549\) 0.455797 0.455797i 0.0194529 0.0194529i
\(550\) 0 0
\(551\) −33.1892 −1.41391
\(552\) 0 0
\(553\) 13.4560 13.4560i 0.572207 0.572207i
\(554\) 0 0
\(555\) −2.52177 0.955575i −0.107043 0.0405619i
\(556\) 0 0
\(557\) 16.0858i 0.681576i −0.940140 0.340788i \(-0.889306\pi\)
0.940140 0.340788i \(-0.110694\pi\)
\(558\) 0 0
\(559\) 36.6917 1.55190
\(560\) 0 0
\(561\) −18.8158 −0.794405
\(562\) 0 0
\(563\) 25.0409i 1.05535i 0.849447 + 0.527675i \(0.176936\pi\)
−0.849447 + 0.527675i \(0.823064\pi\)
\(564\) 0 0
\(565\) −34.2645 + 15.4328i −1.44152 + 0.649261i
\(566\) 0 0
\(567\) 1.86743 1.86743i 0.0784248 0.0784248i
\(568\) 0 0
\(569\) 35.9948 1.50898 0.754490 0.656311i \(-0.227884\pi\)
0.754490 + 0.656311i \(0.227884\pi\)
\(570\) 0 0
\(571\) 2.90471 2.90471i 0.121558 0.121558i −0.643711 0.765269i \(-0.722606\pi\)
0.765269 + 0.643711i \(0.222606\pi\)
\(572\) 0 0
\(573\) −22.8070 −0.952777
\(574\) 0 0
\(575\) 0.944157 + 15.4651i 0.0393741 + 0.644939i
\(576\) 0 0
\(577\) −16.2961 + 16.2961i −0.678417 + 0.678417i −0.959642 0.281225i \(-0.909259\pi\)
0.281225 + 0.959642i \(0.409259\pi\)
\(578\) 0 0
\(579\) −3.66352 + 3.66352i −0.152251 + 0.152251i
\(580\) 0 0
\(581\) 8.39622 + 8.39622i 0.348334 + 0.348334i
\(582\) 0 0
\(583\) −44.0563 44.0563i −1.82463 1.82463i
\(584\) 0 0
\(585\) −9.07376 + 23.9458i −0.375154 + 0.990035i
\(586\) 0 0
\(587\) 42.0558i 1.73583i 0.496716 + 0.867913i \(0.334539\pi\)
−0.496716 + 0.867913i \(0.665461\pi\)
\(588\) 0 0
\(589\) 9.40088 + 9.40088i 0.387357 + 0.387357i
\(590\) 0 0
\(591\) 17.1836i 0.706839i
\(592\) 0 0
\(593\) −19.7600 19.7600i −0.811446 0.811446i 0.173404 0.984851i \(-0.444523\pi\)
−0.984851 + 0.173404i \(0.944523\pi\)
\(594\) 0 0
\(595\) −13.2370 5.01591i −0.542665 0.205632i
\(596\) 0 0
\(597\) 0.796826 0.0326119
\(598\) 0 0
\(599\) 38.3344i 1.56630i −0.621833 0.783150i \(-0.713612\pi\)
0.621833 0.783150i \(-0.286388\pi\)
\(600\) 0 0
\(601\) 1.37984i 0.0562849i −0.999604 0.0281424i \(-0.991041\pi\)
0.999604 0.0281424i \(-0.00895920\pi\)
\(602\) 0 0
\(603\) −21.2542 −0.865539
\(604\) 0 0
\(605\) 20.4147 + 7.73573i 0.829974 + 0.314502i
\(606\) 0 0
\(607\) 24.1264 + 24.1264i 0.979261 + 0.979261i 0.999789 0.0205286i \(-0.00653491\pi\)
−0.0205286 + 0.999789i \(0.506535\pi\)
\(608\) 0 0
\(609\) 5.35401i 0.216955i
\(610\) 0 0
\(611\) 22.8198 + 22.8198i 0.923189 + 0.923189i
\(612\) 0 0
\(613\) 8.45490i 0.341490i 0.985315 + 0.170745i \(0.0546174\pi\)
−0.985315 + 0.170745i \(0.945383\pi\)
\(614\) 0 0
\(615\) −1.82626 + 4.81953i −0.0736421 + 0.194342i
\(616\) 0 0
\(617\) 2.55138 + 2.55138i 0.102715 + 0.102715i 0.756597 0.653882i \(-0.226861\pi\)
−0.653882 + 0.756597i \(0.726861\pi\)
\(618\) 0 0
\(619\) −1.07954 1.07954i −0.0433905 0.0433905i 0.685079 0.728469i \(-0.259768\pi\)
−0.728469 + 0.685079i \(0.759768\pi\)
\(620\) 0 0
\(621\) −10.5356 + 10.5356i −0.422777 + 0.422777i
\(622\) 0 0
\(623\) −1.52396 + 1.52396i −0.0610564 + 0.0610564i
\(624\) 0 0
\(625\) 3.04121 + 24.8143i 0.121648 + 0.992573i
\(626\) 0 0
\(627\) −35.9259 −1.43474
\(628\) 0 0
\(629\) 3.98840 3.98840i 0.159028 0.159028i
\(630\) 0 0
\(631\) 10.8929 0.433638 0.216819 0.976212i \(-0.430432\pi\)
0.216819 + 0.976212i \(0.430432\pi\)
\(632\) 0 0
\(633\) 14.0599 14.0599i 0.558831 0.558831i
\(634\) 0 0
\(635\) −21.0511 + 9.48144i −0.835389 + 0.376259i
\(636\) 0 0
\(637\) 26.6400i 1.05551i
\(638\) 0 0
\(639\) −4.25603 −0.168366
\(640\) 0 0
\(641\) −5.90389 −0.233190 −0.116595 0.993180i \(-0.537198\pi\)
−0.116595 + 0.993180i \(0.537198\pi\)
\(642\) 0 0
\(643\) 18.5260i 0.730595i 0.930891 + 0.365297i \(0.119033\pi\)
−0.930891 + 0.365297i \(0.880967\pi\)
\(644\) 0 0
\(645\) 13.3272 + 5.05006i 0.524757 + 0.198846i
\(646\) 0 0
\(647\) 14.1074 14.1074i 0.554618 0.554618i −0.373152 0.927770i \(-0.621723\pi\)
0.927770 + 0.373152i \(0.121723\pi\)
\(648\) 0 0
\(649\) −9.74918 −0.382689
\(650\) 0 0
\(651\) −1.51653 + 1.51653i −0.0594374 + 0.0594374i
\(652\) 0 0
\(653\) 37.3232 1.46057 0.730285 0.683143i \(-0.239387\pi\)
0.730285 + 0.683143i \(0.239387\pi\)
\(654\) 0 0
\(655\) 21.8419 9.83760i 0.853434 0.384387i
\(656\) 0 0
\(657\) 0.276657 0.276657i 0.0107934 0.0107934i
\(658\) 0 0
\(659\) −15.7382 + 15.7382i −0.613075 + 0.613075i −0.943746 0.330671i \(-0.892725\pi\)
0.330671 + 0.943746i \(0.392725\pi\)
\(660\) 0 0
\(661\) 8.03703 + 8.03703i 0.312604 + 0.312604i 0.845918 0.533313i \(-0.179053\pi\)
−0.533313 + 0.845918i \(0.679053\pi\)
\(662\) 0 0
\(663\) 15.7943 + 15.7943i 0.613401 + 0.613401i
\(664\) 0 0
\(665\) −25.2740 9.57709i −0.980085 0.371383i
\(666\) 0 0
\(667\) 12.2571i 0.474596i
\(668\) 0 0
\(669\) 14.7017 + 14.7017i 0.568401 + 0.568401i
\(670\) 0 0
\(671\) 1.38738i 0.0535591i
\(672\) 0 0
\(673\) 8.84337 + 8.84337i 0.340887 + 0.340887i 0.856701 0.515814i \(-0.172510\pi\)
−0.515814 + 0.856701i \(0.672510\pi\)
\(674\) 0 0
\(675\) −15.9320 + 18.0038i −0.613224 + 0.692968i
\(676\) 0 0
\(677\) −20.3288 −0.781299 −0.390650 0.920539i \(-0.627750\pi\)
−0.390650 + 0.920539i \(0.627750\pi\)
\(678\) 0 0
\(679\) 12.4599i 0.478168i
\(680\) 0 0
\(681\) 6.75264i 0.258762i
\(682\) 0 0
\(683\) 34.6127 1.32442 0.662208 0.749320i \(-0.269619\pi\)
0.662208 + 0.749320i \(0.269619\pi\)
\(684\) 0 0
\(685\) 19.2524 8.67129i 0.735597 0.331313i
\(686\) 0 0
\(687\) −18.1666 18.1666i −0.693100 0.693100i
\(688\) 0 0
\(689\) 73.9633i 2.81778i
\(690\) 0 0
\(691\) −5.37721 5.37721i −0.204559 0.204559i 0.597391 0.801950i \(-0.296204\pi\)
−0.801950 + 0.597391i \(0.796204\pi\)
\(692\) 0 0
\(693\) 13.8966i 0.527889i
\(694\) 0 0
\(695\) 19.5530 8.80667i 0.741688 0.334056i
\(696\) 0 0
\(697\) −7.62250 7.62250i −0.288723 0.288723i
\(698\) 0 0
\(699\) 13.6995 + 13.6995i 0.518164 + 0.518164i
\(700\) 0 0
\(701\) −18.8920 + 18.8920i −0.713541 + 0.713541i −0.967274 0.253733i \(-0.918341\pi\)
0.253733 + 0.967274i \(0.418341\pi\)
\(702\) 0 0
\(703\) 7.61522 7.61522i 0.287213 0.287213i
\(704\) 0 0
\(705\) 5.14780 + 11.4294i 0.193877 + 0.430456i
\(706\) 0 0
\(707\) −17.8491 −0.671283
\(708\) 0 0
\(709\) −15.8819 + 15.8819i −0.596456 + 0.596456i −0.939368 0.342911i \(-0.888587\pi\)
0.342911 + 0.939368i \(0.388587\pi\)
\(710\) 0 0
\(711\) 27.9670 1.04884
\(712\) 0 0
\(713\) −3.47183 + 3.47183i −0.130021 + 0.130021i
\(714\) 0 0
\(715\) −22.6341 50.2533i −0.846467 1.87937i
\(716\) 0 0
\(717\) 5.05952i 0.188951i
\(718\) 0 0
\(719\) −21.7427 −0.810865 −0.405433 0.914125i \(-0.632879\pi\)
−0.405433 + 0.914125i \(0.632879\pi\)
\(720\) 0 0
\(721\) 11.9996 0.446889
\(722\) 0 0
\(723\) 18.2292i 0.677951i
\(724\) 0 0
\(725\) −1.20517 19.7405i −0.0447591 0.733144i
\(726\) 0 0
\(727\) −7.65957 + 7.65957i −0.284078 + 0.284078i −0.834733 0.550655i \(-0.814378\pi\)
0.550655 + 0.834733i \(0.314378\pi\)
\(728\) 0 0
\(729\) −9.67256 −0.358243
\(730\) 0 0
\(731\) −21.0781 + 21.0781i −0.779600 + 0.779600i
\(732\) 0 0
\(733\) 47.8143 1.76606 0.883030 0.469316i \(-0.155499\pi\)
0.883030 + 0.469316i \(0.155499\pi\)
\(734\) 0 0
\(735\) −3.66659 + 9.67617i −0.135244 + 0.356911i
\(736\) 0 0
\(737\) 32.3474 32.3474i 1.19153 1.19153i
\(738\) 0 0
\(739\) 4.22084 4.22084i 0.155266 0.155266i −0.625199 0.780465i \(-0.714982\pi\)
0.780465 + 0.625199i \(0.214982\pi\)
\(740\) 0 0
\(741\) 30.1568 + 30.1568i 1.10784 + 1.10784i
\(742\) 0 0
\(743\) −10.6484 10.6484i −0.390650 0.390650i 0.484269 0.874919i \(-0.339086\pi\)
−0.874919 + 0.484269i \(0.839086\pi\)
\(744\) 0 0
\(745\) 5.09816 + 11.3192i 0.186782 + 0.414703i
\(746\) 0 0
\(747\) 17.4507i 0.638489i
\(748\) 0 0
\(749\) 8.12189 + 8.12189i 0.296767 + 0.296767i
\(750\) 0 0
\(751\) 7.38006i 0.269302i 0.990893 + 0.134651i \(0.0429914\pi\)
−0.990893 + 0.134651i \(0.957009\pi\)
\(752\) 0 0
\(753\) 6.38382 + 6.38382i 0.232639 + 0.232639i
\(754\) 0 0
\(755\) 13.0608 34.4676i 0.475331 1.25440i
\(756\) 0 0
\(757\) −7.66297 −0.278516 −0.139258 0.990256i \(-0.544472\pi\)
−0.139258 + 0.990256i \(0.544472\pi\)
\(758\) 0 0
\(759\) 13.2677i 0.481588i
\(760\) 0 0
\(761\) 0.144605i 0.00524192i −0.999997 0.00262096i \(-0.999166\pi\)
0.999997 0.00262096i \(-0.000834278\pi\)
\(762\) 0 0
\(763\) 5.63970 0.204171
\(764\) 0 0
\(765\) −8.54341 18.9685i −0.308888 0.685807i
\(766\) 0 0
\(767\) 8.18363 + 8.18363i 0.295494 + 0.295494i
\(768\) 0 0
\(769\) 18.5898i 0.670365i 0.942153 + 0.335182i \(0.108798\pi\)
−0.942153 + 0.335182i \(0.891202\pi\)
\(770\) 0 0
\(771\) −8.99907 8.99907i −0.324094 0.324094i
\(772\) 0 0
\(773\) 11.9451i 0.429636i −0.976654 0.214818i \(-0.931084\pi\)
0.976654 0.214818i \(-0.0689158\pi\)
\(774\) 0 0
\(775\) −5.25015 + 5.93289i −0.188591 + 0.213116i
\(776\) 0 0
\(777\) 1.22847 + 1.22847i 0.0440711 + 0.0440711i
\(778\) 0 0
\(779\) −14.5540 14.5540i −0.521450 0.521450i
\(780\) 0 0
\(781\) 6.47736 6.47736i 0.231778 0.231778i
\(782\) 0 0
\(783\) 13.4482 13.4482i 0.480598 0.480598i
\(784\) 0 0
\(785\) 14.8713 + 5.63517i 0.530779 + 0.201128i
\(786\) 0 0
\(787\) −24.9168 −0.888189 −0.444095 0.895980i \(-0.646475\pi\)
−0.444095 + 0.895980i \(0.646475\pi\)
\(788\) 0 0
\(789\) 1.27822 1.27822i 0.0455059 0.0455059i
\(790\) 0 0
\(791\) 24.2098 0.860801
\(792\) 0 0
\(793\) 1.16459 1.16459i 0.0413557 0.0413557i
\(794\) 0 0
\(795\) −10.1799 + 26.8649i −0.361045 + 0.952801i
\(796\) 0 0
\(797\) 47.9617i 1.69889i −0.527677 0.849445i \(-0.676937\pi\)
0.527677 0.849445i \(-0.323063\pi\)
\(798\) 0 0
\(799\) −26.2182 −0.927535
\(800\) 0 0
\(801\) −3.16741 −0.111915
\(802\) 0 0
\(803\) 0.842104i 0.0297172i
\(804\) 0 0
\(805\) 3.53690 9.33392i 0.124659 0.328978i
\(806\) 0 0
\(807\) −11.4653 + 11.4653i −0.403598 + 0.403598i
\(808\) 0 0
\(809\) 38.5831 1.35651 0.678255 0.734827i \(-0.262737\pi\)
0.678255 + 0.734827i \(0.262737\pi\)
\(810\) 0 0
\(811\) 4.26398 4.26398i 0.149729 0.149729i −0.628268 0.777997i \(-0.716236\pi\)
0.777997 + 0.628268i \(0.216236\pi\)
\(812\) 0 0
\(813\) 19.0690 0.668779
\(814\) 0 0
\(815\) 41.7015 + 15.8020i 1.46074 + 0.553518i
\(816\) 0 0
\(817\) −40.2452 + 40.2452i −1.40800 + 1.40800i
\(818\) 0 0
\(819\) 11.6651 11.6651i 0.407610 0.407610i
\(820\) 0 0
\(821\) 17.3718 + 17.3718i 0.606279 + 0.606279i 0.941972 0.335692i \(-0.108970\pi\)
−0.335692 + 0.941972i \(0.608970\pi\)
\(822\) 0 0
\(823\) 20.0408 + 20.0408i 0.698580 + 0.698580i 0.964104 0.265524i \(-0.0855451\pi\)
−0.265524 + 0.964104i \(0.585545\pi\)
\(824\) 0 0
\(825\) −1.30455 21.3682i −0.0454185 0.743946i
\(826\) 0 0
\(827\) 9.01022i 0.313316i 0.987653 + 0.156658i \(0.0500720\pi\)
−0.987653 + 0.156658i \(0.949928\pi\)
\(828\) 0 0
\(829\) −4.96517 4.96517i −0.172447 0.172447i 0.615606 0.788054i \(-0.288911\pi\)
−0.788054 + 0.615606i \(0.788911\pi\)
\(830\) 0 0
\(831\) 3.15048i 0.109289i
\(832\) 0 0
\(833\) −15.3037 15.3037i −0.530241 0.530241i
\(834\) 0 0
\(835\) 18.1706 + 40.3432i 0.628819 + 1.39613i
\(836\) 0 0
\(837\) −7.61842 −0.263331
\(838\) 0 0
\(839\) 4.47707i 0.154566i −0.997009 0.0772828i \(-0.975376\pi\)
0.997009 0.0772828i \(-0.0246244\pi\)
\(840\) 0 0
\(841\) 13.3544i 0.460496i
\(842\) 0 0
\(843\) 5.74917 0.198012
\(844\) 0 0
\(845\) −12.8837 + 34.0001i −0.443211 + 1.16964i
\(846\) 0 0
\(847\) −9.94490 9.94490i −0.341711 0.341711i
\(848\) 0 0
\(849\) 26.9041i 0.923347i
\(850\) 0 0
\(851\) 2.81237 + 2.81237i 0.0964067 + 0.0964067i
\(852\) 0 0
\(853\) 44.4073i 1.52048i −0.649644 0.760239i \(-0.725082\pi\)
0.649644 0.760239i \(-0.274918\pi\)
\(854\) 0 0
\(855\) −16.3123 36.2174i −0.557869 1.23861i
\(856\) 0 0
\(857\) −10.8581 10.8581i −0.370905 0.370905i 0.496902 0.867807i \(-0.334471\pi\)
−0.867807 + 0.496902i \(0.834471\pi\)
\(858\) 0 0
\(859\) 29.5319 + 29.5319i 1.00762 + 1.00762i 0.999971 + 0.00764439i \(0.00243331\pi\)
0.00764439 + 0.999971i \(0.497567\pi\)
\(860\) 0 0
\(861\) 2.34781 2.34781i 0.0800132 0.0800132i
\(862\) 0 0
\(863\) 35.5938 35.5938i 1.21163 1.21163i 0.241136 0.970491i \(-0.422480\pi\)
0.970491 0.241136i \(-0.0775201\pi\)
\(864\) 0 0
\(865\) 8.27664 21.8421i 0.281414 0.742655i
\(866\) 0 0
\(867\) −2.17272 −0.0737893
\(868\) 0 0
\(869\) −42.5637 + 42.5637i −1.44387 + 1.44387i
\(870\) 0 0
\(871\) −54.3059 −1.84008
\(872\) 0 0
\(873\) 12.9484 12.9484i 0.438236 0.438236i
\(874\) 0 0
\(875\) 4.77857 15.3804i 0.161545 0.519953i
\(876\) 0 0
\(877\) 19.0764i 0.644165i 0.946712 + 0.322083i \(0.104383\pi\)
−0.946712 + 0.322083i \(0.895617\pi\)
\(878\) 0 0
\(879\) 8.29135 0.279660
\(880\) 0 0
\(881\) 45.9584 1.54838 0.774189 0.632954i \(-0.218158\pi\)
0.774189 + 0.632954i \(0.218158\pi\)
\(882\) 0 0
\(883\) 0.280016i 0.00942327i 0.999989 + 0.00471164i \(0.00149977\pi\)
−0.999989 + 0.00471164i \(0.998500\pi\)
\(884\) 0 0
\(885\) 1.84610 + 4.09881i 0.0620561 + 0.137780i
\(886\) 0 0
\(887\) 13.6733 13.6733i 0.459105 0.459105i −0.439257 0.898362i \(-0.644758\pi\)
0.898362 + 0.439257i \(0.144758\pi\)
\(888\) 0 0
\(889\) 14.8738 0.498851
\(890\) 0 0
\(891\) −5.90702 + 5.90702i −0.197893 + 0.197893i
\(892\) 0 0
\(893\) −50.0596 −1.67518
\(894\) 0 0
\(895\) 8.34953 + 18.5380i 0.279094 + 0.619658i
\(896\) 0 0
\(897\) −11.1372 + 11.1372i −0.371859 + 0.371859i
\(898\) 0 0
\(899\) 4.43164 4.43164i 0.147803 0.147803i
\(900\) 0 0
\(901\) −42.4892 42.4892i −1.41552 1.41552i
\(902\) 0 0
\(903\) −6.49226 6.49226i −0.216049 0.216049i
\(904\) 0 0
\(905\) 14.3131 6.44665i 0.475785 0.214294i
\(906\) 0 0
\(907\) 55.4174i 1.84011i −0.391794 0.920053i \(-0.628145\pi\)
0.391794 0.920053i \(-0.371855\pi\)
\(908\) 0 0
\(909\) −18.5488 18.5488i −0.615225 0.615225i
\(910\) 0 0
\(911\) 23.4625i 0.777348i −0.921375 0.388674i \(-0.872933\pi\)
0.921375 0.388674i \(-0.127067\pi\)
\(912\) 0 0
\(913\) −26.5587 26.5587i −0.878966 0.878966i
\(914\) 0 0
\(915\) 0.583290 0.262714i 0.0192830 0.00868505i
\(916\) 0 0
\(917\) −15.4325 −0.509626
\(918\) 0 0
\(919\) 37.3241i 1.23121i 0.788055 + 0.615604i \(0.211088\pi\)
−0.788055 + 0.615604i \(0.788912\pi\)
\(920\) 0 0
\(921\) 9.99019i 0.329188i
\(922\) 0 0
\(923\) −10.8744 −0.357936
\(924\) 0 0
\(925\) 4.80596 + 4.25291i 0.158019 + 0.139835i
\(926\) 0 0
\(927\) 12.4700 + 12.4700i 0.409569 + 0.409569i
\(928\) 0 0
\(929\) 24.2664i 0.796153i 0.917352 + 0.398077i \(0.130322\pi\)
−0.917352 + 0.398077i \(0.869678\pi\)
\(930\) 0 0
\(931\) −29.2200 29.2200i −0.957646 0.957646i
\(932\) 0 0
\(933\) 19.7500i 0.646587i
\(934\) 0 0
\(935\) 41.8711 + 15.8662i 1.36933 + 0.518880i
\(936\) 0 0
\(937\) −1.52618 1.52618i −0.0498582 0.0498582i 0.681738 0.731596i \(-0.261224\pi\)
−0.731596 + 0.681738i \(0.761224\pi\)
\(938\) 0 0
\(939\) −5.23176 5.23176i −0.170732 0.170732i
\(940\) 0 0
\(941\) −16.7475 + 16.7475i −0.545953 + 0.545953i −0.925268 0.379315i \(-0.876160\pi\)
0.379315 + 0.925268i \(0.376160\pi\)
\(942\) 0 0
\(943\) 5.37491 5.37491i 0.175031 0.175031i
\(944\) 0 0
\(945\) 14.1216 6.36035i 0.459374 0.206902i
\(946\) 0 0
\(947\) 24.3522 0.791339 0.395670 0.918393i \(-0.370513\pi\)
0.395670 + 0.918393i \(0.370513\pi\)
\(948\) 0 0
\(949\) 0.706876 0.706876i 0.0229462 0.0229462i
\(950\) 0 0
\(951\) −1.08928 −0.0353224
\(952\) 0 0
\(953\) −5.88082 + 5.88082i −0.190498 + 0.190498i −0.795911 0.605413i \(-0.793008\pi\)
0.605413 + 0.795911i \(0.293008\pi\)
\(954\) 0 0
\(955\) 50.7528 + 19.2317i 1.64232 + 0.622324i
\(956\) 0 0
\(957\) 16.9357i 0.547453i
\(958\) 0 0
\(959\) −13.6029 −0.439260
\(960\) 0 0
\(961\) 28.4895 0.919015
\(962\) 0 0
\(963\) 16.8806i 0.543969i
\(964\) 0 0
\(965\) 11.2417 5.06325i 0.361883 0.162992i
\(966\) 0 0
\(967\) −3.31683 + 3.31683i −0.106662 + 0.106662i −0.758424 0.651762i \(-0.774030\pi\)
0.651762 + 0.758424i \(0.274030\pi\)
\(968\) 0 0
\(969\) −34.6479 −1.11305
\(970\) 0 0
\(971\) 31.1533 31.1533i 0.999758 0.999758i −0.000242242 1.00000i \(-0.500077\pi\)
1.00000 0.000242242i \(7.71079e-5\pi\)
\(972\) 0 0
\(973\) −13.8153 −0.442897
\(974\) 0 0
\(975\) −16.8418 + 19.0319i −0.539369 + 0.609509i
\(976\) 0 0
\(977\) −2.89478 + 2.89478i −0.0926121 + 0.0926121i −0.751895 0.659283i \(-0.770860\pi\)
0.659283 + 0.751895i \(0.270860\pi\)
\(978\) 0 0
\(979\) 4.82057 4.82057i 0.154066 0.154066i
\(980\) 0 0
\(981\) 5.86079 + 5.86079i 0.187121 + 0.187121i
\(982\) 0 0
\(983\) 16.3487 + 16.3487i 0.521442 + 0.521442i 0.918007 0.396565i \(-0.129798\pi\)
−0.396565 + 0.918007i \(0.629798\pi\)
\(984\) 0 0
\(985\) −14.4899 + 38.2389i −0.461685 + 1.21839i
\(986\) 0 0
\(987\) 8.07550i 0.257046i
\(988\) 0 0
\(989\) −14.8629 14.8629i −0.472613 0.472613i
\(990\) 0 0
\(991\) 55.1842i 1.75298i 0.481416 + 0.876492i \(0.340123\pi\)
−0.481416 + 0.876492i \(0.659877\pi\)
\(992\) 0 0
\(993\) −9.59467 9.59467i −0.304478 0.304478i
\(994\) 0 0
\(995\) −1.77319 0.671914i −0.0562138 0.0213011i
\(996\) 0 0
\(997\) 50.7136 1.60612 0.803058 0.595901i \(-0.203205\pi\)
0.803058 + 0.595901i \(0.203205\pi\)
\(998\) 0 0
\(999\) 6.17133i 0.195252i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.63.6 yes 32
4.3 odd 2 inner 1280.2.j.d.63.11 yes 32
5.2 odd 4 1280.2.s.c.1087.6 yes 32
8.3 odd 2 1280.2.j.c.63.6 32
8.5 even 2 1280.2.j.c.63.11 yes 32
16.3 odd 4 1280.2.s.c.703.6 yes 32
16.5 even 4 1280.2.s.d.703.6 yes 32
16.11 odd 4 1280.2.s.d.703.11 yes 32
16.13 even 4 1280.2.s.c.703.11 yes 32
20.7 even 4 1280.2.s.c.1087.11 yes 32
40.27 even 4 1280.2.s.d.1087.6 yes 32
40.37 odd 4 1280.2.s.d.1087.11 yes 32
80.27 even 4 1280.2.j.c.447.6 yes 32
80.37 odd 4 1280.2.j.c.447.11 yes 32
80.67 even 4 inner 1280.2.j.d.447.11 yes 32
80.77 odd 4 inner 1280.2.j.d.447.6 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.6 32 8.3 odd 2
1280.2.j.c.63.11 yes 32 8.5 even 2
1280.2.j.c.447.6 yes 32 80.27 even 4
1280.2.j.c.447.11 yes 32 80.37 odd 4
1280.2.j.d.63.6 yes 32 1.1 even 1 trivial
1280.2.j.d.63.11 yes 32 4.3 odd 2 inner
1280.2.j.d.447.6 yes 32 80.77 odd 4 inner
1280.2.j.d.447.11 yes 32 80.67 even 4 inner
1280.2.s.c.703.6 yes 32 16.3 odd 4
1280.2.s.c.703.11 yes 32 16.13 even 4
1280.2.s.c.1087.6 yes 32 5.2 odd 4
1280.2.s.c.1087.11 yes 32 20.7 even 4
1280.2.s.d.703.6 yes 32 16.5 even 4
1280.2.s.d.703.11 yes 32 16.11 odd 4
1280.2.s.d.1087.6 yes 32 40.27 even 4
1280.2.s.d.1087.11 yes 32 40.37 odd 4