Properties

Label 1280.2.j.d.63.5
Level $1280$
Weight $2$
Character 1280.63
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(63,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.63"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-32,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.5
Character \(\chi\) \(=\) 1280.63
Dual form 1280.2.j.d.447.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.81199i q^{3} +(-2.20939 - 0.344369i) q^{5} +(1.54814 - 1.54814i) q^{7} -0.283291 q^{9} +(2.69839 - 2.69839i) q^{11} +3.33474 q^{13} +(-0.623991 + 4.00338i) q^{15} +(-0.680078 + 0.680078i) q^{17} +(2.79866 - 2.79866i) q^{19} +(-2.80521 - 2.80521i) q^{21} +(1.75563 + 1.75563i) q^{23} +(4.76282 + 1.52169i) q^{25} -4.92264i q^{27} +(-3.13750 - 3.13750i) q^{29} +8.56830i q^{31} +(-4.88944 - 4.88944i) q^{33} +(-3.95358 + 2.88732i) q^{35} -8.30361 q^{37} -6.04250i q^{39} -10.8252i q^{41} +2.87092 q^{43} +(0.625900 + 0.0975564i) q^{45} +(-0.985023 - 0.985023i) q^{47} +2.20651i q^{49} +(1.23229 + 1.23229i) q^{51} -13.1354i q^{53} +(-6.89103 + 5.03255i) q^{55} +(-5.07113 - 5.07113i) q^{57} +(4.36188 + 4.36188i) q^{59} +(-7.83616 + 7.83616i) q^{61} +(-0.438574 + 0.438574i) q^{63} +(-7.36775 - 1.14838i) q^{65} -13.0450 q^{67} +(3.18118 - 3.18118i) q^{69} +0.134408 q^{71} +(7.36590 - 7.36590i) q^{73} +(2.75728 - 8.63016i) q^{75} -8.35497i q^{77} +7.88100 q^{79} -9.76962 q^{81} -12.0979i q^{83} +(1.73676 - 1.26836i) q^{85} +(-5.68510 + 5.68510i) q^{87} -15.7833 q^{89} +(5.16265 - 5.16265i) q^{91} +15.5256 q^{93} +(-7.14711 + 5.21957i) q^{95} +(-3.00550 + 3.00550i) q^{97} +(-0.764428 + 0.764428i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 32 q^{9} + 16 q^{13} + 8 q^{17} + 8 q^{21} + 16 q^{25} - 16 q^{29} + 56 q^{33} - 40 q^{45} - 8 q^{57} - 8 q^{61} - 72 q^{65} + 40 q^{69} + 8 q^{73} - 64 q^{81} - 24 q^{85} - 16 q^{89} + 224 q^{93}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.81199i 1.04615i −0.852287 0.523075i \(-0.824785\pi\)
0.852287 0.523075i \(-0.175215\pi\)
\(4\) 0 0
\(5\) −2.20939 0.344369i −0.988070 0.154006i
\(6\) 0 0
\(7\) 1.54814 1.54814i 0.585143 0.585143i −0.351169 0.936312i \(-0.614216\pi\)
0.936312 + 0.351169i \(0.114216\pi\)
\(8\) 0 0
\(9\) −0.283291 −0.0944303
\(10\) 0 0
\(11\) 2.69839 2.69839i 0.813594 0.813594i −0.171577 0.985171i \(-0.554886\pi\)
0.985171 + 0.171577i \(0.0548862\pi\)
\(12\) 0 0
\(13\) 3.33474 0.924890 0.462445 0.886648i \(-0.346972\pi\)
0.462445 + 0.886648i \(0.346972\pi\)
\(14\) 0 0
\(15\) −0.623991 + 4.00338i −0.161114 + 1.03367i
\(16\) 0 0
\(17\) −0.680078 + 0.680078i −0.164943 + 0.164943i −0.784752 0.619809i \(-0.787210\pi\)
0.619809 + 0.784752i \(0.287210\pi\)
\(18\) 0 0
\(19\) 2.79866 2.79866i 0.642057 0.642057i −0.309004 0.951061i \(-0.599996\pi\)
0.951061 + 0.309004i \(0.0999956\pi\)
\(20\) 0 0
\(21\) −2.80521 2.80521i −0.612147 0.612147i
\(22\) 0 0
\(23\) 1.75563 + 1.75563i 0.366074 + 0.366074i 0.866043 0.499969i \(-0.166655\pi\)
−0.499969 + 0.866043i \(0.666655\pi\)
\(24\) 0 0
\(25\) 4.76282 + 1.52169i 0.952564 + 0.304338i
\(26\) 0 0
\(27\) 4.92264i 0.947362i
\(28\) 0 0
\(29\) −3.13750 3.13750i −0.582619 0.582619i 0.353003 0.935622i \(-0.385160\pi\)
−0.935622 + 0.353003i \(0.885160\pi\)
\(30\) 0 0
\(31\) 8.56830i 1.53891i 0.638699 + 0.769456i \(0.279473\pi\)
−0.638699 + 0.769456i \(0.720527\pi\)
\(32\) 0 0
\(33\) −4.88944 4.88944i −0.851141 0.851141i
\(34\) 0 0
\(35\) −3.95358 + 2.88732i −0.668278 + 0.488046i
\(36\) 0 0
\(37\) −8.30361 −1.36510 −0.682552 0.730837i \(-0.739130\pi\)
−0.682552 + 0.730837i \(0.739130\pi\)
\(38\) 0 0
\(39\) 6.04250i 0.967574i
\(40\) 0 0
\(41\) 10.8252i 1.69061i −0.534282 0.845306i \(-0.679418\pi\)
0.534282 0.845306i \(-0.320582\pi\)
\(42\) 0 0
\(43\) 2.87092 0.437811 0.218906 0.975746i \(-0.429751\pi\)
0.218906 + 0.975746i \(0.429751\pi\)
\(44\) 0 0
\(45\) 0.625900 + 0.0975564i 0.0933037 + 0.0145429i
\(46\) 0 0
\(47\) −0.985023 0.985023i −0.143680 0.143680i 0.631608 0.775288i \(-0.282395\pi\)
−0.775288 + 0.631608i \(0.782395\pi\)
\(48\) 0 0
\(49\) 2.20651i 0.315216i
\(50\) 0 0
\(51\) 1.23229 + 1.23229i 0.172555 + 0.172555i
\(52\) 0 0
\(53\) 13.1354i 1.80428i −0.431441 0.902141i \(-0.641995\pi\)
0.431441 0.902141i \(-0.358005\pi\)
\(54\) 0 0
\(55\) −6.89103 + 5.03255i −0.929186 + 0.678589i
\(56\) 0 0
\(57\) −5.07113 5.07113i −0.671688 0.671688i
\(58\) 0 0
\(59\) 4.36188 + 4.36188i 0.567868 + 0.567868i 0.931531 0.363663i \(-0.118474\pi\)
−0.363663 + 0.931531i \(0.618474\pi\)
\(60\) 0 0
\(61\) −7.83616 + 7.83616i −1.00332 + 1.00332i −0.00332328 + 0.999994i \(0.501058\pi\)
−0.999994 + 0.00332328i \(0.998942\pi\)
\(62\) 0 0
\(63\) −0.438574 + 0.438574i −0.0552552 + 0.0552552i
\(64\) 0 0
\(65\) −7.36775 1.14838i −0.913856 0.142439i
\(66\) 0 0
\(67\) −13.0450 −1.59370 −0.796849 0.604179i \(-0.793501\pi\)
−0.796849 + 0.604179i \(0.793501\pi\)
\(68\) 0 0
\(69\) 3.18118 3.18118i 0.382968 0.382968i
\(70\) 0 0
\(71\) 0.134408 0.0159512 0.00797562 0.999968i \(-0.497461\pi\)
0.00797562 + 0.999968i \(0.497461\pi\)
\(72\) 0 0
\(73\) 7.36590 7.36590i 0.862113 0.862113i −0.129470 0.991583i \(-0.541328\pi\)
0.991583 + 0.129470i \(0.0413276\pi\)
\(74\) 0 0
\(75\) 2.75728 8.63016i 0.318383 0.996525i
\(76\) 0 0
\(77\) 8.35497i 0.952137i
\(78\) 0 0
\(79\) 7.88100 0.886682 0.443341 0.896353i \(-0.353793\pi\)
0.443341 + 0.896353i \(0.353793\pi\)
\(80\) 0 0
\(81\) −9.76962 −1.08551
\(82\) 0 0
\(83\) 12.0979i 1.32792i −0.747768 0.663961i \(-0.768874\pi\)
0.747768 0.663961i \(-0.231126\pi\)
\(84\) 0 0
\(85\) 1.73676 1.26836i 0.188378 0.137573i
\(86\) 0 0
\(87\) −5.68510 + 5.68510i −0.609507 + 0.609507i
\(88\) 0 0
\(89\) −15.7833 −1.67303 −0.836514 0.547945i \(-0.815410\pi\)
−0.836514 + 0.547945i \(0.815410\pi\)
\(90\) 0 0
\(91\) 5.16265 5.16265i 0.541193 0.541193i
\(92\) 0 0
\(93\) 15.5256 1.60993
\(94\) 0 0
\(95\) −7.14711 + 5.21957i −0.733278 + 0.535516i
\(96\) 0 0
\(97\) −3.00550 + 3.00550i −0.305162 + 0.305162i −0.843029 0.537867i \(-0.819230\pi\)
0.537867 + 0.843029i \(0.319230\pi\)
\(98\) 0 0
\(99\) −0.764428 + 0.764428i −0.0768279 + 0.0768279i
\(100\) 0 0
\(101\) 6.84933 + 6.84933i 0.681534 + 0.681534i 0.960346 0.278812i \(-0.0899405\pi\)
−0.278812 + 0.960346i \(0.589941\pi\)
\(102\) 0 0
\(103\) −4.45391 4.45391i −0.438857 0.438857i 0.452770 0.891627i \(-0.350436\pi\)
−0.891627 + 0.452770i \(0.850436\pi\)
\(104\) 0 0
\(105\) 5.23178 + 7.16384i 0.510570 + 0.699119i
\(106\) 0 0
\(107\) 14.0189i 1.35526i 0.735403 + 0.677631i \(0.236993\pi\)
−0.735403 + 0.677631i \(0.763007\pi\)
\(108\) 0 0
\(109\) 7.01357 + 7.01357i 0.671778 + 0.671778i 0.958126 0.286348i \(-0.0924413\pi\)
−0.286348 + 0.958126i \(0.592441\pi\)
\(110\) 0 0
\(111\) 15.0460i 1.42810i
\(112\) 0 0
\(113\) 7.44675 + 7.44675i 0.700532 + 0.700532i 0.964525 0.263993i \(-0.0850395\pi\)
−0.263993 + 0.964525i \(0.585040\pi\)
\(114\) 0 0
\(115\) −3.27429 4.48346i −0.305329 0.418084i
\(116\) 0 0
\(117\) −0.944701 −0.0873376
\(118\) 0 0
\(119\) 2.10572i 0.193031i
\(120\) 0 0
\(121\) 3.56257i 0.323870i
\(122\) 0 0
\(123\) −19.6151 −1.76863
\(124\) 0 0
\(125\) −9.99891 5.00217i −0.894330 0.447408i
\(126\) 0 0
\(127\) −2.89344 2.89344i −0.256751 0.256751i 0.566980 0.823732i \(-0.308112\pi\)
−0.823732 + 0.566980i \(0.808112\pi\)
\(128\) 0 0
\(129\) 5.20206i 0.458016i
\(130\) 0 0
\(131\) −0.534493 0.534493i −0.0466989 0.0466989i 0.683372 0.730071i \(-0.260513\pi\)
−0.730071 + 0.683372i \(0.760513\pi\)
\(132\) 0 0
\(133\) 8.66546i 0.751390i
\(134\) 0 0
\(135\) −1.69520 + 10.8760i −0.145900 + 0.936060i
\(136\) 0 0
\(137\) −4.46199 4.46199i −0.381214 0.381214i 0.490326 0.871539i \(-0.336878\pi\)
−0.871539 + 0.490326i \(0.836878\pi\)
\(138\) 0 0
\(139\) 13.3184 + 13.3184i 1.12965 + 1.12965i 0.990233 + 0.139419i \(0.0445235\pi\)
0.139419 + 0.990233i \(0.455476\pi\)
\(140\) 0 0
\(141\) −1.78485 + 1.78485i −0.150311 + 0.150311i
\(142\) 0 0
\(143\) 8.99841 8.99841i 0.752485 0.752485i
\(144\) 0 0
\(145\) 5.85150 + 8.01241i 0.485941 + 0.665395i
\(146\) 0 0
\(147\) 3.99816 0.329763
\(148\) 0 0
\(149\) −10.3862 + 10.3862i −0.850874 + 0.850874i −0.990241 0.139366i \(-0.955493\pi\)
0.139366 + 0.990241i \(0.455493\pi\)
\(150\) 0 0
\(151\) 6.86253 0.558465 0.279233 0.960223i \(-0.409920\pi\)
0.279233 + 0.960223i \(0.409920\pi\)
\(152\) 0 0
\(153\) 0.192660 0.192660i 0.0155756 0.0155756i
\(154\) 0 0
\(155\) 2.95065 18.9307i 0.237002 1.52055i
\(156\) 0 0
\(157\) 4.58973i 0.366300i −0.983085 0.183150i \(-0.941371\pi\)
0.983085 0.183150i \(-0.0586295\pi\)
\(158\) 0 0
\(159\) −23.8011 −1.88755
\(160\) 0 0
\(161\) 5.43593 0.428411
\(162\) 0 0
\(163\) 2.83480i 0.222039i 0.993818 + 0.111019i \(0.0354116\pi\)
−0.993818 + 0.111019i \(0.964588\pi\)
\(164\) 0 0
\(165\) 9.11891 + 12.4864i 0.709906 + 0.972068i
\(166\) 0 0
\(167\) 10.6049 10.6049i 0.820629 0.820629i −0.165569 0.986198i \(-0.552946\pi\)
0.986198 + 0.165569i \(0.0529462\pi\)
\(168\) 0 0
\(169\) −1.87951 −0.144578
\(170\) 0 0
\(171\) −0.792835 + 0.792835i −0.0606296 + 0.0606296i
\(172\) 0 0
\(173\) 1.19118 0.0905636 0.0452818 0.998974i \(-0.485581\pi\)
0.0452818 + 0.998974i \(0.485581\pi\)
\(174\) 0 0
\(175\) 9.72932 5.01773i 0.735467 0.379305i
\(176\) 0 0
\(177\) 7.90366 7.90366i 0.594075 0.594075i
\(178\) 0 0
\(179\) 3.66019 3.66019i 0.273575 0.273575i −0.556962 0.830538i \(-0.688033\pi\)
0.830538 + 0.556962i \(0.188033\pi\)
\(180\) 0 0
\(181\) 6.16389 + 6.16389i 0.458158 + 0.458158i 0.898050 0.439892i \(-0.144983\pi\)
−0.439892 + 0.898050i \(0.644983\pi\)
\(182\) 0 0
\(183\) 14.1990 + 14.1990i 1.04962 + 1.04962i
\(184\) 0 0
\(185\) 18.3459 + 2.85950i 1.34882 + 0.210235i
\(186\) 0 0
\(187\) 3.67023i 0.268393i
\(188\) 0 0
\(189\) −7.62094 7.62094i −0.554342 0.554342i
\(190\) 0 0
\(191\) 10.5198i 0.761184i −0.924743 0.380592i \(-0.875720\pi\)
0.924743 0.380592i \(-0.124280\pi\)
\(192\) 0 0
\(193\) 5.63558 + 5.63558i 0.405658 + 0.405658i 0.880221 0.474563i \(-0.157394\pi\)
−0.474563 + 0.880221i \(0.657394\pi\)
\(194\) 0 0
\(195\) −2.08085 + 13.3502i −0.149013 + 0.956031i
\(196\) 0 0
\(197\) −9.83517 −0.700727 −0.350364 0.936614i \(-0.613942\pi\)
−0.350364 + 0.936614i \(0.613942\pi\)
\(198\) 0 0
\(199\) 26.3116i 1.86518i −0.360934 0.932592i \(-0.617542\pi\)
0.360934 0.932592i \(-0.382458\pi\)
\(200\) 0 0
\(201\) 23.6373i 1.66725i
\(202\) 0 0
\(203\) −9.71458 −0.681830
\(204\) 0 0
\(205\) −3.72786 + 23.9171i −0.260365 + 1.67044i
\(206\) 0 0
\(207\) −0.497354 0.497354i −0.0345685 0.0345685i
\(208\) 0 0
\(209\) 15.1037i 1.04475i
\(210\) 0 0
\(211\) 18.6349 + 18.6349i 1.28288 + 1.28288i 0.939023 + 0.343853i \(0.111732\pi\)
0.343853 + 0.939023i \(0.388268\pi\)
\(212\) 0 0
\(213\) 0.243545i 0.0166874i
\(214\) 0 0
\(215\) −6.34298 0.988654i −0.432588 0.0674257i
\(216\) 0 0
\(217\) 13.2650 + 13.2650i 0.900484 + 0.900484i
\(218\) 0 0
\(219\) −13.3469 13.3469i −0.901900 0.901900i
\(220\) 0 0
\(221\) −2.26788 + 2.26788i −0.152554 + 0.152554i
\(222\) 0 0
\(223\) 18.4764 18.4764i 1.23727 1.23727i 0.276157 0.961113i \(-0.410939\pi\)
0.961113 0.276157i \(-0.0890610\pi\)
\(224\) 0 0
\(225\) −1.34926 0.431081i −0.0899509 0.0287387i
\(226\) 0 0
\(227\) 23.4080 1.55364 0.776821 0.629721i \(-0.216831\pi\)
0.776821 + 0.629721i \(0.216831\pi\)
\(228\) 0 0
\(229\) −1.09387 + 1.09387i −0.0722850 + 0.0722850i −0.742325 0.670040i \(-0.766277\pi\)
0.670040 + 0.742325i \(0.266277\pi\)
\(230\) 0 0
\(231\) −15.1391 −0.996079
\(232\) 0 0
\(233\) 3.14271 3.14271i 0.205886 0.205886i −0.596630 0.802516i \(-0.703494\pi\)
0.802516 + 0.596630i \(0.203494\pi\)
\(234\) 0 0
\(235\) 1.83709 + 2.51551i 0.119839 + 0.164094i
\(236\) 0 0
\(237\) 14.2803i 0.927603i
\(238\) 0 0
\(239\) 9.46338 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(240\) 0 0
\(241\) 5.06898 0.326522 0.163261 0.986583i \(-0.447799\pi\)
0.163261 + 0.986583i \(0.447799\pi\)
\(242\) 0 0
\(243\) 2.93449i 0.188248i
\(244\) 0 0
\(245\) 0.759853 4.87504i 0.0485452 0.311455i
\(246\) 0 0
\(247\) 9.33281 9.33281i 0.593832 0.593832i
\(248\) 0 0
\(249\) −21.9213 −1.38921
\(250\) 0 0
\(251\) −7.15197 + 7.15197i −0.451428 + 0.451428i −0.895828 0.444400i \(-0.853417\pi\)
0.444400 + 0.895828i \(0.353417\pi\)
\(252\) 0 0
\(253\) 9.47473 0.595671
\(254\) 0 0
\(255\) −2.29825 3.14698i −0.143922 0.197071i
\(256\) 0 0
\(257\) 4.88244 4.88244i 0.304558 0.304558i −0.538236 0.842794i \(-0.680909\pi\)
0.842794 + 0.538236i \(0.180909\pi\)
\(258\) 0 0
\(259\) −12.8552 + 12.8552i −0.798781 + 0.798781i
\(260\) 0 0
\(261\) 0.888824 + 0.888824i 0.0550168 + 0.0550168i
\(262\) 0 0
\(263\) 11.9619 + 11.9619i 0.737605 + 0.737605i 0.972114 0.234509i \(-0.0753483\pi\)
−0.234509 + 0.972114i \(0.575348\pi\)
\(264\) 0 0
\(265\) −4.52341 + 29.0212i −0.277871 + 1.78276i
\(266\) 0 0
\(267\) 28.5991i 1.75024i
\(268\) 0 0
\(269\) −12.6832 12.6832i −0.773309 0.773309i 0.205375 0.978683i \(-0.434159\pi\)
−0.978683 + 0.205375i \(0.934159\pi\)
\(270\) 0 0
\(271\) 8.14653i 0.494867i −0.968905 0.247433i \(-0.920413\pi\)
0.968905 0.247433i \(-0.0795871\pi\)
\(272\) 0 0
\(273\) −9.35465 9.35465i −0.566169 0.566169i
\(274\) 0 0
\(275\) 16.9580 8.74582i 1.02261 0.527393i
\(276\) 0 0
\(277\) 13.5277 0.812800 0.406400 0.913695i \(-0.366784\pi\)
0.406400 + 0.913695i \(0.366784\pi\)
\(278\) 0 0
\(279\) 2.42732i 0.145320i
\(280\) 0 0
\(281\) 28.4048i 1.69449i 0.531202 + 0.847245i \(0.321741\pi\)
−0.531202 + 0.847245i \(0.678259\pi\)
\(282\) 0 0
\(283\) −22.7335 −1.35136 −0.675682 0.737193i \(-0.736151\pi\)
−0.675682 + 0.737193i \(0.736151\pi\)
\(284\) 0 0
\(285\) 9.45778 + 12.9505i 0.560231 + 0.767119i
\(286\) 0 0
\(287\) −16.7590 16.7590i −0.989250 0.989250i
\(288\) 0 0
\(289\) 16.0750i 0.945588i
\(290\) 0 0
\(291\) 5.44592 + 5.44592i 0.319245 + 0.319245i
\(292\) 0 0
\(293\) 5.40978i 0.316043i 0.987436 + 0.158021i \(0.0505115\pi\)
−0.987436 + 0.158021i \(0.949489\pi\)
\(294\) 0 0
\(295\) −8.13500 11.1392i −0.473638 0.648549i
\(296\) 0 0
\(297\) −13.2832 13.2832i −0.770768 0.770768i
\(298\) 0 0
\(299\) 5.85457 + 5.85457i 0.338578 + 0.338578i
\(300\) 0 0
\(301\) 4.44459 4.44459i 0.256182 0.256182i
\(302\) 0 0
\(303\) 12.4109 12.4109i 0.712987 0.712987i
\(304\) 0 0
\(305\) 20.0117 14.6146i 1.14587 0.836831i
\(306\) 0 0
\(307\) −18.6048 −1.06183 −0.530917 0.847424i \(-0.678152\pi\)
−0.530917 + 0.847424i \(0.678152\pi\)
\(308\) 0 0
\(309\) −8.07043 + 8.07043i −0.459111 + 0.459111i
\(310\) 0 0
\(311\) −11.2873 −0.640042 −0.320021 0.947410i \(-0.603690\pi\)
−0.320021 + 0.947410i \(0.603690\pi\)
\(312\) 0 0
\(313\) 23.2411 23.2411i 1.31366 1.31366i 0.394971 0.918694i \(-0.370755\pi\)
0.918694 0.394971i \(-0.129245\pi\)
\(314\) 0 0
\(315\) 1.12001 0.817951i 0.0631056 0.0460863i
\(316\) 0 0
\(317\) 3.16629i 0.177837i 0.996039 + 0.0889184i \(0.0283410\pi\)
−0.996039 + 0.0889184i \(0.971659\pi\)
\(318\) 0 0
\(319\) −16.9324 −0.948030
\(320\) 0 0
\(321\) 25.4021 1.41781
\(322\) 0 0
\(323\) 3.80662i 0.211806i
\(324\) 0 0
\(325\) 15.8828 + 5.07444i 0.881017 + 0.281479i
\(326\) 0 0
\(327\) 12.7085 12.7085i 0.702781 0.702781i
\(328\) 0 0
\(329\) −3.04991 −0.168147
\(330\) 0 0
\(331\) 5.20766 5.20766i 0.286239 0.286239i −0.549352 0.835591i \(-0.685125\pi\)
0.835591 + 0.549352i \(0.185125\pi\)
\(332\) 0 0
\(333\) 2.35234 0.128907
\(334\) 0 0
\(335\) 28.8215 + 4.49228i 1.57468 + 0.245440i
\(336\) 0 0
\(337\) −20.1503 + 20.1503i −1.09765 + 1.09765i −0.102970 + 0.994684i \(0.532835\pi\)
−0.994684 + 0.102970i \(0.967165\pi\)
\(338\) 0 0
\(339\) 13.4934 13.4934i 0.732861 0.732861i
\(340\) 0 0
\(341\) 23.1206 + 23.1206i 1.25205 + 1.25205i
\(342\) 0 0
\(343\) 14.2530 + 14.2530i 0.769589 + 0.769589i
\(344\) 0 0
\(345\) −8.12396 + 5.93296i −0.437379 + 0.319420i
\(346\) 0 0
\(347\) 12.9438i 0.694861i −0.937706 0.347430i \(-0.887054\pi\)
0.937706 0.347430i \(-0.112946\pi\)
\(348\) 0 0
\(349\) 0.0888151 + 0.0888151i 0.00475416 + 0.00475416i 0.709480 0.704726i \(-0.248930\pi\)
−0.704726 + 0.709480i \(0.748930\pi\)
\(350\) 0 0
\(351\) 16.4157i 0.876206i
\(352\) 0 0
\(353\) 6.22306 + 6.22306i 0.331220 + 0.331220i 0.853050 0.521830i \(-0.174750\pi\)
−0.521830 + 0.853050i \(0.674750\pi\)
\(354\) 0 0
\(355\) −0.296959 0.0462857i −0.0157609 0.00245659i
\(356\) 0 0
\(357\) 3.81553 0.201939
\(358\) 0 0
\(359\) 22.4574i 1.18525i 0.805477 + 0.592627i \(0.201909\pi\)
−0.805477 + 0.592627i \(0.798091\pi\)
\(360\) 0 0
\(361\) 3.33498i 0.175525i
\(362\) 0 0
\(363\) −6.45533 −0.338817
\(364\) 0 0
\(365\) −18.8107 + 13.7376i −0.984599 + 0.719057i
\(366\) 0 0
\(367\) −12.7444 12.7444i −0.665252 0.665252i 0.291361 0.956613i \(-0.405892\pi\)
−0.956613 + 0.291361i \(0.905892\pi\)
\(368\) 0 0
\(369\) 3.06668i 0.159645i
\(370\) 0 0
\(371\) −20.3354 20.3354i −1.05576 1.05576i
\(372\) 0 0
\(373\) 24.3812i 1.26241i 0.775616 + 0.631205i \(0.217439\pi\)
−0.775616 + 0.631205i \(0.782561\pi\)
\(374\) 0 0
\(375\) −9.06387 + 18.1179i −0.468056 + 0.935603i
\(376\) 0 0
\(377\) −10.4627 10.4627i −0.538858 0.538858i
\(378\) 0 0
\(379\) 20.9815 + 20.9815i 1.07775 + 1.07775i 0.996711 + 0.0810340i \(0.0258222\pi\)
0.0810340 + 0.996711i \(0.474178\pi\)
\(380\) 0 0
\(381\) −5.24287 + 5.24287i −0.268601 + 0.268601i
\(382\) 0 0
\(383\) −13.4514 + 13.4514i −0.687333 + 0.687333i −0.961642 0.274309i \(-0.911551\pi\)
0.274309 + 0.961642i \(0.411551\pi\)
\(384\) 0 0
\(385\) −2.87719 + 18.4594i −0.146635 + 0.940778i
\(386\) 0 0
\(387\) −0.813305 −0.0413426
\(388\) 0 0
\(389\) 7.64401 7.64401i 0.387567 0.387567i −0.486252 0.873819i \(-0.661636\pi\)
0.873819 + 0.486252i \(0.161636\pi\)
\(390\) 0 0
\(391\) −2.38793 −0.120763
\(392\) 0 0
\(393\) −0.968494 + 0.968494i −0.0488541 + 0.0488541i
\(394\) 0 0
\(395\) −17.4122 2.71397i −0.876104 0.136555i
\(396\) 0 0
\(397\) 0.575578i 0.0288874i 0.999896 + 0.0144437i \(0.00459774\pi\)
−0.999896 + 0.0144437i \(0.995402\pi\)
\(398\) 0 0
\(399\) −15.7017 −0.786067
\(400\) 0 0
\(401\) −16.7178 −0.834845 −0.417422 0.908713i \(-0.637066\pi\)
−0.417422 + 0.908713i \(0.637066\pi\)
\(402\) 0 0
\(403\) 28.5731i 1.42333i
\(404\) 0 0
\(405\) 21.5849 + 3.36435i 1.07256 + 0.167176i
\(406\) 0 0
\(407\) −22.4063 + 22.4063i −1.11064 + 1.11064i
\(408\) 0 0
\(409\) 14.4690 0.715448 0.357724 0.933827i \(-0.383553\pi\)
0.357724 + 0.933827i \(0.383553\pi\)
\(410\) 0 0
\(411\) −8.08507 + 8.08507i −0.398807 + 0.398807i
\(412\) 0 0
\(413\) 13.5056 0.664568
\(414\) 0 0
\(415\) −4.16615 + 26.7291i −0.204508 + 1.31208i
\(416\) 0 0
\(417\) 24.1328 24.1328i 1.18179 1.18179i
\(418\) 0 0
\(419\) −24.5270 + 24.5270i −1.19822 + 1.19822i −0.223527 + 0.974698i \(0.571757\pi\)
−0.974698 + 0.223527i \(0.928243\pi\)
\(420\) 0 0
\(421\) −10.6240 10.6240i −0.517783 0.517783i 0.399117 0.916900i \(-0.369317\pi\)
−0.916900 + 0.399117i \(0.869317\pi\)
\(422\) 0 0
\(423\) 0.279048 + 0.279048i 0.0135678 + 0.0135678i
\(424\) 0 0
\(425\) −4.27396 + 2.20422i −0.207317 + 0.106920i
\(426\) 0 0
\(427\) 24.2630i 1.17417i
\(428\) 0 0
\(429\) −16.3050 16.3050i −0.787213 0.787213i
\(430\) 0 0
\(431\) 2.25550i 0.108644i 0.998523 + 0.0543219i \(0.0172997\pi\)
−0.998523 + 0.0543219i \(0.982700\pi\)
\(432\) 0 0
\(433\) 19.9639 + 19.9639i 0.959404 + 0.959404i 0.999208 0.0398034i \(-0.0126732\pi\)
−0.0398034 + 0.999208i \(0.512673\pi\)
\(434\) 0 0
\(435\) 14.5184 10.6028i 0.696103 0.508367i
\(436\) 0 0
\(437\) 9.82683 0.470081
\(438\) 0 0
\(439\) 21.0582i 1.00505i −0.864561 0.502527i \(-0.832404\pi\)
0.864561 0.502527i \(-0.167596\pi\)
\(440\) 0 0
\(441\) 0.625084i 0.0297659i
\(442\) 0 0
\(443\) −19.4033 −0.921877 −0.460938 0.887432i \(-0.652487\pi\)
−0.460938 + 0.887432i \(0.652487\pi\)
\(444\) 0 0
\(445\) 34.8715 + 5.43528i 1.65307 + 0.257657i
\(446\) 0 0
\(447\) 18.8197 + 18.8197i 0.890142 + 0.890142i
\(448\) 0 0
\(449\) 11.7669i 0.555313i 0.960680 + 0.277656i \(0.0895577\pi\)
−0.960680 + 0.277656i \(0.910442\pi\)
\(450\) 0 0
\(451\) −29.2106 29.2106i −1.37547 1.37547i
\(452\) 0 0
\(453\) 12.4348i 0.584238i
\(454\) 0 0
\(455\) −13.1842 + 9.62846i −0.618084 + 0.451389i
\(456\) 0 0
\(457\) −16.1247 16.1247i −0.754280 0.754280i 0.220995 0.975275i \(-0.429070\pi\)
−0.975275 + 0.220995i \(0.929070\pi\)
\(458\) 0 0
\(459\) 3.34778 + 3.34778i 0.156261 + 0.156261i
\(460\) 0 0
\(461\) 2.87775 2.87775i 0.134030 0.134030i −0.636909 0.770939i \(-0.719787\pi\)
0.770939 + 0.636909i \(0.219787\pi\)
\(462\) 0 0
\(463\) −9.81984 + 9.81984i −0.456367 + 0.456367i −0.897461 0.441094i \(-0.854590\pi\)
0.441094 + 0.897461i \(0.354590\pi\)
\(464\) 0 0
\(465\) −34.3022 5.34654i −1.59073 0.247940i
\(466\) 0 0
\(467\) 21.7864 1.00816 0.504078 0.863658i \(-0.331832\pi\)
0.504078 + 0.863658i \(0.331832\pi\)
\(468\) 0 0
\(469\) −20.1955 + 20.1955i −0.932541 + 0.932541i
\(470\) 0 0
\(471\) −8.31652 −0.383205
\(472\) 0 0
\(473\) 7.74685 7.74685i 0.356200 0.356200i
\(474\) 0 0
\(475\) 17.5882 9.07083i 0.807003 0.416198i
\(476\) 0 0
\(477\) 3.72113i 0.170379i
\(478\) 0 0
\(479\) 9.22756 0.421618 0.210809 0.977527i \(-0.432390\pi\)
0.210809 + 0.977527i \(0.432390\pi\)
\(480\) 0 0
\(481\) −27.6904 −1.26257
\(482\) 0 0
\(483\) 9.84982i 0.448183i
\(484\) 0 0
\(485\) 7.67532 5.60532i 0.348518 0.254525i
\(486\) 0 0
\(487\) 25.1713 25.1713i 1.14062 1.14062i 0.152284 0.988337i \(-0.451337\pi\)
0.988337 0.152284i \(-0.0486628\pi\)
\(488\) 0 0
\(489\) 5.13662 0.232286
\(490\) 0 0
\(491\) 20.1548 20.1548i 0.909574 0.909574i −0.0866633 0.996238i \(-0.527620\pi\)
0.996238 + 0.0866633i \(0.0276204\pi\)
\(492\) 0 0
\(493\) 4.26749 0.192198
\(494\) 0 0
\(495\) 1.95217 1.42568i 0.0877433 0.0640793i
\(496\) 0 0
\(497\) 0.208082 0.208082i 0.00933376 0.00933376i
\(498\) 0 0
\(499\) −3.44858 + 3.44858i −0.154380 + 0.154380i −0.780071 0.625691i \(-0.784817\pi\)
0.625691 + 0.780071i \(0.284817\pi\)
\(500\) 0 0
\(501\) −19.2159 19.2159i −0.858501 0.858501i
\(502\) 0 0
\(503\) 14.8039 + 14.8039i 0.660074 + 0.660074i 0.955397 0.295323i \(-0.0954274\pi\)
−0.295323 + 0.955397i \(0.595427\pi\)
\(504\) 0 0
\(505\) −12.7742 17.4916i −0.568443 0.778364i
\(506\) 0 0
\(507\) 3.40564i 0.151250i
\(508\) 0 0
\(509\) −14.7467 14.7467i −0.653635 0.653635i 0.300232 0.953866i \(-0.402936\pi\)
−0.953866 + 0.300232i \(0.902936\pi\)
\(510\) 0 0
\(511\) 22.8069i 1.00892i
\(512\) 0 0
\(513\) −13.7768 13.7768i −0.608261 0.608261i
\(514\) 0 0
\(515\) 8.30665 + 11.3742i 0.366035 + 0.501208i
\(516\) 0 0
\(517\) −5.31594 −0.233795
\(518\) 0 0
\(519\) 2.15840i 0.0947431i
\(520\) 0 0
\(521\) 15.2957i 0.670118i 0.942197 + 0.335059i \(0.108756\pi\)
−0.942197 + 0.335059i \(0.891244\pi\)
\(522\) 0 0
\(523\) −0.856013 −0.0374308 −0.0187154 0.999825i \(-0.505958\pi\)
−0.0187154 + 0.999825i \(0.505958\pi\)
\(524\) 0 0
\(525\) −9.09206 17.6294i −0.396810 0.769409i
\(526\) 0 0
\(527\) −5.82712 5.82712i −0.253833 0.253833i
\(528\) 0 0
\(529\) 16.8355i 0.731980i
\(530\) 0 0
\(531\) −1.23568 1.23568i −0.0536239 0.0536239i
\(532\) 0 0
\(533\) 36.0992i 1.56363i
\(534\) 0 0
\(535\) 4.82768 30.9733i 0.208719 1.33909i
\(536\) 0 0
\(537\) −6.63221 6.63221i −0.286201 0.286201i
\(538\) 0 0
\(539\) 5.95402 + 5.95402i 0.256458 + 0.256458i
\(540\) 0 0
\(541\) −3.59516 + 3.59516i −0.154568 + 0.154568i −0.780155 0.625587i \(-0.784860\pi\)
0.625587 + 0.780155i \(0.284860\pi\)
\(542\) 0 0
\(543\) 11.1689 11.1689i 0.479302 0.479302i
\(544\) 0 0
\(545\) −13.0805 17.9110i −0.560306 0.767222i
\(546\) 0 0
\(547\) −2.45850 −0.105118 −0.0525589 0.998618i \(-0.516738\pi\)
−0.0525589 + 0.998618i \(0.516738\pi\)
\(548\) 0 0
\(549\) 2.21991 2.21991i 0.0947436 0.0947436i
\(550\) 0 0
\(551\) −17.5616 −0.748149
\(552\) 0 0
\(553\) 12.2009 12.2009i 0.518836 0.518836i
\(554\) 0 0
\(555\) 5.18137 33.2425i 0.219937 1.41107i
\(556\) 0 0
\(557\) 13.9664i 0.591774i 0.955223 + 0.295887i \(0.0956152\pi\)
−0.955223 + 0.295887i \(0.904385\pi\)
\(558\) 0 0
\(559\) 9.57377 0.404927
\(560\) 0 0
\(561\) 6.65039 0.280780
\(562\) 0 0
\(563\) 3.68729i 0.155401i −0.996977 0.0777004i \(-0.975242\pi\)
0.996977 0.0777004i \(-0.0247578\pi\)
\(564\) 0 0
\(565\) −13.8884 19.0172i −0.584288 0.800061i
\(566\) 0 0
\(567\) −15.1248 + 15.1248i −0.635180 + 0.635180i
\(568\) 0 0
\(569\) 2.38759 0.100093 0.0500466 0.998747i \(-0.484063\pi\)
0.0500466 + 0.998747i \(0.484063\pi\)
\(570\) 0 0
\(571\) 12.9632 12.9632i 0.542491 0.542491i −0.381767 0.924258i \(-0.624684\pi\)
0.924258 + 0.381767i \(0.124684\pi\)
\(572\) 0 0
\(573\) −19.0617 −0.796313
\(574\) 0 0
\(575\) 5.69023 + 11.0333i 0.237299 + 0.460119i
\(576\) 0 0
\(577\) 4.15876 4.15876i 0.173131 0.173131i −0.615222 0.788354i \(-0.710934\pi\)
0.788354 + 0.615222i \(0.210934\pi\)
\(578\) 0 0
\(579\) 10.2116 10.2116i 0.424379 0.424379i
\(580\) 0 0
\(581\) −18.7293 18.7293i −0.777024 0.777024i
\(582\) 0 0
\(583\) −35.4443 35.4443i −1.46795 1.46795i
\(584\) 0 0
\(585\) 2.08721 + 0.325325i 0.0862957 + 0.0134505i
\(586\) 0 0
\(587\) 33.0229i 1.36300i −0.731818 0.681500i \(-0.761328\pi\)
0.731818 0.681500i \(-0.238672\pi\)
\(588\) 0 0
\(589\) 23.9798 + 23.9798i 0.988070 + 0.988070i
\(590\) 0 0
\(591\) 17.8212i 0.733066i
\(592\) 0 0
\(593\) −11.3559 11.3559i −0.466330 0.466330i 0.434394 0.900723i \(-0.356963\pi\)
−0.900723 + 0.434394i \(0.856963\pi\)
\(594\) 0 0
\(595\) 0.725142 4.65235i 0.0297279 0.190728i
\(596\) 0 0
\(597\) −47.6763 −1.95126
\(598\) 0 0
\(599\) 15.5317i 0.634607i 0.948324 + 0.317304i \(0.102777\pi\)
−0.948324 + 0.317304i \(0.897223\pi\)
\(600\) 0 0
\(601\) 23.2823i 0.949705i 0.880065 + 0.474853i \(0.157499\pi\)
−0.880065 + 0.474853i \(0.842501\pi\)
\(602\) 0 0
\(603\) 3.69552 0.150493
\(604\) 0 0
\(605\) −1.22684 + 7.87111i −0.0498780 + 0.320006i
\(606\) 0 0
\(607\) 23.0138 + 23.0138i 0.934099 + 0.934099i 0.997959 0.0638595i \(-0.0203410\pi\)
−0.0638595 + 0.997959i \(0.520341\pi\)
\(608\) 0 0
\(609\) 17.6027i 0.713297i
\(610\) 0 0
\(611\) −3.28480 3.28480i −0.132889 0.132889i
\(612\) 0 0
\(613\) 23.8396i 0.962874i −0.876481 0.481437i \(-0.840115\pi\)
0.876481 0.481437i \(-0.159885\pi\)
\(614\) 0 0
\(615\) 43.3375 + 6.75483i 1.74753 + 0.272381i
\(616\) 0 0
\(617\) −7.51162 7.51162i −0.302406 0.302406i 0.539548 0.841955i \(-0.318595\pi\)
−0.841955 + 0.539548i \(0.818595\pi\)
\(618\) 0 0
\(619\) 3.21702 + 3.21702i 0.129303 + 0.129303i 0.768796 0.639494i \(-0.220856\pi\)
−0.639494 + 0.768796i \(0.720856\pi\)
\(620\) 0 0
\(621\) 8.64233 8.64233i 0.346805 0.346805i
\(622\) 0 0
\(623\) −24.4348 + 24.4348i −0.978961 + 0.978961i
\(624\) 0 0
\(625\) 20.3689 + 14.4951i 0.814757 + 0.579803i
\(626\) 0 0
\(627\) −27.3678 −1.09296
\(628\) 0 0
\(629\) 5.64710 5.64710i 0.225165 0.225165i
\(630\) 0 0
\(631\) 17.5142 0.697231 0.348616 0.937266i \(-0.386652\pi\)
0.348616 + 0.937266i \(0.386652\pi\)
\(632\) 0 0
\(633\) 33.7661 33.7661i 1.34208 1.34208i
\(634\) 0 0
\(635\) 5.39634 + 7.38916i 0.214147 + 0.293230i
\(636\) 0 0
\(637\) 7.35814i 0.291540i
\(638\) 0 0
\(639\) −0.0380764 −0.00150628
\(640\) 0 0
\(641\) −4.81236 −0.190077 −0.0950383 0.995474i \(-0.530297\pi\)
−0.0950383 + 0.995474i \(0.530297\pi\)
\(642\) 0 0
\(643\) 0.379678i 0.0149730i 0.999972 + 0.00748652i \(0.00238306\pi\)
−0.999972 + 0.00748652i \(0.997617\pi\)
\(644\) 0 0
\(645\) −1.79143 + 11.4934i −0.0705374 + 0.452552i
\(646\) 0 0
\(647\) 10.4814 10.4814i 0.412066 0.412066i −0.470392 0.882458i \(-0.655887\pi\)
0.882458 + 0.470392i \(0.155887\pi\)
\(648\) 0 0
\(649\) 23.5401 0.924028
\(650\) 0 0
\(651\) 24.0359 24.0359i 0.942041 0.942041i
\(652\) 0 0
\(653\) −3.39325 −0.132788 −0.0663941 0.997793i \(-0.521149\pi\)
−0.0663941 + 0.997793i \(0.521149\pi\)
\(654\) 0 0
\(655\) 0.996843 + 1.36497i 0.0389499 + 0.0533337i
\(656\) 0 0
\(657\) −2.08669 + 2.08669i −0.0814096 + 0.0814096i
\(658\) 0 0
\(659\) 3.63069 3.63069i 0.141431 0.141431i −0.632846 0.774278i \(-0.718113\pi\)
0.774278 + 0.632846i \(0.218113\pi\)
\(660\) 0 0
\(661\) −7.92705 7.92705i −0.308327 0.308327i 0.535934 0.844260i \(-0.319960\pi\)
−0.844260 + 0.535934i \(0.819960\pi\)
\(662\) 0 0
\(663\) 4.10937 + 4.10937i 0.159595 + 0.159595i
\(664\) 0 0
\(665\) −2.98411 + 19.1454i −0.115719 + 0.742426i
\(666\) 0 0
\(667\) 11.0166i 0.426563i
\(668\) 0 0
\(669\) −33.4789 33.4789i −1.29437 1.29437i
\(670\) 0 0
\(671\) 42.2900i 1.63259i
\(672\) 0 0
\(673\) −6.74727 6.74727i −0.260088 0.260088i 0.565002 0.825090i \(-0.308876\pi\)
−0.825090 + 0.565002i \(0.808876\pi\)
\(674\) 0 0
\(675\) 7.49073 23.4456i 0.288318 0.902423i
\(676\) 0 0
\(677\) −21.3785 −0.821641 −0.410821 0.911716i \(-0.634758\pi\)
−0.410821 + 0.911716i \(0.634758\pi\)
\(678\) 0 0
\(679\) 9.30588i 0.357127i
\(680\) 0 0
\(681\) 42.4149i 1.62534i
\(682\) 0 0
\(683\) 14.6001 0.558658 0.279329 0.960195i \(-0.409888\pi\)
0.279329 + 0.960195i \(0.409888\pi\)
\(684\) 0 0
\(685\) 8.32172 + 11.3949i 0.317957 + 0.435375i
\(686\) 0 0
\(687\) 1.98208 + 1.98208i 0.0756210 + 0.0756210i
\(688\) 0 0
\(689\) 43.8031i 1.66876i
\(690\) 0 0
\(691\) 21.0583 + 21.0583i 0.801097 + 0.801097i 0.983267 0.182170i \(-0.0583121\pi\)
−0.182170 + 0.983267i \(0.558312\pi\)
\(692\) 0 0
\(693\) 2.36689i 0.0899106i
\(694\) 0 0
\(695\) −24.8391 34.0120i −0.942202 1.29015i
\(696\) 0 0
\(697\) 7.36198 + 7.36198i 0.278855 + 0.278855i
\(698\) 0 0
\(699\) −5.69455 5.69455i −0.215388 0.215388i
\(700\) 0 0
\(701\) 27.3282 27.3282i 1.03217 1.03217i 0.0327069 0.999465i \(-0.489587\pi\)
0.999465 0.0327069i \(-0.0104128\pi\)
\(702\) 0 0
\(703\) −23.2390 + 23.2390i −0.876475 + 0.876475i
\(704\) 0 0
\(705\) 4.55807 3.32878i 0.171667 0.125369i
\(706\) 0 0
\(707\) 21.2075 0.797590
\(708\) 0 0
\(709\) −28.3895 + 28.3895i −1.06619 + 1.06619i −0.0685403 + 0.997648i \(0.521834\pi\)
−0.997648 + 0.0685403i \(0.978166\pi\)
\(710\) 0 0
\(711\) −2.23262 −0.0837296
\(712\) 0 0
\(713\) −15.0428 + 15.0428i −0.563356 + 0.563356i
\(714\) 0 0
\(715\) −22.9798 + 16.7822i −0.859395 + 0.627621i
\(716\) 0 0
\(717\) 17.1475i 0.640385i
\(718\) 0 0
\(719\) −22.2952 −0.831471 −0.415736 0.909486i \(-0.636476\pi\)
−0.415736 + 0.909486i \(0.636476\pi\)
\(720\) 0 0
\(721\) −13.7906 −0.513588
\(722\) 0 0
\(723\) 9.18491i 0.341591i
\(724\) 0 0
\(725\) −10.1690 19.7176i −0.377669 0.732295i
\(726\) 0 0
\(727\) 20.3177 20.3177i 0.753543 0.753543i −0.221596 0.975139i \(-0.571127\pi\)
0.975139 + 0.221596i \(0.0711265\pi\)
\(728\) 0 0
\(729\) −23.9916 −0.888578
\(730\) 0 0
\(731\) −1.95245 + 1.95245i −0.0722139 + 0.0722139i
\(732\) 0 0
\(733\) 1.80400 0.0666323 0.0333162 0.999445i \(-0.489393\pi\)
0.0333162 + 0.999445i \(0.489393\pi\)
\(734\) 0 0
\(735\) −8.83351 1.37684i −0.325829 0.0507856i
\(736\) 0 0
\(737\) −35.2004 + 35.2004i −1.29662 + 1.29662i
\(738\) 0 0
\(739\) −0.240927 + 0.240927i −0.00886264 + 0.00886264i −0.711524 0.702662i \(-0.751995\pi\)
0.702662 + 0.711524i \(0.251995\pi\)
\(740\) 0 0
\(741\) −16.9109 16.9109i −0.621238 0.621238i
\(742\) 0 0
\(743\) 35.9128 + 35.9128i 1.31751 + 1.31751i 0.915738 + 0.401775i \(0.131607\pi\)
0.401775 + 0.915738i \(0.368393\pi\)
\(744\) 0 0
\(745\) 26.5240 19.3706i 0.971763 0.709683i
\(746\) 0 0
\(747\) 3.42723i 0.125396i
\(748\) 0 0
\(749\) 21.7033 + 21.7033i 0.793021 + 0.793021i
\(750\) 0 0
\(751\) 22.2372i 0.811448i 0.913996 + 0.405724i \(0.132981\pi\)
−0.913996 + 0.405724i \(0.867019\pi\)
\(752\) 0 0
\(753\) 12.9593 + 12.9593i 0.472262 + 0.472262i
\(754\) 0 0
\(755\) −15.1620 2.36324i −0.551803 0.0860072i
\(756\) 0 0
\(757\) 8.65429 0.314545 0.157273 0.987555i \(-0.449730\pi\)
0.157273 + 0.987555i \(0.449730\pi\)
\(758\) 0 0
\(759\) 17.1681i 0.623162i
\(760\) 0 0
\(761\) 51.2052i 1.85619i −0.372345 0.928094i \(-0.621446\pi\)
0.372345 0.928094i \(-0.378554\pi\)
\(762\) 0 0
\(763\) 21.7160 0.786172
\(764\) 0 0
\(765\) −0.492007 + 0.359315i −0.0177885 + 0.0129911i
\(766\) 0 0
\(767\) 14.5457 + 14.5457i 0.525216 + 0.525216i
\(768\) 0 0
\(769\) 6.33900i 0.228590i 0.993447 + 0.114295i \(0.0364610\pi\)
−0.993447 + 0.114295i \(0.963539\pi\)
\(770\) 0 0
\(771\) −8.84691 8.84691i −0.318614 0.318614i
\(772\) 0 0
\(773\) 49.9518i 1.79664i 0.439341 + 0.898321i \(0.355212\pi\)
−0.439341 + 0.898321i \(0.644788\pi\)
\(774\) 0 0
\(775\) −13.0383 + 40.8093i −0.468350 + 1.46591i
\(776\) 0 0
\(777\) 23.2934 + 23.2934i 0.835645 + 0.835645i
\(778\) 0 0
\(779\) −30.2961 30.2961i −1.08547 1.08547i
\(780\) 0 0
\(781\) 0.362683 0.362683i 0.0129778 0.0129778i
\(782\) 0 0
\(783\) −15.4448 + 15.4448i −0.551951 + 0.551951i
\(784\) 0 0
\(785\) −1.58056 + 10.1405i −0.0564126 + 0.361930i
\(786\) 0 0
\(787\) −41.6365 −1.48418 −0.742090 0.670300i \(-0.766165\pi\)
−0.742090 + 0.670300i \(0.766165\pi\)
\(788\) 0 0
\(789\) 21.6749 21.6749i 0.771645 0.771645i
\(790\) 0 0
\(791\) 23.0573 0.819822
\(792\) 0 0
\(793\) −26.1316 + 26.1316i −0.927959 + 0.927959i
\(794\) 0 0
\(795\) 52.5860 + 8.19635i 1.86503 + 0.290695i
\(796\) 0 0
\(797\) 29.3268i 1.03881i −0.854528 0.519405i \(-0.826154\pi\)
0.854528 0.519405i \(-0.173846\pi\)
\(798\) 0 0
\(799\) 1.33978 0.0473982
\(800\) 0 0
\(801\) 4.47127 0.157984
\(802\) 0 0
\(803\) 39.7521i 1.40282i
\(804\) 0 0
\(805\) −12.0101 1.87196i −0.423300 0.0659780i
\(806\) 0 0
\(807\) −22.9818 + 22.9818i −0.808997 + 0.808997i
\(808\) 0 0
\(809\) −6.43307 −0.226175 −0.113087 0.993585i \(-0.536074\pi\)
−0.113087 + 0.993585i \(0.536074\pi\)
\(810\) 0 0
\(811\) −14.4038 + 14.4038i −0.505786 + 0.505786i −0.913230 0.407444i \(-0.866420\pi\)
0.407444 + 0.913230i \(0.366420\pi\)
\(812\) 0 0
\(813\) −14.7614 −0.517705
\(814\) 0 0
\(815\) 0.976217 6.26319i 0.0341954 0.219390i
\(816\) 0 0
\(817\) 8.03473 8.03473i 0.281100 0.281100i
\(818\) 0 0
\(819\) −1.46253 + 1.46253i −0.0511050 + 0.0511050i
\(820\) 0 0
\(821\) 20.5284 + 20.5284i 0.716446 + 0.716446i 0.967876 0.251429i \(-0.0809006\pi\)
−0.251429 + 0.967876i \(0.580901\pi\)
\(822\) 0 0
\(823\) −13.8988 13.8988i −0.484481 0.484481i 0.422078 0.906559i \(-0.361301\pi\)
−0.906559 + 0.422078i \(0.861301\pi\)
\(824\) 0 0
\(825\) −15.8473 30.7277i −0.551732 1.06980i
\(826\) 0 0
\(827\) 29.3843i 1.02179i −0.859642 0.510897i \(-0.829313\pi\)
0.859642 0.510897i \(-0.170687\pi\)
\(828\) 0 0
\(829\) 34.7193 + 34.7193i 1.20585 + 1.20585i 0.972359 + 0.233492i \(0.0750154\pi\)
0.233492 + 0.972359i \(0.424985\pi\)
\(830\) 0 0
\(831\) 24.5120i 0.850310i
\(832\) 0 0
\(833\) −1.50060 1.50060i −0.0519927 0.0519927i
\(834\) 0 0
\(835\) −27.0823 + 19.7783i −0.937220 + 0.684457i
\(836\) 0 0
\(837\) 42.1787 1.45791
\(838\) 0 0
\(839\) 4.78293i 0.165125i 0.996586 + 0.0825626i \(0.0263104\pi\)
−0.996586 + 0.0825626i \(0.973690\pi\)
\(840\) 0 0
\(841\) 9.31222i 0.321111i
\(842\) 0 0
\(843\) 51.4692 1.77269
\(844\) 0 0
\(845\) 4.15257 + 0.647244i 0.142853 + 0.0222659i
\(846\) 0 0
\(847\) −5.51537 5.51537i −0.189510 0.189510i
\(848\) 0 0
\(849\) 41.1927i 1.41373i
\(850\) 0 0
\(851\) −14.5781 14.5781i −0.499729 0.499729i
\(852\) 0 0
\(853\) 45.2839i 1.55049i −0.631659 0.775246i \(-0.717626\pi\)
0.631659 0.775246i \(-0.282374\pi\)
\(854\) 0 0
\(855\) 2.02471 1.47866i 0.0692436 0.0505690i
\(856\) 0 0
\(857\) 2.73476 + 2.73476i 0.0934175 + 0.0934175i 0.752271 0.658854i \(-0.228958\pi\)
−0.658854 + 0.752271i \(0.728958\pi\)
\(858\) 0 0
\(859\) 5.94695 + 5.94695i 0.202907 + 0.202907i 0.801244 0.598337i \(-0.204172\pi\)
−0.598337 + 0.801244i \(0.704172\pi\)
\(860\) 0 0
\(861\) −30.3670 + 30.3670i −1.03490 + 1.03490i
\(862\) 0 0
\(863\) 34.3328 34.3328i 1.16870 1.16870i 0.186187 0.982514i \(-0.440387\pi\)
0.982514 0.186187i \(-0.0596130\pi\)
\(864\) 0 0
\(865\) −2.63178 0.410204i −0.0894832 0.0139474i
\(866\) 0 0
\(867\) 29.1276 0.989227
\(868\) 0 0
\(869\) 21.2660 21.2660i 0.721399 0.721399i
\(870\) 0 0
\(871\) −43.5016 −1.47400
\(872\) 0 0
\(873\) 0.851430 0.851430i 0.0288165 0.0288165i
\(874\) 0 0
\(875\) −23.2238 + 7.73566i −0.785108 + 0.261513i
\(876\) 0 0
\(877\) 3.27398i 0.110555i 0.998471 + 0.0552773i \(0.0176043\pi\)
−0.998471 + 0.0552773i \(0.982396\pi\)
\(878\) 0 0
\(879\) 9.80244 0.330628
\(880\) 0 0
\(881\) 39.5807 1.33351 0.666753 0.745279i \(-0.267684\pi\)
0.666753 + 0.745279i \(0.267684\pi\)
\(882\) 0 0
\(883\) 17.8181i 0.599628i 0.953998 + 0.299814i \(0.0969246\pi\)
−0.953998 + 0.299814i \(0.903075\pi\)
\(884\) 0 0
\(885\) −20.1841 + 14.7405i −0.678479 + 0.495497i
\(886\) 0 0
\(887\) −20.2924 + 20.2924i −0.681352 + 0.681352i −0.960305 0.278953i \(-0.910013\pi\)
0.278953 + 0.960305i \(0.410013\pi\)
\(888\) 0 0
\(889\) −8.95892 −0.300473
\(890\) 0 0
\(891\) −26.3622 + 26.3622i −0.883167 + 0.883167i
\(892\) 0 0
\(893\) −5.51349 −0.184502
\(894\) 0 0
\(895\) −9.34724 + 6.82633i −0.312444 + 0.228179i
\(896\) 0 0
\(897\) 10.6084 10.6084i 0.354204 0.354204i
\(898\) 0 0
\(899\) 26.8830 26.8830i 0.896599 0.896599i
\(900\) 0 0
\(901\) 8.93308 + 8.93308i 0.297604 + 0.297604i
\(902\) 0 0
\(903\) −8.05354 8.05354i −0.268005 0.268005i
\(904\) 0 0
\(905\) −11.4958 15.7411i −0.382133 0.523251i
\(906\) 0 0
\(907\) 31.2744i 1.03845i 0.854638 + 0.519225i \(0.173779\pi\)
−0.854638 + 0.519225i \(0.826221\pi\)
\(908\) 0 0
\(909\) −1.94035 1.94035i −0.0643574 0.0643574i
\(910\) 0 0
\(911\) 16.8051i 0.556777i 0.960469 + 0.278388i \(0.0898002\pi\)
−0.960469 + 0.278388i \(0.910200\pi\)
\(912\) 0 0
\(913\) −32.6449 32.6449i −1.08039 1.08039i
\(914\) 0 0
\(915\) −26.4815 36.2609i −0.875451 1.19875i
\(916\) 0 0
\(917\) −1.65494 −0.0546511
\(918\) 0 0
\(919\) 6.78337i 0.223763i −0.993722 0.111881i \(-0.964312\pi\)
0.993722 0.111881i \(-0.0356876\pi\)
\(920\) 0 0
\(921\) 33.7117i 1.11084i
\(922\) 0 0
\(923\) 0.448214 0.0147532
\(924\) 0 0
\(925\) −39.5486 12.6355i −1.30035 0.415453i
\(926\) 0 0
\(927\) 1.26175 + 1.26175i 0.0414414 + 0.0414414i
\(928\) 0 0
\(929\) 43.0476i 1.41235i −0.708039 0.706173i \(-0.750420\pi\)
0.708039 0.706173i \(-0.249580\pi\)
\(930\) 0 0
\(931\) 6.17528 + 6.17528i 0.202387 + 0.202387i
\(932\) 0 0
\(933\) 20.4524i 0.669580i
\(934\) 0 0
\(935\) 1.26391 8.10896i 0.0413343 0.265192i
\(936\) 0 0
\(937\) −11.1198 11.1198i −0.363268 0.363268i 0.501747 0.865015i \(-0.332691\pi\)
−0.865015 + 0.501747i \(0.832691\pi\)
\(938\) 0 0
\(939\) −42.1125 42.1125i −1.37429 1.37429i
\(940\) 0 0
\(941\) −2.76429 + 2.76429i −0.0901131 + 0.0901131i −0.750726 0.660613i \(-0.770296\pi\)
0.660613 + 0.750726i \(0.270296\pi\)
\(942\) 0 0
\(943\) 19.0050 19.0050i 0.618889 0.618889i
\(944\) 0 0
\(945\) 14.2132 + 19.4621i 0.462357 + 0.633101i
\(946\) 0 0
\(947\) −6.77325 −0.220101 −0.110051 0.993926i \(-0.535101\pi\)
−0.110051 + 0.993926i \(0.535101\pi\)
\(948\) 0 0
\(949\) 24.5634 24.5634i 0.797360 0.797360i
\(950\) 0 0
\(951\) 5.73728 0.186044
\(952\) 0 0
\(953\) −28.6073 + 28.6073i −0.926682 + 0.926682i −0.997490 0.0708083i \(-0.977442\pi\)
0.0708083 + 0.997490i \(0.477442\pi\)
\(954\) 0 0
\(955\) −3.62268 + 23.2423i −0.117227 + 0.752103i
\(956\) 0 0
\(957\) 30.6812i 0.991782i
\(958\) 0 0
\(959\) −13.8156 −0.446129
\(960\) 0 0
\(961\) −42.4158 −1.36825
\(962\) 0 0
\(963\) 3.97143i 0.127978i
\(964\) 0 0
\(965\) −10.5105 14.3919i −0.338344 0.463292i
\(966\) 0 0
\(967\) −18.3434 + 18.3434i −0.589882 + 0.589882i −0.937600 0.347717i \(-0.886957\pi\)
0.347717 + 0.937600i \(0.386957\pi\)
\(968\) 0 0
\(969\) 6.89753 0.221581
\(970\) 0 0
\(971\) −9.66321 + 9.66321i −0.310107 + 0.310107i −0.844951 0.534844i \(-0.820370\pi\)
0.534844 + 0.844951i \(0.320370\pi\)
\(972\) 0 0
\(973\) 41.2376 1.32202
\(974\) 0 0
\(975\) 9.19481 28.7793i 0.294470 0.921677i
\(976\) 0 0
\(977\) −40.1076 + 40.1076i −1.28316 + 1.28316i −0.344293 + 0.938862i \(0.611881\pi\)
−0.938862 + 0.344293i \(0.888119\pi\)
\(978\) 0 0
\(979\) −42.5895 + 42.5895i −1.36117 + 1.36117i
\(980\) 0 0
\(981\) −1.98688 1.98688i −0.0634362 0.0634362i
\(982\) 0 0
\(983\) −39.6507 39.6507i −1.26466 1.26466i −0.948808 0.315854i \(-0.897709\pi\)
−0.315854 0.948808i \(-0.602291\pi\)
\(984\) 0 0
\(985\) 21.7297 + 3.38692i 0.692367 + 0.107916i
\(986\) 0 0
\(987\) 5.52640i 0.175907i
\(988\) 0 0
\(989\) 5.04027 + 5.04027i 0.160271 + 0.160271i
\(990\) 0 0
\(991\) 5.77959i 0.183595i 0.995778 + 0.0917974i \(0.0292612\pi\)
−0.995778 + 0.0917974i \(0.970739\pi\)
\(992\) 0 0
\(993\) −9.43621 9.43621i −0.299449 0.299449i
\(994\) 0 0
\(995\) −9.06090 + 58.1327i −0.287250 + 1.84293i
\(996\) 0 0
\(997\) 28.8109 0.912449 0.456225 0.889865i \(-0.349201\pi\)
0.456225 + 0.889865i \(0.349201\pi\)
\(998\) 0 0
\(999\) 40.8756i 1.29325i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.j.d.63.5 yes 32
4.3 odd 2 inner 1280.2.j.d.63.12 yes 32
5.2 odd 4 1280.2.s.c.1087.5 yes 32
8.3 odd 2 1280.2.j.c.63.5 32
8.5 even 2 1280.2.j.c.63.12 yes 32
16.3 odd 4 1280.2.s.c.703.5 yes 32
16.5 even 4 1280.2.s.d.703.5 yes 32
16.11 odd 4 1280.2.s.d.703.12 yes 32
16.13 even 4 1280.2.s.c.703.12 yes 32
20.7 even 4 1280.2.s.c.1087.12 yes 32
40.27 even 4 1280.2.s.d.1087.5 yes 32
40.37 odd 4 1280.2.s.d.1087.12 yes 32
80.27 even 4 1280.2.j.c.447.5 yes 32
80.37 odd 4 1280.2.j.c.447.12 yes 32
80.67 even 4 inner 1280.2.j.d.447.12 yes 32
80.77 odd 4 inner 1280.2.j.d.447.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.5 32 8.3 odd 2
1280.2.j.c.63.12 yes 32 8.5 even 2
1280.2.j.c.447.5 yes 32 80.27 even 4
1280.2.j.c.447.12 yes 32 80.37 odd 4
1280.2.j.d.63.5 yes 32 1.1 even 1 trivial
1280.2.j.d.63.12 yes 32 4.3 odd 2 inner
1280.2.j.d.447.5 yes 32 80.77 odd 4 inner
1280.2.j.d.447.12 yes 32 80.67 even 4 inner
1280.2.s.c.703.5 yes 32 16.3 odd 4
1280.2.s.c.703.12 yes 32 16.13 even 4
1280.2.s.c.1087.5 yes 32 5.2 odd 4
1280.2.s.c.1087.12 yes 32 20.7 even 4
1280.2.s.d.703.5 yes 32 16.5 even 4
1280.2.s.d.703.12 yes 32 16.11 odd 4
1280.2.s.d.1087.5 yes 32 40.27 even 4
1280.2.s.d.1087.12 yes 32 40.37 odd 4