Newspace parameters
| Level: | \( N \) | \(=\) | \( 1280 = 2^{8} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1280.j (of order \(4\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(10.2208514587\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(16\) over \(\Q(i)\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 63.1 | 0 | − | 2.97565i | 0 | 2.23290 | + | 0.119064i | 0 | −3.13319 | + | 3.13319i | 0 | −5.85447 | 0 | |||||||||||||
| 63.2 | 0 | − | 2.59124i | 0 | 0.0160455 | − | 2.23601i | 0 | 0.639450 | − | 0.639450i | 0 | −3.71454 | 0 | |||||||||||||
| 63.3 | 0 | − | 2.41944i | 0 | −2.21185 | + | 0.328182i | 0 | −0.988699 | + | 0.988699i | 0 | −2.85370 | 0 | |||||||||||||
| 63.4 | 0 | − | 2.34468i | 0 | 1.84823 | − | 1.25858i | 0 | 3.15963 | − | 3.15963i | 0 | −2.49751 | 0 | |||||||||||||
| 63.5 | 0 | − | 1.81199i | 0 | −2.20939 | − | 0.344369i | 0 | 1.54814 | − | 1.54814i | 0 | −0.283291 | 0 | |||||||||||||
| 63.6 | 0 | − | 0.939635i | 0 | −0.792335 | + | 2.09098i | 0 | 1.01861 | − | 1.01861i | 0 | 2.11709 | 0 | |||||||||||||
| 63.7 | 0 | − | 0.782176i | 0 | 1.69250 | + | 1.46131i | 0 | −1.70686 | + | 1.70686i | 0 | 2.38820 | 0 | |||||||||||||
| 63.8 | 0 | − | 0.549343i | 0 | −0.576096 | − | 2.16058i | 0 | −3.23508 | + | 3.23508i | 0 | 2.69822 | 0 | |||||||||||||
| 63.9 | 0 | 0.549343i | 0 | −0.576096 | − | 2.16058i | 0 | 3.23508 | − | 3.23508i | 0 | 2.69822 | 0 | ||||||||||||||
| 63.10 | 0 | 0.782176i | 0 | 1.69250 | + | 1.46131i | 0 | 1.70686 | − | 1.70686i | 0 | 2.38820 | 0 | ||||||||||||||
| 63.11 | 0 | 0.939635i | 0 | −0.792335 | + | 2.09098i | 0 | −1.01861 | + | 1.01861i | 0 | 2.11709 | 0 | ||||||||||||||
| 63.12 | 0 | 1.81199i | 0 | −2.20939 | − | 0.344369i | 0 | −1.54814 | + | 1.54814i | 0 | −0.283291 | 0 | ||||||||||||||
| 63.13 | 0 | 2.34468i | 0 | 1.84823 | − | 1.25858i | 0 | −3.15963 | + | 3.15963i | 0 | −2.49751 | 0 | ||||||||||||||
| 63.14 | 0 | 2.41944i | 0 | −2.21185 | + | 0.328182i | 0 | 0.988699 | − | 0.988699i | 0 | −2.85370 | 0 | ||||||||||||||
| 63.15 | 0 | 2.59124i | 0 | 0.0160455 | − | 2.23601i | 0 | −0.639450 | + | 0.639450i | 0 | −3.71454 | 0 | ||||||||||||||
| 63.16 | 0 | 2.97565i | 0 | 2.23290 | + | 0.119064i | 0 | 3.13319 | − | 3.13319i | 0 | −5.85447 | 0 | ||||||||||||||
| 447.1 | 0 | − | 2.97565i | 0 | 2.23290 | − | 0.119064i | 0 | 3.13319 | + | 3.13319i | 0 | −5.85447 | 0 | |||||||||||||
| 447.2 | 0 | − | 2.59124i | 0 | 0.0160455 | + | 2.23601i | 0 | −0.639450 | − | 0.639450i | 0 | −3.71454 | 0 | |||||||||||||
| 447.3 | 0 | − | 2.41944i | 0 | −2.21185 | − | 0.328182i | 0 | 0.988699 | + | 0.988699i | 0 | −2.85370 | 0 | |||||||||||||
| 447.4 | 0 | − | 2.34468i | 0 | 1.84823 | + | 1.25858i | 0 | −3.15963 | − | 3.15963i | 0 | −2.49751 | 0 | |||||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 80.j | even | 4 | 1 | inner |
| 80.t | odd | 4 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1280.2.j.d | yes | 32 |
| 4.b | odd | 2 | 1 | inner | 1280.2.j.d | yes | 32 |
| 5.c | odd | 4 | 1 | 1280.2.s.c | yes | 32 | |
| 8.b | even | 2 | 1 | 1280.2.j.c | ✓ | 32 | |
| 8.d | odd | 2 | 1 | 1280.2.j.c | ✓ | 32 | |
| 16.e | even | 4 | 1 | 1280.2.s.c | yes | 32 | |
| 16.e | even | 4 | 1 | 1280.2.s.d | yes | 32 | |
| 16.f | odd | 4 | 1 | 1280.2.s.c | yes | 32 | |
| 16.f | odd | 4 | 1 | 1280.2.s.d | yes | 32 | |
| 20.e | even | 4 | 1 | 1280.2.s.c | yes | 32 | |
| 40.i | odd | 4 | 1 | 1280.2.s.d | yes | 32 | |
| 40.k | even | 4 | 1 | 1280.2.s.d | yes | 32 | |
| 80.i | odd | 4 | 1 | 1280.2.j.c | ✓ | 32 | |
| 80.j | even | 4 | 1 | inner | 1280.2.j.d | yes | 32 |
| 80.s | even | 4 | 1 | 1280.2.j.c | ✓ | 32 | |
| 80.t | odd | 4 | 1 | inner | 1280.2.j.d | yes | 32 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1280.2.j.c | ✓ | 32 | 8.b | even | 2 | 1 | |
| 1280.2.j.c | ✓ | 32 | 8.d | odd | 2 | 1 | |
| 1280.2.j.c | ✓ | 32 | 80.i | odd | 4 | 1 | |
| 1280.2.j.c | ✓ | 32 | 80.s | even | 4 | 1 | |
| 1280.2.j.d | yes | 32 | 1.a | even | 1 | 1 | trivial |
| 1280.2.j.d | yes | 32 | 4.b | odd | 2 | 1 | inner |
| 1280.2.j.d | yes | 32 | 80.j | even | 4 | 1 | inner |
| 1280.2.j.d | yes | 32 | 80.t | odd | 4 | 1 | inner |
| 1280.2.s.c | yes | 32 | 5.c | odd | 4 | 1 | |
| 1280.2.s.c | yes | 32 | 16.e | even | 4 | 1 | |
| 1280.2.s.c | yes | 32 | 16.f | odd | 4 | 1 | |
| 1280.2.s.c | yes | 32 | 20.e | even | 4 | 1 | |
| 1280.2.s.d | yes | 32 | 16.e | even | 4 | 1 | |
| 1280.2.s.d | yes | 32 | 16.f | odd | 4 | 1 | |
| 1280.2.s.d | yes | 32 | 40.i | odd | 4 | 1 | |
| 1280.2.s.d | yes | 32 | 40.k | even | 4 | 1 | |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1280, [\chi])\):
|
\( T_{3}^{16} + 32T_{3}^{14} + 412T_{3}^{12} + 2728T_{3}^{10} + 9828T_{3}^{8} + 18752T_{3}^{6} + 17344T_{3}^{4} + 7168T_{3}^{2} + 1024 \)
|
|
\( T_{13}^{8} - 4T_{13}^{7} - 40T_{13}^{6} + 224T_{13}^{5} - 204T_{13}^{4} - 480T_{13}^{3} + 912T_{13}^{2} - 448T_{13} + 64 \)
|