Properties

Label 1280.2.j.d.63.11
Level $1280$
Weight $2$
Character 1280.63
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.11
Character \(\chi\) \(=\) 1280.63
Dual form 1280.2.j.d.447.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.939635i q^{3} +(-0.792335 + 2.09098i) q^{5} +(-1.01861 + 1.01861i) q^{7} +2.11709 q^{9} +(3.22205 - 3.22205i) q^{11} +5.40928 q^{13} +(-1.96476 - 0.744506i) q^{15} +(-3.10743 + 3.10743i) q^{17} +(5.93316 - 5.93316i) q^{19} +(-0.957123 - 0.957123i) q^{21} +(2.19117 + 2.19117i) q^{23} +(-3.74441 - 3.31352i) q^{25} +4.80819i q^{27} +(2.79693 + 2.79693i) q^{29} +1.58447i q^{31} +(3.02755 + 3.02755i) q^{33} +(-1.32282 - 2.93698i) q^{35} -1.28350 q^{37} +5.08275i q^{39} +2.45299i q^{41} -6.78310 q^{43} +(-1.67744 + 4.42679i) q^{45} +(-4.21863 - 4.21863i) q^{47} +4.92486i q^{49} +(-2.91985 - 2.91985i) q^{51} +13.6734i q^{53} +(4.18430 + 9.29019i) q^{55} +(5.57500 + 5.57500i) q^{57} +(-1.51289 - 1.51289i) q^{59} +(0.215294 - 0.215294i) q^{61} +(-2.15649 + 2.15649i) q^{63} +(-4.28597 + 11.3107i) q^{65} +10.0394 q^{67} +(-2.05890 + 2.05890i) q^{69} +2.01032 q^{71} +(0.130678 - 0.130678i) q^{73} +(3.11350 - 3.51838i) q^{75} +6.56403i q^{77} -13.2101 q^{79} +1.83331 q^{81} -8.24281i q^{83} +(-4.03546 - 8.95972i) q^{85} +(-2.62809 + 2.62809i) q^{87} -1.49612 q^{89} +(-5.50996 + 5.50996i) q^{91} -1.48882 q^{93} +(7.70508 + 17.1072i) q^{95} +(6.11613 - 6.11613i) q^{97} +(6.82135 - 6.82135i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.939635i 0.542499i 0.962509 + 0.271249i \(0.0874368\pi\)
−0.962509 + 0.271249i \(0.912563\pi\)
\(4\) 0 0
\(5\) −0.792335 + 2.09098i −0.354343 + 0.935115i
\(6\) 0 0
\(7\) −1.01861 + 1.01861i −0.384999 + 0.384999i −0.872899 0.487900i \(-0.837763\pi\)
0.487900 + 0.872899i \(0.337763\pi\)
\(8\) 0 0
\(9\) 2.11709 0.705695
\(10\) 0 0
\(11\) 3.22205 3.22205i 0.971484 0.971484i −0.0281203 0.999605i \(-0.508952\pi\)
0.999605 + 0.0281203i \(0.00895214\pi\)
\(12\) 0 0
\(13\) 5.40928 1.50027 0.750133 0.661287i \(-0.229990\pi\)
0.750133 + 0.661287i \(0.229990\pi\)
\(14\) 0 0
\(15\) −1.96476 0.744506i −0.507299 0.192231i
\(16\) 0 0
\(17\) −3.10743 + 3.10743i −0.753664 + 0.753664i −0.975161 0.221497i \(-0.928906\pi\)
0.221497 + 0.975161i \(0.428906\pi\)
\(18\) 0 0
\(19\) 5.93316 5.93316i 1.36116 1.36116i 0.488718 0.872442i \(-0.337465\pi\)
0.872442 0.488718i \(-0.162535\pi\)
\(20\) 0 0
\(21\) −0.957123 0.957123i −0.208861 0.208861i
\(22\) 0 0
\(23\) 2.19117 + 2.19117i 0.456890 + 0.456890i 0.897633 0.440743i \(-0.145285\pi\)
−0.440743 + 0.897633i \(0.645285\pi\)
\(24\) 0 0
\(25\) −3.74441 3.31352i −0.748882 0.662703i
\(26\) 0 0
\(27\) 4.80819i 0.925337i
\(28\) 0 0
\(29\) 2.79693 + 2.79693i 0.519377 + 0.519377i 0.917383 0.398006i \(-0.130298\pi\)
−0.398006 + 0.917383i \(0.630298\pi\)
\(30\) 0 0
\(31\) 1.58447i 0.284578i 0.989825 + 0.142289i \(0.0454463\pi\)
−0.989825 + 0.142289i \(0.954554\pi\)
\(32\) 0 0
\(33\) 3.02755 + 3.02755i 0.527029 + 0.527029i
\(34\) 0 0
\(35\) −1.32282 2.93698i −0.223597 0.496440i
\(36\) 0 0
\(37\) −1.28350 −0.211006 −0.105503 0.994419i \(-0.533645\pi\)
−0.105503 + 0.994419i \(0.533645\pi\)
\(38\) 0 0
\(39\) 5.08275i 0.813892i
\(40\) 0 0
\(41\) 2.45299i 0.383092i 0.981484 + 0.191546i \(0.0613502\pi\)
−0.981484 + 0.191546i \(0.938650\pi\)
\(42\) 0 0
\(43\) −6.78310 −1.03441 −0.517207 0.855860i \(-0.673028\pi\)
−0.517207 + 0.855860i \(0.673028\pi\)
\(44\) 0 0
\(45\) −1.67744 + 4.42679i −0.250058 + 0.659907i
\(46\) 0 0
\(47\) −4.21863 4.21863i −0.615351 0.615351i 0.328985 0.944335i \(-0.393294\pi\)
−0.944335 + 0.328985i \(0.893294\pi\)
\(48\) 0 0
\(49\) 4.92486i 0.703552i
\(50\) 0 0
\(51\) −2.91985 2.91985i −0.408861 0.408861i
\(52\) 0 0
\(53\) 13.6734i 1.87818i 0.343665 + 0.939092i \(0.388332\pi\)
−0.343665 + 0.939092i \(0.611668\pi\)
\(54\) 0 0
\(55\) 4.18430 + 9.29019i 0.564211 + 1.25269i
\(56\) 0 0
\(57\) 5.57500 + 5.57500i 0.738427 + 0.738427i
\(58\) 0 0
\(59\) −1.51289 1.51289i −0.196961 0.196961i 0.601735 0.798696i \(-0.294476\pi\)
−0.798696 + 0.601735i \(0.794476\pi\)
\(60\) 0 0
\(61\) 0.215294 0.215294i 0.0275656 0.0275656i −0.693190 0.720755i \(-0.743795\pi\)
0.720755 + 0.693190i \(0.243795\pi\)
\(62\) 0 0
\(63\) −2.15649 + 2.15649i −0.271692 + 0.271692i
\(64\) 0 0
\(65\) −4.28597 + 11.3107i −0.531609 + 1.40292i
\(66\) 0 0
\(67\) 10.0394 1.22651 0.613253 0.789887i \(-0.289861\pi\)
0.613253 + 0.789887i \(0.289861\pi\)
\(68\) 0 0
\(69\) −2.05890 + 2.05890i −0.247862 + 0.247862i
\(70\) 0 0
\(71\) 2.01032 0.238582 0.119291 0.992859i \(-0.461938\pi\)
0.119291 + 0.992859i \(0.461938\pi\)
\(72\) 0 0
\(73\) 0.130678 0.130678i 0.0152947 0.0152947i −0.699418 0.714713i \(-0.746557\pi\)
0.714713 + 0.699418i \(0.246557\pi\)
\(74\) 0 0
\(75\) 3.11350 3.51838i 0.359516 0.406267i
\(76\) 0 0
\(77\) 6.56403i 0.748041i
\(78\) 0 0
\(79\) −13.2101 −1.48626 −0.743128 0.669150i \(-0.766659\pi\)
−0.743128 + 0.669150i \(0.766659\pi\)
\(80\) 0 0
\(81\) 1.83331 0.203701
\(82\) 0 0
\(83\) 8.24281i 0.904766i −0.891824 0.452383i \(-0.850574\pi\)
0.891824 0.452383i \(-0.149426\pi\)
\(84\) 0 0
\(85\) −4.03546 8.95972i −0.437707 0.971818i
\(86\) 0 0
\(87\) −2.62809 + 2.62809i −0.281761 + 0.281761i
\(88\) 0 0
\(89\) −1.49612 −0.158588 −0.0792942 0.996851i \(-0.525267\pi\)
−0.0792942 + 0.996851i \(0.525267\pi\)
\(90\) 0 0
\(91\) −5.50996 + 5.50996i −0.577601 + 0.577601i
\(92\) 0 0
\(93\) −1.48882 −0.154383
\(94\) 0 0
\(95\) 7.70508 + 17.1072i 0.790524 + 1.75516i
\(96\) 0 0
\(97\) 6.11613 6.11613i 0.620999 0.620999i −0.324788 0.945787i \(-0.605293\pi\)
0.945787 + 0.324788i \(0.105293\pi\)
\(98\) 0 0
\(99\) 6.82135 6.82135i 0.685572 0.685572i
\(100\) 0 0
\(101\) −8.76147 8.76147i −0.871799 0.871799i 0.120869 0.992668i \(-0.461432\pi\)
−0.992668 + 0.120869i \(0.961432\pi\)
\(102\) 0 0
\(103\) −5.89018 5.89018i −0.580377 0.580377i 0.354630 0.935007i \(-0.384607\pi\)
−0.935007 + 0.354630i \(0.884607\pi\)
\(104\) 0 0
\(105\) 2.75969 1.24296i 0.269318 0.121301i
\(106\) 0 0
\(107\) 7.97349i 0.770827i −0.922744 0.385413i \(-0.874059\pi\)
0.922744 0.385413i \(-0.125941\pi\)
\(108\) 0 0
\(109\) 2.76833 + 2.76833i 0.265158 + 0.265158i 0.827146 0.561988i \(-0.189963\pi\)
−0.561988 + 0.827146i \(0.689963\pi\)
\(110\) 0 0
\(111\) 1.20602i 0.114471i
\(112\) 0 0
\(113\) 11.8837 + 11.8837i 1.11793 + 1.11793i 0.992045 + 0.125881i \(0.0401758\pi\)
0.125881 + 0.992045i \(0.459824\pi\)
\(114\) 0 0
\(115\) −6.31783 + 2.84555i −0.589141 + 0.265349i
\(116\) 0 0
\(117\) 11.4519 1.05873
\(118\) 0 0
\(119\) 6.33054i 0.580319i
\(120\) 0 0
\(121\) 9.76320i 0.887563i
\(122\) 0 0
\(123\) −2.30491 −0.207827
\(124\) 0 0
\(125\) 9.89533 5.20408i 0.885065 0.465467i
\(126\) 0 0
\(127\) −7.30101 7.30101i −0.647860 0.647860i 0.304615 0.952476i \(-0.401472\pi\)
−0.952476 + 0.304615i \(0.901472\pi\)
\(128\) 0 0
\(129\) 6.37364i 0.561168i
\(130\) 0 0
\(131\) 7.57527 + 7.57527i 0.661854 + 0.661854i 0.955817 0.293963i \(-0.0949741\pi\)
−0.293963 + 0.955817i \(0.594974\pi\)
\(132\) 0 0
\(133\) 12.0872i 1.04809i
\(134\) 0 0
\(135\) −10.0538 3.80970i −0.865297 0.327887i
\(136\) 0 0
\(137\) −6.67718 6.67718i −0.570470 0.570470i 0.361790 0.932260i \(-0.382166\pi\)
−0.932260 + 0.361790i \(0.882166\pi\)
\(138\) 0 0
\(139\) 6.78143 + 6.78143i 0.575193 + 0.575193i 0.933575 0.358382i \(-0.116671\pi\)
−0.358382 + 0.933575i \(0.616671\pi\)
\(140\) 0 0
\(141\) 3.96397 3.96397i 0.333827 0.333827i
\(142\) 0 0
\(143\) 17.4290 17.4290i 1.45748 1.45748i
\(144\) 0 0
\(145\) −8.06443 + 3.63222i −0.669715 + 0.301640i
\(146\) 0 0
\(147\) −4.62757 −0.381676
\(148\) 0 0
\(149\) 3.92575 3.92575i 0.321610 0.321610i −0.527775 0.849384i \(-0.676973\pi\)
0.849384 + 0.527775i \(0.176973\pi\)
\(150\) 0 0
\(151\) 16.4839 1.34144 0.670722 0.741709i \(-0.265984\pi\)
0.670722 + 0.741709i \(0.265984\pi\)
\(152\) 0 0
\(153\) −6.57871 + 6.57871i −0.531857 + 0.531857i
\(154\) 0 0
\(155\) −3.31309 1.25543i −0.266114 0.100838i
\(156\) 0 0
\(157\) 7.11211i 0.567608i −0.958882 0.283804i \(-0.908403\pi\)
0.958882 0.283804i \(-0.0915965\pi\)
\(158\) 0 0
\(159\) −12.8480 −1.01891
\(160\) 0 0
\(161\) −4.46390 −0.351804
\(162\) 0 0
\(163\) 19.9435i 1.56210i 0.624470 + 0.781048i \(0.285315\pi\)
−0.624470 + 0.781048i \(0.714685\pi\)
\(164\) 0 0
\(165\) −8.72939 + 3.93172i −0.679582 + 0.306084i
\(166\) 0 0
\(167\) −13.9919 + 13.9919i −1.08273 + 1.08273i −0.0864749 + 0.996254i \(0.527560\pi\)
−0.996254 + 0.0864749i \(0.972440\pi\)
\(168\) 0 0
\(169\) 16.2604 1.25080
\(170\) 0 0
\(171\) 12.5610 12.5610i 0.960564 0.960564i
\(172\) 0 0
\(173\) −10.4459 −0.794185 −0.397093 0.917779i \(-0.629981\pi\)
−0.397093 + 0.917779i \(0.629981\pi\)
\(174\) 0 0
\(175\) 7.18928 0.438912i 0.543459 0.0331786i
\(176\) 0 0
\(177\) 1.42156 1.42156i 0.106851 0.106851i
\(178\) 0 0
\(179\) −6.42941 + 6.42941i −0.480557 + 0.480557i −0.905309 0.424753i \(-0.860361\pi\)
0.424753 + 0.905309i \(0.360361\pi\)
\(180\) 0 0
\(181\) −4.96413 4.96413i −0.368981 0.368981i 0.498125 0.867105i \(-0.334022\pi\)
−0.867105 + 0.498125i \(0.834022\pi\)
\(182\) 0 0
\(183\) 0.202298 + 0.202298i 0.0149543 + 0.0149543i
\(184\) 0 0
\(185\) 1.01696 2.68378i 0.0747687 0.197315i
\(186\) 0 0
\(187\) 20.0246i 1.46434i
\(188\) 0 0
\(189\) −4.89768 4.89768i −0.356254 0.356254i
\(190\) 0 0
\(191\) 24.2722i 1.75628i 0.478408 + 0.878138i \(0.341214\pi\)
−0.478408 + 0.878138i \(0.658786\pi\)
\(192\) 0 0
\(193\) −3.89887 3.89887i −0.280647 0.280647i 0.552720 0.833367i \(-0.313590\pi\)
−0.833367 + 0.552720i \(0.813590\pi\)
\(194\) 0 0
\(195\) −10.6279 4.02725i −0.761083 0.288397i
\(196\) 0 0
\(197\) 18.2875 1.30293 0.651466 0.758678i \(-0.274154\pi\)
0.651466 + 0.758678i \(0.274154\pi\)
\(198\) 0 0
\(199\) 0.848017i 0.0601143i −0.999548 0.0300572i \(-0.990431\pi\)
0.999548 0.0300572i \(-0.00956893\pi\)
\(200\) 0 0
\(201\) 9.43335i 0.665377i
\(202\) 0 0
\(203\) −5.69797 −0.399919
\(204\) 0 0
\(205\) −5.12915 1.94359i −0.358236 0.135746i
\(206\) 0 0
\(207\) 4.63889 + 4.63889i 0.322425 + 0.322425i
\(208\) 0 0
\(209\) 38.2339i 2.64469i
\(210\) 0 0
\(211\) −14.9631 14.9631i −1.03011 1.03011i −0.999533 0.0305732i \(-0.990267\pi\)
−0.0305732 0.999533i \(-0.509733\pi\)
\(212\) 0 0
\(213\) 1.88897i 0.129430i
\(214\) 0 0
\(215\) 5.37449 14.1833i 0.366537 0.967296i
\(216\) 0 0
\(217\) −1.61395 1.61395i −0.109562 0.109562i
\(218\) 0 0
\(219\) 0.122790 + 0.122790i 0.00829737 + 0.00829737i
\(220\) 0 0
\(221\) −16.8090 + 16.8090i −1.13070 + 1.13070i
\(222\) 0 0
\(223\) 15.6462 15.6462i 1.04775 1.04775i 0.0489455 0.998801i \(-0.484414\pi\)
0.998801 0.0489455i \(-0.0155861\pi\)
\(224\) 0 0
\(225\) −7.92724 7.01500i −0.528482 0.467667i
\(226\) 0 0
\(227\) 7.18645 0.476981 0.238491 0.971145i \(-0.423347\pi\)
0.238491 + 0.971145i \(0.423347\pi\)
\(228\) 0 0
\(229\) 19.3337 19.3337i 1.27761 1.27761i 0.335603 0.942004i \(-0.391060\pi\)
0.942004 0.335603i \(-0.108940\pi\)
\(230\) 0 0
\(231\) −6.16779 −0.405811
\(232\) 0 0
\(233\) −14.5796 + 14.5796i −0.955143 + 0.955143i −0.999036 0.0438933i \(-0.986024\pi\)
0.0438933 + 0.999036i \(0.486024\pi\)
\(234\) 0 0
\(235\) 12.1637 5.47851i 0.793469 0.357379i
\(236\) 0 0
\(237\) 12.4127i 0.806291i
\(238\) 0 0
\(239\) 5.38456 0.348298 0.174149 0.984719i \(-0.444283\pi\)
0.174149 + 0.984719i \(0.444283\pi\)
\(240\) 0 0
\(241\) −19.4003 −1.24968 −0.624841 0.780752i \(-0.714836\pi\)
−0.624841 + 0.780752i \(0.714836\pi\)
\(242\) 0 0
\(243\) 16.1472i 1.03584i
\(244\) 0 0
\(245\) −10.2978 3.90214i −0.657902 0.249299i
\(246\) 0 0
\(247\) 32.0941 32.0941i 2.04210 2.04210i
\(248\) 0 0
\(249\) 7.74523 0.490834
\(250\) 0 0
\(251\) 6.79393 6.79393i 0.428829 0.428829i −0.459400 0.888229i \(-0.651936\pi\)
0.888229 + 0.459400i \(0.151936\pi\)
\(252\) 0 0
\(253\) 14.1201 0.887723
\(254\) 0 0
\(255\) 8.41887 3.79186i 0.527210 0.237455i
\(256\) 0 0
\(257\) 9.57720 9.57720i 0.597409 0.597409i −0.342213 0.939622i \(-0.611177\pi\)
0.939622 + 0.342213i \(0.111177\pi\)
\(258\) 0 0
\(259\) 1.30739 1.30739i 0.0812372 0.0812372i
\(260\) 0 0
\(261\) 5.92134 + 5.92134i 0.366522 + 0.366522i
\(262\) 0 0
\(263\) −1.36034 1.36034i −0.0838820 0.0838820i 0.663921 0.747803i \(-0.268891\pi\)
−0.747803 + 0.663921i \(0.768891\pi\)
\(264\) 0 0
\(265\) −28.5908 10.8339i −1.75632 0.665522i
\(266\) 0 0
\(267\) 1.40581i 0.0860340i
\(268\) 0 0
\(269\) −12.2019 12.2019i −0.743961 0.743961i 0.229377 0.973338i \(-0.426331\pi\)
−0.973338 + 0.229377i \(0.926331\pi\)
\(270\) 0 0
\(271\) 20.2941i 1.23278i −0.787442 0.616388i \(-0.788595\pi\)
0.787442 0.616388i \(-0.211405\pi\)
\(272\) 0 0
\(273\) −5.17735 5.17735i −0.313347 0.313347i
\(274\) 0 0
\(275\) −22.7410 + 1.38836i −1.37133 + 0.0837210i
\(276\) 0 0
\(277\) −3.35288 −0.201455 −0.100728 0.994914i \(-0.532117\pi\)
−0.100728 + 0.994914i \(0.532117\pi\)
\(278\) 0 0
\(279\) 3.35445i 0.200826i
\(280\) 0 0
\(281\) 6.11851i 0.365000i 0.983206 + 0.182500i \(0.0584189\pi\)
−0.983206 + 0.182500i \(0.941581\pi\)
\(282\) 0 0
\(283\) −28.6325 −1.70203 −0.851013 0.525145i \(-0.824011\pi\)
−0.851013 + 0.525145i \(0.824011\pi\)
\(284\) 0 0
\(285\) −16.0745 + 7.23996i −0.952171 + 0.428858i
\(286\) 0 0
\(287\) −2.49864 2.49864i −0.147490 0.147490i
\(288\) 0 0
\(289\) 2.31230i 0.136017i
\(290\) 0 0
\(291\) 5.74693 + 5.74693i 0.336891 + 0.336891i
\(292\) 0 0
\(293\) 8.82401i 0.515504i 0.966211 + 0.257752i \(0.0829818\pi\)
−0.966211 + 0.257752i \(0.917018\pi\)
\(294\) 0 0
\(295\) 4.36213 1.96470i 0.253973 0.114389i
\(296\) 0 0
\(297\) 15.4922 + 15.4922i 0.898951 + 0.898951i
\(298\) 0 0
\(299\) 11.8526 + 11.8526i 0.685456 + 0.685456i
\(300\) 0 0
\(301\) 6.90935 6.90935i 0.398248 0.398248i
\(302\) 0 0
\(303\) 8.23259 8.23259i 0.472950 0.472950i
\(304\) 0 0
\(305\) 0.279591 + 0.620762i 0.0160093 + 0.0355447i
\(306\) 0 0
\(307\) 10.6320 0.606800 0.303400 0.952863i \(-0.401878\pi\)
0.303400 + 0.952863i \(0.401878\pi\)
\(308\) 0 0
\(309\) 5.53462 5.53462i 0.314854 0.314854i
\(310\) 0 0
\(311\) −21.0188 −1.19187 −0.595934 0.803033i \(-0.703218\pi\)
−0.595934 + 0.803033i \(0.703218\pi\)
\(312\) 0 0
\(313\) 5.56786 5.56786i 0.314714 0.314714i −0.532018 0.846733i \(-0.678566\pi\)
0.846733 + 0.532018i \(0.178566\pi\)
\(314\) 0 0
\(315\) −2.80052 6.21784i −0.157791 0.350335i
\(316\) 0 0
\(317\) 1.15926i 0.0651107i −0.999470 0.0325553i \(-0.989635\pi\)
0.999470 0.0325553i \(-0.0103645\pi\)
\(318\) 0 0
\(319\) 18.0237 1.00913
\(320\) 0 0
\(321\) 7.49217 0.418172
\(322\) 0 0
\(323\) 36.8738i 2.05171i
\(324\) 0 0
\(325\) −20.2546 17.9238i −1.12352 0.994231i
\(326\) 0 0
\(327\) −2.60122 + 2.60122i −0.143848 + 0.143848i
\(328\) 0 0
\(329\) 8.59429 0.473819
\(330\) 0 0
\(331\) −10.2111 + 10.2111i −0.561251 + 0.561251i −0.929663 0.368412i \(-0.879902\pi\)
0.368412 + 0.929663i \(0.379902\pi\)
\(332\) 0 0
\(333\) −2.71728 −0.148906
\(334\) 0 0
\(335\) −7.95455 + 20.9922i −0.434604 + 1.14692i
\(336\) 0 0
\(337\) 20.8943 20.8943i 1.13819 1.13819i 0.149412 0.988775i \(-0.452262\pi\)
0.988775 0.149412i \(-0.0477380\pi\)
\(338\) 0 0
\(339\) −11.1664 + 11.1664i −0.606473 + 0.606473i
\(340\) 0 0
\(341\) 5.10522 + 5.10522i 0.276463 + 0.276463i
\(342\) 0 0
\(343\) −12.1468 12.1468i −0.655865 0.655865i
\(344\) 0 0
\(345\) −2.67378 5.93646i −0.143951 0.319608i
\(346\) 0 0
\(347\) 8.32389i 0.446850i 0.974721 + 0.223425i \(0.0717237\pi\)
−0.974721 + 0.223425i \(0.928276\pi\)
\(348\) 0 0
\(349\) −20.1777 20.1777i −1.08009 1.08009i −0.996501 0.0835867i \(-0.973362\pi\)
−0.0835867 0.996501i \(-0.526638\pi\)
\(350\) 0 0
\(351\) 26.0089i 1.38825i
\(352\) 0 0
\(353\) 0.383759 + 0.383759i 0.0204254 + 0.0204254i 0.717246 0.696820i \(-0.245403\pi\)
−0.696820 + 0.717246i \(0.745403\pi\)
\(354\) 0 0
\(355\) −1.59285 + 4.20355i −0.0845397 + 0.223101i
\(356\) 0 0
\(357\) 5.94839 0.314822
\(358\) 0 0
\(359\) 18.0846i 0.954469i −0.878776 0.477235i \(-0.841639\pi\)
0.878776 0.477235i \(-0.158361\pi\)
\(360\) 0 0
\(361\) 51.4047i 2.70551i
\(362\) 0 0
\(363\) 9.17384 0.481502
\(364\) 0 0
\(365\) 0.169705 + 0.376787i 0.00888276 + 0.0197219i
\(366\) 0 0
\(367\) −13.2373 13.2373i −0.690979 0.690979i 0.271468 0.962447i \(-0.412491\pi\)
−0.962447 + 0.271468i \(0.912491\pi\)
\(368\) 0 0
\(369\) 5.19319i 0.270347i
\(370\) 0 0
\(371\) −13.9279 13.9279i −0.723099 0.723099i
\(372\) 0 0
\(373\) 6.42208i 0.332523i −0.986082 0.166261i \(-0.946830\pi\)
0.986082 0.166261i \(-0.0531695\pi\)
\(374\) 0 0
\(375\) 4.88993 + 9.29800i 0.252515 + 0.480147i
\(376\) 0 0
\(377\) 15.1294 + 15.1294i 0.779203 + 0.779203i
\(378\) 0 0
\(379\) 8.86295 + 8.86295i 0.455259 + 0.455259i 0.897096 0.441837i \(-0.145673\pi\)
−0.441837 + 0.897096i \(0.645673\pi\)
\(380\) 0 0
\(381\) 6.86029 6.86029i 0.351463 0.351463i
\(382\) 0 0
\(383\) −10.4938 + 10.4938i −0.536208 + 0.536208i −0.922413 0.386205i \(-0.873786\pi\)
0.386205 + 0.922413i \(0.373786\pi\)
\(384\) 0 0
\(385\) −13.7253 5.20091i −0.699504 0.265063i
\(386\) 0 0
\(387\) −14.3604 −0.729981
\(388\) 0 0
\(389\) 19.2034 19.2034i 0.973649 0.973649i −0.0260124 0.999662i \(-0.508281\pi\)
0.999662 + 0.0260124i \(0.00828093\pi\)
\(390\) 0 0
\(391\) −13.6178 −0.688683
\(392\) 0 0
\(393\) −7.11799 + 7.11799i −0.359055 + 0.359055i
\(394\) 0 0
\(395\) 10.4669 27.6221i 0.526644 1.38982i
\(396\) 0 0
\(397\) 7.01030i 0.351837i −0.984405 0.175918i \(-0.943711\pi\)
0.984405 0.175918i \(-0.0562895\pi\)
\(398\) 0 0
\(399\) −11.3575 −0.568587
\(400\) 0 0
\(401\) −2.47101 −0.123396 −0.0616981 0.998095i \(-0.519652\pi\)
−0.0616981 + 0.998095i \(0.519652\pi\)
\(402\) 0 0
\(403\) 8.57082i 0.426943i
\(404\) 0 0
\(405\) −1.45260 + 3.83342i −0.0721801 + 0.190484i
\(406\) 0 0
\(407\) −4.13551 + 4.13551i −0.204989 + 0.204989i
\(408\) 0 0
\(409\) −24.3365 −1.20336 −0.601680 0.798737i \(-0.705502\pi\)
−0.601680 + 0.798737i \(0.705502\pi\)
\(410\) 0 0
\(411\) 6.27411 6.27411i 0.309479 0.309479i
\(412\) 0 0
\(413\) 3.08208 0.151659
\(414\) 0 0
\(415\) 17.2356 + 6.53107i 0.846061 + 0.320598i
\(416\) 0 0
\(417\) −6.37206 + 6.37206i −0.312041 + 0.312041i
\(418\) 0 0
\(419\) 16.9042 16.9042i 0.825824 0.825824i −0.161112 0.986936i \(-0.551508\pi\)
0.986936 + 0.161112i \(0.0515079\pi\)
\(420\) 0 0
\(421\) −12.9762 12.9762i −0.632422 0.632422i 0.316253 0.948675i \(-0.397575\pi\)
−0.948675 + 0.316253i \(0.897575\pi\)
\(422\) 0 0
\(423\) −8.93120 8.93120i −0.434250 0.434250i
\(424\) 0 0
\(425\) 21.9320 1.33897i 1.06386 0.0649496i
\(426\) 0 0
\(427\) 0.438602i 0.0212255i
\(428\) 0 0
\(429\) 16.3769 + 16.3769i 0.790683 + 0.790683i
\(430\) 0 0
\(431\) 12.4393i 0.599182i −0.954068 0.299591i \(-0.903150\pi\)
0.954068 0.299591i \(-0.0968502\pi\)
\(432\) 0 0
\(433\) 27.0966 + 27.0966i 1.30218 + 1.30218i 0.926919 + 0.375261i \(0.122447\pi\)
0.375261 + 0.926919i \(0.377553\pi\)
\(434\) 0 0
\(435\) −3.41296 7.57762i −0.163639 0.363319i
\(436\) 0 0
\(437\) 26.0011 1.24380
\(438\) 0 0
\(439\) 15.5428i 0.741816i 0.928670 + 0.370908i \(0.120953\pi\)
−0.928670 + 0.370908i \(0.879047\pi\)
\(440\) 0 0
\(441\) 10.4264i 0.496493i
\(442\) 0 0
\(443\) 16.7942 0.797917 0.398959 0.916969i \(-0.369372\pi\)
0.398959 + 0.916969i \(0.369372\pi\)
\(444\) 0 0
\(445\) 1.18543 3.12836i 0.0561947 0.148298i
\(446\) 0 0
\(447\) 3.68877 + 3.68877i 0.174473 + 0.174473i
\(448\) 0 0
\(449\) 4.54035i 0.214272i 0.994244 + 0.107136i \(0.0341681\pi\)
−0.994244 + 0.107136i \(0.965832\pi\)
\(450\) 0 0
\(451\) 7.90365 + 7.90365i 0.372168 + 0.372168i
\(452\) 0 0
\(453\) 15.4889i 0.727731i
\(454\) 0 0
\(455\) −7.15549 15.8870i −0.335454 0.744792i
\(456\) 0 0
\(457\) −4.83585 4.83585i −0.226212 0.226212i 0.584896 0.811108i \(-0.301135\pi\)
−0.811108 + 0.584896i \(0.801135\pi\)
\(458\) 0 0
\(459\) −14.9411 14.9411i −0.697393 0.697393i
\(460\) 0 0
\(461\) −7.74413 + 7.74413i −0.360680 + 0.360680i −0.864063 0.503383i \(-0.832088\pi\)
0.503383 + 0.864063i \(0.332088\pi\)
\(462\) 0 0
\(463\) 16.6931 16.6931i 0.775795 0.775795i −0.203318 0.979113i \(-0.565172\pi\)
0.979113 + 0.203318i \(0.0651724\pi\)
\(464\) 0 0
\(465\) 1.17964 3.11309i 0.0547047 0.144366i
\(466\) 0 0
\(467\) 23.9174 1.10677 0.553383 0.832927i \(-0.313337\pi\)
0.553383 + 0.832927i \(0.313337\pi\)
\(468\) 0 0
\(469\) −10.2262 + 10.2262i −0.472203 + 0.472203i
\(470\) 0 0
\(471\) 6.68279 0.307927
\(472\) 0 0
\(473\) −21.8555 + 21.8555i −1.00492 + 1.00492i
\(474\) 0 0
\(475\) −41.8758 + 2.55655i −1.92139 + 0.117303i
\(476\) 0 0
\(477\) 28.9477i 1.32543i
\(478\) 0 0
\(479\) −25.0247 −1.14341 −0.571703 0.820460i \(-0.693717\pi\)
−0.571703 + 0.820460i \(0.693717\pi\)
\(480\) 0 0
\(481\) −6.94283 −0.316566
\(482\) 0 0
\(483\) 4.19443i 0.190853i
\(484\) 0 0
\(485\) 7.94269 + 17.6347i 0.360659 + 0.800753i
\(486\) 0 0
\(487\) −11.3049 + 11.3049i −0.512274 + 0.512274i −0.915223 0.402949i \(-0.867985\pi\)
0.402949 + 0.915223i \(0.367985\pi\)
\(488\) 0 0
\(489\) −18.7396 −0.847435
\(490\) 0 0
\(491\) −17.0233 + 17.0233i −0.768250 + 0.768250i −0.977798 0.209548i \(-0.932801\pi\)
0.209548 + 0.977798i \(0.432801\pi\)
\(492\) 0 0
\(493\) −17.3825 −0.782870
\(494\) 0 0
\(495\) 8.85853 + 19.6681i 0.398161 + 0.884017i
\(496\) 0 0
\(497\) −2.04774 + 2.04774i −0.0918536 + 0.0918536i
\(498\) 0 0
\(499\) 11.4673 11.4673i 0.513347 0.513347i −0.402204 0.915550i \(-0.631756\pi\)
0.915550 + 0.402204i \(0.131756\pi\)
\(500\) 0 0
\(501\) −13.1473 13.1473i −0.587379 0.587379i
\(502\) 0 0
\(503\) 14.5339 + 14.5339i 0.648033 + 0.648033i 0.952517 0.304484i \(-0.0984842\pi\)
−0.304484 + 0.952517i \(0.598484\pi\)
\(504\) 0 0
\(505\) 25.2621 11.3781i 1.12415 0.506317i
\(506\) 0 0
\(507\) 15.2788i 0.678556i
\(508\) 0 0
\(509\) 12.9000 + 12.9000i 0.571783 + 0.571783i 0.932627 0.360843i \(-0.117511\pi\)
−0.360843 + 0.932627i \(0.617511\pi\)
\(510\) 0 0
\(511\) 0.266221i 0.0117769i
\(512\) 0 0
\(513\) 28.5278 + 28.5278i 1.25953 + 1.25953i
\(514\) 0 0
\(515\) 16.9833 7.64927i 0.748372 0.337067i
\(516\) 0 0
\(517\) −27.1853 −1.19561
\(518\) 0 0
\(519\) 9.81531i 0.430844i
\(520\) 0 0
\(521\) 16.8361i 0.737601i 0.929509 + 0.368801i \(0.120231\pi\)
−0.929509 + 0.368801i \(0.879769\pi\)
\(522\) 0 0
\(523\) −5.88217 −0.257209 −0.128605 0.991696i \(-0.541050\pi\)
−0.128605 + 0.991696i \(0.541050\pi\)
\(524\) 0 0
\(525\) 0.412417 + 6.75530i 0.0179993 + 0.294826i
\(526\) 0 0
\(527\) −4.92362 4.92362i −0.214476 0.214476i
\(528\) 0 0
\(529\) 13.3976i 0.582503i
\(530\) 0 0
\(531\) −3.20291 3.20291i −0.138994 0.138994i
\(532\) 0 0
\(533\) 13.2689i 0.574741i
\(534\) 0 0
\(535\) 16.6724 + 6.31768i 0.720812 + 0.273137i
\(536\) 0 0
\(537\) −6.04130 6.04130i −0.260701 0.260701i
\(538\) 0 0
\(539\) 15.8681 + 15.8681i 0.683489 + 0.683489i
\(540\) 0 0
\(541\) 25.5334 25.5334i 1.09777 1.09777i 0.103097 0.994671i \(-0.467125\pi\)
0.994671 0.103097i \(-0.0328752\pi\)
\(542\) 0 0
\(543\) 4.66447 4.66447i 0.200171 0.200171i
\(544\) 0 0
\(545\) −7.98197 + 3.59508i −0.341910 + 0.153996i
\(546\) 0 0
\(547\) −33.9517 −1.45167 −0.725835 0.687869i \(-0.758546\pi\)
−0.725835 + 0.687869i \(0.758546\pi\)
\(548\) 0 0
\(549\) 0.455797 0.455797i 0.0194529 0.0194529i
\(550\) 0 0
\(551\) 33.1892 1.41391
\(552\) 0 0
\(553\) 13.4560 13.4560i 0.572207 0.572207i
\(554\) 0 0
\(555\) 2.52177 + 0.955575i 0.107043 + 0.0405619i
\(556\) 0 0
\(557\) 16.0858i 0.681576i −0.940140 0.340788i \(-0.889306\pi\)
0.940140 0.340788i \(-0.110694\pi\)
\(558\) 0 0
\(559\) −36.6917 −1.55190
\(560\) 0 0
\(561\) −18.8158 −0.794405
\(562\) 0 0
\(563\) 25.0409i 1.05535i −0.849447 0.527675i \(-0.823064\pi\)
0.849447 0.527675i \(-0.176936\pi\)
\(564\) 0 0
\(565\) −34.2645 + 15.4328i −1.44152 + 0.649261i
\(566\) 0 0
\(567\) −1.86743 + 1.86743i −0.0784248 + 0.0784248i
\(568\) 0 0
\(569\) 35.9948 1.50898 0.754490 0.656311i \(-0.227884\pi\)
0.754490 + 0.656311i \(0.227884\pi\)
\(570\) 0 0
\(571\) −2.90471 + 2.90471i −0.121558 + 0.121558i −0.765269 0.643711i \(-0.777394\pi\)
0.643711 + 0.765269i \(0.277394\pi\)
\(572\) 0 0
\(573\) −22.8070 −0.952777
\(574\) 0 0
\(575\) −0.944157 15.4651i −0.0393741 0.644939i
\(576\) 0 0
\(577\) −16.2961 + 16.2961i −0.678417 + 0.678417i −0.959642 0.281225i \(-0.909259\pi\)
0.281225 + 0.959642i \(0.409259\pi\)
\(578\) 0 0
\(579\) 3.66352 3.66352i 0.152251 0.152251i
\(580\) 0 0
\(581\) 8.39622 + 8.39622i 0.348334 + 0.348334i
\(582\) 0 0
\(583\) 44.0563 + 44.0563i 1.82463 + 1.82463i
\(584\) 0 0
\(585\) −9.07376 + 23.9458i −0.375154 + 0.990035i
\(586\) 0 0
\(587\) 42.0558i 1.73583i −0.496716 0.867913i \(-0.665461\pi\)
0.496716 0.867913i \(-0.334539\pi\)
\(588\) 0 0
\(589\) 9.40088 + 9.40088i 0.387357 + 0.387357i
\(590\) 0 0
\(591\) 17.1836i 0.706839i
\(592\) 0 0
\(593\) −19.7600 19.7600i −0.811446 0.811446i 0.173404 0.984851i \(-0.444523\pi\)
−0.984851 + 0.173404i \(0.944523\pi\)
\(594\) 0 0
\(595\) 13.2370 + 5.01591i 0.542665 + 0.205632i
\(596\) 0 0
\(597\) 0.796826 0.0326119
\(598\) 0 0
\(599\) 38.3344i 1.56630i 0.621833 + 0.783150i \(0.286388\pi\)
−0.621833 + 0.783150i \(0.713612\pi\)
\(600\) 0 0
\(601\) 1.37984i 0.0562849i −0.999604 0.0281424i \(-0.991041\pi\)
0.999604 0.0281424i \(-0.00895920\pi\)
\(602\) 0 0
\(603\) 21.2542 0.865539
\(604\) 0 0
\(605\) 20.4147 + 7.73573i 0.829974 + 0.314502i
\(606\) 0 0
\(607\) −24.1264 24.1264i −0.979261 0.979261i 0.0205286 0.999789i \(-0.493465\pi\)
−0.999789 + 0.0205286i \(0.993465\pi\)
\(608\) 0 0
\(609\) 5.35401i 0.216955i
\(610\) 0 0
\(611\) −22.8198 22.8198i −0.923189 0.923189i
\(612\) 0 0
\(613\) 8.45490i 0.341490i 0.985315 + 0.170745i \(0.0546174\pi\)
−0.985315 + 0.170745i \(0.945383\pi\)
\(614\) 0 0
\(615\) 1.82626 4.81953i 0.0736421 0.194342i
\(616\) 0 0
\(617\) 2.55138 + 2.55138i 0.102715 + 0.102715i 0.756597 0.653882i \(-0.226861\pi\)
−0.653882 + 0.756597i \(0.726861\pi\)
\(618\) 0 0
\(619\) 1.07954 + 1.07954i 0.0433905 + 0.0433905i 0.728469 0.685079i \(-0.240232\pi\)
−0.685079 + 0.728469i \(0.740232\pi\)
\(620\) 0 0
\(621\) −10.5356 + 10.5356i −0.422777 + 0.422777i
\(622\) 0 0
\(623\) 1.52396 1.52396i 0.0610564 0.0610564i
\(624\) 0 0
\(625\) 3.04121 + 24.8143i 0.121648 + 0.992573i
\(626\) 0 0
\(627\) 35.9259 1.43474
\(628\) 0 0
\(629\) 3.98840 3.98840i 0.159028 0.159028i
\(630\) 0 0
\(631\) −10.8929 −0.433638 −0.216819 0.976212i \(-0.569568\pi\)
−0.216819 + 0.976212i \(0.569568\pi\)
\(632\) 0 0
\(633\) 14.0599 14.0599i 0.558831 0.558831i
\(634\) 0 0
\(635\) 21.0511 9.48144i 0.835389 0.376259i
\(636\) 0 0
\(637\) 26.6400i 1.05551i
\(638\) 0 0
\(639\) 4.25603 0.168366
\(640\) 0 0
\(641\) −5.90389 −0.233190 −0.116595 0.993180i \(-0.537198\pi\)
−0.116595 + 0.993180i \(0.537198\pi\)
\(642\) 0 0
\(643\) 18.5260i 0.730595i −0.930891 0.365297i \(-0.880967\pi\)
0.930891 0.365297i \(-0.119033\pi\)
\(644\) 0 0
\(645\) 13.3272 + 5.05006i 0.524757 + 0.198846i
\(646\) 0 0
\(647\) −14.1074 + 14.1074i −0.554618 + 0.554618i −0.927770 0.373152i \(-0.878277\pi\)
0.373152 + 0.927770i \(0.378277\pi\)
\(648\) 0 0
\(649\) −9.74918 −0.382689
\(650\) 0 0
\(651\) 1.51653 1.51653i 0.0594374 0.0594374i
\(652\) 0 0
\(653\) 37.3232 1.46057 0.730285 0.683143i \(-0.239387\pi\)
0.730285 + 0.683143i \(0.239387\pi\)
\(654\) 0 0
\(655\) −21.8419 + 9.83760i −0.853434 + 0.384387i
\(656\) 0 0
\(657\) 0.276657 0.276657i 0.0107934 0.0107934i
\(658\) 0 0
\(659\) 15.7382 15.7382i 0.613075 0.613075i −0.330671 0.943746i \(-0.607275\pi\)
0.943746 + 0.330671i \(0.107275\pi\)
\(660\) 0 0
\(661\) 8.03703 + 8.03703i 0.312604 + 0.312604i 0.845918 0.533313i \(-0.179053\pi\)
−0.533313 + 0.845918i \(0.679053\pi\)
\(662\) 0 0
\(663\) −15.7943 15.7943i −0.613401 0.613401i
\(664\) 0 0
\(665\) −25.2740 9.57709i −0.980085 0.371383i
\(666\) 0 0
\(667\) 12.2571i 0.474596i
\(668\) 0 0
\(669\) 14.7017 + 14.7017i 0.568401 + 0.568401i
\(670\) 0 0
\(671\) 1.38738i 0.0535591i
\(672\) 0 0
\(673\) 8.84337 + 8.84337i 0.340887 + 0.340887i 0.856701 0.515814i \(-0.172510\pi\)
−0.515814 + 0.856701i \(0.672510\pi\)
\(674\) 0 0
\(675\) 15.9320 18.0038i 0.613224 0.692968i
\(676\) 0 0
\(677\) −20.3288 −0.781299 −0.390650 0.920539i \(-0.627750\pi\)
−0.390650 + 0.920539i \(0.627750\pi\)
\(678\) 0 0
\(679\) 12.4599i 0.478168i
\(680\) 0 0
\(681\) 6.75264i 0.258762i
\(682\) 0 0
\(683\) −34.6127 −1.32442 −0.662208 0.749320i \(-0.730381\pi\)
−0.662208 + 0.749320i \(0.730381\pi\)
\(684\) 0 0
\(685\) 19.2524 8.67129i 0.735597 0.331313i
\(686\) 0 0
\(687\) 18.1666 + 18.1666i 0.693100 + 0.693100i
\(688\) 0 0
\(689\) 73.9633i 2.81778i
\(690\) 0 0
\(691\) 5.37721 + 5.37721i 0.204559 + 0.204559i 0.801950 0.597391i \(-0.203796\pi\)
−0.597391 + 0.801950i \(0.703796\pi\)
\(692\) 0 0
\(693\) 13.8966i 0.527889i
\(694\) 0 0
\(695\) −19.5530 + 8.80667i −0.741688 + 0.334056i
\(696\) 0 0
\(697\) −7.62250 7.62250i −0.288723 0.288723i
\(698\) 0 0
\(699\) −13.6995 13.6995i −0.518164 0.518164i
\(700\) 0 0
\(701\) −18.8920 + 18.8920i −0.713541 + 0.713541i −0.967274 0.253733i \(-0.918341\pi\)
0.253733 + 0.967274i \(0.418341\pi\)
\(702\) 0 0
\(703\) −7.61522 + 7.61522i −0.287213 + 0.287213i
\(704\) 0 0
\(705\) 5.14780 + 11.4294i 0.193877 + 0.430456i
\(706\) 0 0
\(707\) 17.8491 0.671283
\(708\) 0 0
\(709\) −15.8819 + 15.8819i −0.596456 + 0.596456i −0.939368 0.342911i \(-0.888587\pi\)
0.342911 + 0.939368i \(0.388587\pi\)
\(710\) 0 0
\(711\) −27.9670 −1.04884
\(712\) 0 0
\(713\) −3.47183 + 3.47183i −0.130021 + 0.130021i
\(714\) 0 0
\(715\) 22.6341 + 50.2533i 0.846467 + 1.87937i
\(716\) 0 0
\(717\) 5.05952i 0.188951i
\(718\) 0 0
\(719\) 21.7427 0.810865 0.405433 0.914125i \(-0.367121\pi\)
0.405433 + 0.914125i \(0.367121\pi\)
\(720\) 0 0
\(721\) 11.9996 0.446889
\(722\) 0 0
\(723\) 18.2292i 0.677951i
\(724\) 0 0
\(725\) −1.20517 19.7405i −0.0447591 0.733144i
\(726\) 0 0
\(727\) 7.65957 7.65957i 0.284078 0.284078i −0.550655 0.834733i \(-0.685622\pi\)
0.834733 + 0.550655i \(0.185622\pi\)
\(728\) 0 0
\(729\) −9.67256 −0.358243
\(730\) 0 0
\(731\) 21.0781 21.0781i 0.779600 0.779600i
\(732\) 0 0
\(733\) 47.8143 1.76606 0.883030 0.469316i \(-0.155499\pi\)
0.883030 + 0.469316i \(0.155499\pi\)
\(734\) 0 0
\(735\) 3.66659 9.67617i 0.135244 0.356911i
\(736\) 0 0
\(737\) 32.3474 32.3474i 1.19153 1.19153i
\(738\) 0 0
\(739\) −4.22084 + 4.22084i −0.155266 + 0.155266i −0.780465 0.625199i \(-0.785018\pi\)
0.625199 + 0.780465i \(0.285018\pi\)
\(740\) 0 0
\(741\) 30.1568 + 30.1568i 1.10784 + 1.10784i
\(742\) 0 0
\(743\) 10.6484 + 10.6484i 0.390650 + 0.390650i 0.874919 0.484269i \(-0.160914\pi\)
−0.484269 + 0.874919i \(0.660914\pi\)
\(744\) 0 0
\(745\) 5.09816 + 11.3192i 0.186782 + 0.414703i
\(746\) 0 0
\(747\) 17.4507i 0.638489i
\(748\) 0 0
\(749\) 8.12189 + 8.12189i 0.296767 + 0.296767i
\(750\) 0 0
\(751\) 7.38006i 0.269302i −0.990893 0.134651i \(-0.957009\pi\)
0.990893 0.134651i \(-0.0429914\pi\)
\(752\) 0 0
\(753\) 6.38382 + 6.38382i 0.232639 + 0.232639i
\(754\) 0 0
\(755\) −13.0608 + 34.4676i −0.475331 + 1.25440i
\(756\) 0 0
\(757\) −7.66297 −0.278516 −0.139258 0.990256i \(-0.544472\pi\)
−0.139258 + 0.990256i \(0.544472\pi\)
\(758\) 0 0
\(759\) 13.2677i 0.481588i
\(760\) 0 0
\(761\) 0.144605i 0.00524192i −0.999997 0.00262096i \(-0.999166\pi\)
0.999997 0.00262096i \(-0.000834278\pi\)
\(762\) 0 0
\(763\) −5.63970 −0.204171
\(764\) 0 0
\(765\) −8.54341 18.9685i −0.308888 0.685807i
\(766\) 0 0
\(767\) −8.18363 8.18363i −0.295494 0.295494i
\(768\) 0 0
\(769\) 18.5898i 0.670365i 0.942153 + 0.335182i \(0.108798\pi\)
−0.942153 + 0.335182i \(0.891202\pi\)
\(770\) 0 0
\(771\) 8.99907 + 8.99907i 0.324094 + 0.324094i
\(772\) 0 0
\(773\) 11.9451i 0.429636i −0.976654 0.214818i \(-0.931084\pi\)
0.976654 0.214818i \(-0.0689158\pi\)
\(774\) 0 0
\(775\) 5.25015 5.93289i 0.188591 0.213116i
\(776\) 0 0
\(777\) 1.22847 + 1.22847i 0.0440711 + 0.0440711i
\(778\) 0 0
\(779\) 14.5540 + 14.5540i 0.521450 + 0.521450i
\(780\) 0 0
\(781\) 6.47736 6.47736i 0.231778 0.231778i
\(782\) 0 0
\(783\) −13.4482 + 13.4482i −0.480598 + 0.480598i
\(784\) 0 0
\(785\) 14.8713 + 5.63517i 0.530779 + 0.201128i
\(786\) 0 0
\(787\) 24.9168 0.888189 0.444095 0.895980i \(-0.353525\pi\)
0.444095 + 0.895980i \(0.353525\pi\)
\(788\) 0 0
\(789\) 1.27822 1.27822i 0.0455059 0.0455059i
\(790\) 0 0
\(791\) −24.2098 −0.860801
\(792\) 0 0
\(793\) 1.16459 1.16459i 0.0413557 0.0413557i
\(794\) 0 0
\(795\) 10.1799 26.8649i 0.361045 0.952801i
\(796\) 0 0
\(797\) 47.9617i 1.69889i −0.527677 0.849445i \(-0.676937\pi\)
0.527677 0.849445i \(-0.323063\pi\)
\(798\) 0 0
\(799\) 26.2182 0.927535
\(800\) 0 0
\(801\) −3.16741 −0.111915
\(802\) 0 0
\(803\) 0.842104i 0.0297172i
\(804\) 0 0
\(805\) 3.53690 9.33392i 0.124659 0.328978i
\(806\) 0 0
\(807\) 11.4653 11.4653i 0.403598 0.403598i
\(808\) 0 0
\(809\) 38.5831 1.35651 0.678255 0.734827i \(-0.262737\pi\)
0.678255 + 0.734827i \(0.262737\pi\)
\(810\) 0 0
\(811\) −4.26398 + 4.26398i −0.149729 + 0.149729i −0.777997 0.628268i \(-0.783764\pi\)
0.628268 + 0.777997i \(0.283764\pi\)
\(812\) 0 0
\(813\) 19.0690 0.668779
\(814\) 0 0
\(815\) −41.7015 15.8020i −1.46074 0.553518i
\(816\) 0 0
\(817\) −40.2452 + 40.2452i −1.40800 + 1.40800i
\(818\) 0 0
\(819\) −11.6651 + 11.6651i −0.407610 + 0.407610i
\(820\) 0 0
\(821\) 17.3718 + 17.3718i 0.606279 + 0.606279i 0.941972 0.335692i \(-0.108970\pi\)
−0.335692 + 0.941972i \(0.608970\pi\)
\(822\) 0 0
\(823\) −20.0408 20.0408i −0.698580 0.698580i 0.265524 0.964104i \(-0.414455\pi\)
−0.964104 + 0.265524i \(0.914455\pi\)
\(824\) 0 0
\(825\) −1.30455 21.3682i −0.0454185 0.743946i
\(826\) 0 0
\(827\) 9.01022i 0.313316i −0.987653 0.156658i \(-0.949928\pi\)
0.987653 0.156658i \(-0.0500720\pi\)
\(828\) 0 0
\(829\) −4.96517 4.96517i −0.172447 0.172447i 0.615606 0.788054i \(-0.288911\pi\)
−0.788054 + 0.615606i \(0.788911\pi\)
\(830\) 0 0
\(831\) 3.15048i 0.109289i
\(832\) 0 0
\(833\) −15.3037 15.3037i −0.530241 0.530241i
\(834\) 0 0
\(835\) −18.1706 40.3432i −0.628819 1.39613i
\(836\) 0 0
\(837\) −7.61842 −0.263331
\(838\) 0 0
\(839\) 4.47707i 0.154566i 0.997009 + 0.0772828i \(0.0246244\pi\)
−0.997009 + 0.0772828i \(0.975376\pi\)
\(840\) 0 0
\(841\) 13.3544i 0.460496i
\(842\) 0 0
\(843\) −5.74917 −0.198012
\(844\) 0 0
\(845\) −12.8837 + 34.0001i −0.443211 + 1.16964i
\(846\) 0 0
\(847\) 9.94490 + 9.94490i 0.341711 + 0.341711i
\(848\) 0 0
\(849\) 26.9041i 0.923347i
\(850\) 0 0
\(851\) −2.81237 2.81237i −0.0964067 0.0964067i
\(852\) 0 0
\(853\) 44.4073i 1.52048i −0.649644 0.760239i \(-0.725082\pi\)
0.649644 0.760239i \(-0.274918\pi\)
\(854\) 0 0
\(855\) 16.3123 + 36.2174i 0.557869 + 1.23861i
\(856\) 0 0
\(857\) −10.8581 10.8581i −0.370905 0.370905i 0.496902 0.867807i \(-0.334471\pi\)
−0.867807 + 0.496902i \(0.834471\pi\)
\(858\) 0 0
\(859\) −29.5319 29.5319i −1.00762 1.00762i −0.999971 0.00764439i \(-0.997567\pi\)
−0.00764439 0.999971i \(-0.502433\pi\)
\(860\) 0 0
\(861\) 2.34781 2.34781i 0.0800132 0.0800132i
\(862\) 0 0
\(863\) −35.5938 + 35.5938i −1.21163 + 1.21163i −0.241136 + 0.970491i \(0.577520\pi\)
−0.970491 + 0.241136i \(0.922480\pi\)
\(864\) 0 0
\(865\) 8.27664 21.8421i 0.281414 0.742655i
\(866\) 0 0
\(867\) 2.17272 0.0737893
\(868\) 0 0
\(869\) −42.5637 + 42.5637i −1.44387 + 1.44387i
\(870\) 0 0
\(871\) 54.3059 1.84008
\(872\) 0 0
\(873\) 12.9484 12.9484i 0.438236 0.438236i
\(874\) 0 0
\(875\) −4.77857 + 15.3804i −0.161545 + 0.519953i
\(876\) 0 0
\(877\) 19.0764i 0.644165i 0.946712 + 0.322083i \(0.104383\pi\)
−0.946712 + 0.322083i \(0.895617\pi\)
\(878\) 0 0
\(879\) −8.29135 −0.279660
\(880\) 0 0
\(881\) 45.9584 1.54838 0.774189 0.632954i \(-0.218158\pi\)
0.774189 + 0.632954i \(0.218158\pi\)
\(882\) 0 0
\(883\) 0.280016i 0.00942327i −0.999989 0.00471164i \(-0.998500\pi\)
0.999989 0.00471164i \(-0.00149977\pi\)
\(884\) 0 0
\(885\) 1.84610 + 4.09881i 0.0620561 + 0.137780i
\(886\) 0 0
\(887\) −13.6733 + 13.6733i −0.459105 + 0.459105i −0.898362 0.439257i \(-0.855242\pi\)
0.439257 + 0.898362i \(0.355242\pi\)
\(888\) 0 0
\(889\) 14.8738 0.498851
\(890\) 0 0
\(891\) 5.90702 5.90702i 0.197893 0.197893i
\(892\) 0 0
\(893\) −50.0596 −1.67518
\(894\) 0 0
\(895\) −8.34953 18.5380i −0.279094 0.619658i
\(896\) 0 0
\(897\) −11.1372 + 11.1372i −0.371859 + 0.371859i
\(898\) 0 0
\(899\) −4.43164 + 4.43164i −0.147803 + 0.147803i
\(900\) 0 0
\(901\) −42.4892 42.4892i −1.41552 1.41552i
\(902\) 0 0
\(903\) 6.49226 + 6.49226i 0.216049 + 0.216049i
\(904\) 0 0
\(905\) 14.3131 6.44665i 0.475785 0.214294i
\(906\) 0 0
\(907\) 55.4174i 1.84011i 0.391794 + 0.920053i \(0.371855\pi\)
−0.391794 + 0.920053i \(0.628145\pi\)
\(908\) 0 0
\(909\) −18.5488 18.5488i −0.615225 0.615225i
\(910\) 0 0
\(911\) 23.4625i 0.777348i 0.921375 + 0.388674i \(0.127067\pi\)
−0.921375 + 0.388674i \(0.872933\pi\)
\(912\) 0 0
\(913\) −26.5587 26.5587i −0.878966 0.878966i
\(914\) 0 0
\(915\) −0.583290 + 0.262714i −0.0192830 + 0.00868505i
\(916\) 0 0
\(917\) −15.4325 −0.509626
\(918\) 0 0
\(919\) 37.3241i 1.23121i −0.788055 0.615604i \(-0.788912\pi\)
0.788055 0.615604i \(-0.211088\pi\)
\(920\) 0 0
\(921\) 9.99019i 0.329188i
\(922\) 0 0
\(923\) 10.8744 0.357936
\(924\) 0 0
\(925\) 4.80596 + 4.25291i 0.158019 + 0.139835i
\(926\) 0 0
\(927\) −12.4700 12.4700i −0.409569 0.409569i
\(928\) 0 0
\(929\) 24.2664i 0.796153i 0.917352 + 0.398077i \(0.130322\pi\)
−0.917352 + 0.398077i \(0.869678\pi\)
\(930\) 0 0
\(931\) 29.2200 + 29.2200i 0.957646 + 0.957646i
\(932\) 0 0
\(933\) 19.7500i 0.646587i
\(934\) 0 0
\(935\) −41.8711 15.8662i −1.36933 0.518880i
\(936\) 0 0
\(937\) −1.52618 1.52618i −0.0498582 0.0498582i 0.681738 0.731596i \(-0.261224\pi\)
−0.731596 + 0.681738i \(0.761224\pi\)
\(938\) 0 0
\(939\) 5.23176 + 5.23176i 0.170732 + 0.170732i
\(940\) 0 0
\(941\) −16.7475 + 16.7475i −0.545953 + 0.545953i −0.925268 0.379315i \(-0.876160\pi\)
0.379315 + 0.925268i \(0.376160\pi\)
\(942\) 0 0
\(943\) −5.37491 + 5.37491i −0.175031 + 0.175031i
\(944\) 0 0
\(945\) 14.1216 6.36035i 0.459374 0.206902i
\(946\) 0 0
\(947\) −24.3522 −0.791339 −0.395670 0.918393i \(-0.629487\pi\)
−0.395670 + 0.918393i \(0.629487\pi\)
\(948\) 0 0
\(949\) 0.706876 0.706876i 0.0229462 0.0229462i
\(950\) 0 0
\(951\) 1.08928 0.0353224
\(952\) 0 0
\(953\) −5.88082 + 5.88082i −0.190498 + 0.190498i −0.795911 0.605413i \(-0.793008\pi\)
0.605413 + 0.795911i \(0.293008\pi\)
\(954\) 0 0
\(955\) −50.7528 19.2317i −1.64232 0.622324i
\(956\) 0 0
\(957\) 16.9357i 0.547453i
\(958\) 0 0
\(959\) 13.6029 0.439260
\(960\) 0 0
\(961\) 28.4895 0.919015
\(962\) 0 0
\(963\) 16.8806i 0.543969i
\(964\) 0 0
\(965\) 11.2417 5.06325i 0.361883 0.162992i
\(966\) 0 0
\(967\) 3.31683 3.31683i 0.106662 0.106662i −0.651762 0.758424i \(-0.725970\pi\)
0.758424 + 0.651762i \(0.225970\pi\)
\(968\) 0 0
\(969\) −34.6479 −1.11305
\(970\) 0 0
\(971\) −31.1533 + 31.1533i −0.999758 + 0.999758i −1.00000 0.000242242i \(-0.999923\pi\)
0.000242242 1.00000i \(0.499923\pi\)
\(972\) 0 0
\(973\) −13.8153 −0.442897
\(974\) 0 0
\(975\) 16.8418 19.0319i 0.539369 0.609509i
\(976\) 0 0
\(977\) −2.89478 + 2.89478i −0.0926121 + 0.0926121i −0.751895 0.659283i \(-0.770860\pi\)
0.659283 + 0.751895i \(0.270860\pi\)
\(978\) 0 0
\(979\) −4.82057 + 4.82057i −0.154066 + 0.154066i
\(980\) 0 0
\(981\) 5.86079 + 5.86079i 0.187121 + 0.187121i
\(982\) 0 0
\(983\) −16.3487 16.3487i −0.521442 0.521442i 0.396565 0.918007i \(-0.370202\pi\)
−0.918007 + 0.396565i \(0.870202\pi\)
\(984\) 0 0
\(985\) −14.4899 + 38.2389i −0.461685 + 1.21839i
\(986\) 0 0
\(987\) 8.07550i 0.257046i
\(988\) 0 0
\(989\) −14.8629 14.8629i −0.472613 0.472613i
\(990\) 0 0
\(991\) 55.1842i 1.75298i −0.481416 0.876492i \(-0.659877\pi\)
0.481416 0.876492i \(-0.340123\pi\)
\(992\) 0 0
\(993\) −9.59467 9.59467i −0.304478 0.304478i
\(994\) 0 0
\(995\) 1.77319 + 0.671914i 0.0562138 + 0.0213011i
\(996\) 0 0
\(997\) 50.7136 1.60612 0.803058 0.595901i \(-0.203205\pi\)
0.803058 + 0.595901i \(0.203205\pi\)
\(998\) 0 0
\(999\) 6.17133i 0.195252i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.63.11 yes 32
4.3 odd 2 inner 1280.2.j.d.63.6 yes 32
5.2 odd 4 1280.2.s.c.1087.11 yes 32
8.3 odd 2 1280.2.j.c.63.11 yes 32
8.5 even 2 1280.2.j.c.63.6 32
16.3 odd 4 1280.2.s.c.703.11 yes 32
16.5 even 4 1280.2.s.d.703.11 yes 32
16.11 odd 4 1280.2.s.d.703.6 yes 32
16.13 even 4 1280.2.s.c.703.6 yes 32
20.7 even 4 1280.2.s.c.1087.6 yes 32
40.27 even 4 1280.2.s.d.1087.11 yes 32
40.37 odd 4 1280.2.s.d.1087.6 yes 32
80.27 even 4 1280.2.j.c.447.11 yes 32
80.37 odd 4 1280.2.j.c.447.6 yes 32
80.67 even 4 inner 1280.2.j.d.447.6 yes 32
80.77 odd 4 inner 1280.2.j.d.447.11 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.6 32 8.5 even 2
1280.2.j.c.63.11 yes 32 8.3 odd 2
1280.2.j.c.447.6 yes 32 80.37 odd 4
1280.2.j.c.447.11 yes 32 80.27 even 4
1280.2.j.d.63.6 yes 32 4.3 odd 2 inner
1280.2.j.d.63.11 yes 32 1.1 even 1 trivial
1280.2.j.d.447.6 yes 32 80.67 even 4 inner
1280.2.j.d.447.11 yes 32 80.77 odd 4 inner
1280.2.s.c.703.6 yes 32 16.13 even 4
1280.2.s.c.703.11 yes 32 16.3 odd 4
1280.2.s.c.1087.6 yes 32 20.7 even 4
1280.2.s.c.1087.11 yes 32 5.2 odd 4
1280.2.s.d.703.6 yes 32 16.11 odd 4
1280.2.s.d.703.11 yes 32 16.5 even 4
1280.2.s.d.1087.6 yes 32 40.37 odd 4
1280.2.s.d.1087.11 yes 32 40.27 even 4