Properties

Label 1280.2.s.d.1087.5
Level $1280$
Weight $2$
Character 1280.1087
Analytic conductor $10.221$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,2,Mod(703,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.703"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1087.5
Character \(\chi\) \(=\) 1280.1087
Dual form 1280.2.s.d.703.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.81199 q^{3} +(0.344369 + 2.20939i) q^{5} +(-1.54814 - 1.54814i) q^{7} +0.283291 q^{9} +(2.69839 - 2.69839i) q^{11} +3.33474i q^{13} +(-0.623991 - 4.00338i) q^{15} +(-0.680078 - 0.680078i) q^{17} +(-2.79866 + 2.79866i) q^{19} +(2.80521 + 2.80521i) q^{21} +(-1.75563 + 1.75563i) q^{23} +(-4.76282 + 1.52169i) q^{25} +4.92264 q^{27} +(-3.13750 - 3.13750i) q^{29} -8.56830i q^{31} +(-4.88944 + 4.88944i) q^{33} +(2.88732 - 3.95358i) q^{35} +8.30361i q^{37} -6.04250i q^{39} -10.8252i q^{41} -2.87092i q^{43} +(0.0975564 + 0.625900i) q^{45} +(-0.985023 + 0.985023i) q^{47} -2.20651i q^{49} +(1.23229 + 1.23229i) q^{51} +13.1354 q^{53} +(6.89103 + 5.03255i) q^{55} +(5.07113 - 5.07113i) q^{57} +(-4.36188 - 4.36188i) q^{59} +(7.83616 - 7.83616i) q^{61} +(-0.438574 - 0.438574i) q^{63} +(-7.36775 + 1.14838i) q^{65} -13.0450i q^{67} +(3.18118 - 3.18118i) q^{69} -0.134408 q^{71} +(-7.36590 - 7.36590i) q^{73} +(8.63016 - 2.75728i) q^{75} -8.35497 q^{77} +7.88100 q^{79} -9.76962 q^{81} -12.0979 q^{83} +(1.26836 - 1.73676i) q^{85} +(5.68510 + 5.68510i) q^{87} +15.7833 q^{89} +(5.16265 - 5.16265i) q^{91} +15.5256i q^{93} +(-7.14711 - 5.21957i) q^{95} +(-3.00550 - 3.00550i) q^{97} +(0.764428 - 0.764428i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{5} + 32 q^{9} + 8 q^{17} - 8 q^{21} - 16 q^{25} - 16 q^{29} + 56 q^{33} + 48 q^{45} - 112 q^{53} + 8 q^{57} + 8 q^{61} - 72 q^{65} + 40 q^{69} - 8 q^{73} - 144 q^{77} - 64 q^{81} - 40 q^{85}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.81199 −1.04615 −0.523075 0.852287i \(-0.675215\pi\)
−0.523075 + 0.852287i \(0.675215\pi\)
\(4\) 0 0
\(5\) 0.344369 + 2.20939i 0.154006 + 0.988070i
\(6\) 0 0
\(7\) −1.54814 1.54814i −0.585143 0.585143i 0.351169 0.936312i \(-0.385784\pi\)
−0.936312 + 0.351169i \(0.885784\pi\)
\(8\) 0 0
\(9\) 0.283291 0.0944303
\(10\) 0 0
\(11\) 2.69839 2.69839i 0.813594 0.813594i −0.171577 0.985171i \(-0.554886\pi\)
0.985171 + 0.171577i \(0.0548862\pi\)
\(12\) 0 0
\(13\) 3.33474i 0.924890i 0.886648 + 0.462445i \(0.153028\pi\)
−0.886648 + 0.462445i \(0.846972\pi\)
\(14\) 0 0
\(15\) −0.623991 4.00338i −0.161114 1.03367i
\(16\) 0 0
\(17\) −0.680078 0.680078i −0.164943 0.164943i 0.619809 0.784752i \(-0.287210\pi\)
−0.784752 + 0.619809i \(0.787210\pi\)
\(18\) 0 0
\(19\) −2.79866 + 2.79866i −0.642057 + 0.642057i −0.951061 0.309004i \(-0.900004\pi\)
0.309004 + 0.951061i \(0.400004\pi\)
\(20\) 0 0
\(21\) 2.80521 + 2.80521i 0.612147 + 0.612147i
\(22\) 0 0
\(23\) −1.75563 + 1.75563i −0.366074 + 0.366074i −0.866043 0.499969i \(-0.833345\pi\)
0.499969 + 0.866043i \(0.333345\pi\)
\(24\) 0 0
\(25\) −4.76282 + 1.52169i −0.952564 + 0.304338i
\(26\) 0 0
\(27\) 4.92264 0.947362
\(28\) 0 0
\(29\) −3.13750 3.13750i −0.582619 0.582619i 0.353003 0.935622i \(-0.385160\pi\)
−0.935622 + 0.353003i \(0.885160\pi\)
\(30\) 0 0
\(31\) 8.56830i 1.53891i −0.638699 0.769456i \(-0.720527\pi\)
0.638699 0.769456i \(-0.279473\pi\)
\(32\) 0 0
\(33\) −4.88944 + 4.88944i −0.851141 + 0.851141i
\(34\) 0 0
\(35\) 2.88732 3.95358i 0.488046 0.668278i
\(36\) 0 0
\(37\) 8.30361i 1.36510i 0.730837 + 0.682552i \(0.239130\pi\)
−0.730837 + 0.682552i \(0.760870\pi\)
\(38\) 0 0
\(39\) 6.04250i 0.967574i
\(40\) 0 0
\(41\) 10.8252i 1.69061i −0.534282 0.845306i \(-0.679418\pi\)
0.534282 0.845306i \(-0.320582\pi\)
\(42\) 0 0
\(43\) 2.87092i 0.437811i −0.975746 0.218906i \(-0.929751\pi\)
0.975746 0.218906i \(-0.0702487\pi\)
\(44\) 0 0
\(45\) 0.0975564 + 0.625900i 0.0145429 + 0.0933037i
\(46\) 0 0
\(47\) −0.985023 + 0.985023i −0.143680 + 0.143680i −0.775288 0.631608i \(-0.782395\pi\)
0.631608 + 0.775288i \(0.282395\pi\)
\(48\) 0 0
\(49\) 2.20651i 0.315216i
\(50\) 0 0
\(51\) 1.23229 + 1.23229i 0.172555 + 0.172555i
\(52\) 0 0
\(53\) 13.1354 1.80428 0.902141 0.431441i \(-0.141995\pi\)
0.902141 + 0.431441i \(0.141995\pi\)
\(54\) 0 0
\(55\) 6.89103 + 5.03255i 0.929186 + 0.678589i
\(56\) 0 0
\(57\) 5.07113 5.07113i 0.671688 0.671688i
\(58\) 0 0
\(59\) −4.36188 4.36188i −0.567868 0.567868i 0.363663 0.931531i \(-0.381526\pi\)
−0.931531 + 0.363663i \(0.881526\pi\)
\(60\) 0 0
\(61\) 7.83616 7.83616i 1.00332 1.00332i 0.00332328 0.999994i \(-0.498942\pi\)
0.999994 0.00332328i \(-0.00105784\pi\)
\(62\) 0 0
\(63\) −0.438574 0.438574i −0.0552552 0.0552552i
\(64\) 0 0
\(65\) −7.36775 + 1.14838i −0.913856 + 0.142439i
\(66\) 0 0
\(67\) 13.0450i 1.59370i −0.604179 0.796849i \(-0.706499\pi\)
0.604179 0.796849i \(-0.293501\pi\)
\(68\) 0 0
\(69\) 3.18118 3.18118i 0.382968 0.382968i
\(70\) 0 0
\(71\) −0.134408 −0.0159512 −0.00797562 0.999968i \(-0.502539\pi\)
−0.00797562 + 0.999968i \(0.502539\pi\)
\(72\) 0 0
\(73\) −7.36590 7.36590i −0.862113 0.862113i 0.129470 0.991583i \(-0.458672\pi\)
−0.991583 + 0.129470i \(0.958672\pi\)
\(74\) 0 0
\(75\) 8.63016 2.75728i 0.996525 0.318383i
\(76\) 0 0
\(77\) −8.35497 −0.952137
\(78\) 0 0
\(79\) 7.88100 0.886682 0.443341 0.896353i \(-0.353793\pi\)
0.443341 + 0.896353i \(0.353793\pi\)
\(80\) 0 0
\(81\) −9.76962 −1.08551
\(82\) 0 0
\(83\) −12.0979 −1.32792 −0.663961 0.747768i \(-0.731126\pi\)
−0.663961 + 0.747768i \(0.731126\pi\)
\(84\) 0 0
\(85\) 1.26836 1.73676i 0.137573 0.188378i
\(86\) 0 0
\(87\) 5.68510 + 5.68510i 0.609507 + 0.609507i
\(88\) 0 0
\(89\) 15.7833 1.67303 0.836514 0.547945i \(-0.184590\pi\)
0.836514 + 0.547945i \(0.184590\pi\)
\(90\) 0 0
\(91\) 5.16265 5.16265i 0.541193 0.541193i
\(92\) 0 0
\(93\) 15.5256i 1.60993i
\(94\) 0 0
\(95\) −7.14711 5.21957i −0.733278 0.535516i
\(96\) 0 0
\(97\) −3.00550 3.00550i −0.305162 0.305162i 0.537867 0.843029i \(-0.319230\pi\)
−0.843029 + 0.537867i \(0.819230\pi\)
\(98\) 0 0
\(99\) 0.764428 0.764428i 0.0768279 0.0768279i
\(100\) 0 0
\(101\) −6.84933 6.84933i −0.681534 0.681534i 0.278812 0.960346i \(-0.410059\pi\)
−0.960346 + 0.278812i \(0.910059\pi\)
\(102\) 0 0
\(103\) 4.45391 4.45391i 0.438857 0.438857i −0.452770 0.891627i \(-0.649564\pi\)
0.891627 + 0.452770i \(0.149564\pi\)
\(104\) 0 0
\(105\) −5.23178 + 7.16384i −0.510570 + 0.699119i
\(106\) 0 0
\(107\) −14.0189 −1.35526 −0.677631 0.735403i \(-0.736993\pi\)
−0.677631 + 0.735403i \(0.736993\pi\)
\(108\) 0 0
\(109\) 7.01357 + 7.01357i 0.671778 + 0.671778i 0.958126 0.286348i \(-0.0924413\pi\)
−0.286348 + 0.958126i \(0.592441\pi\)
\(110\) 0 0
\(111\) 15.0460i 1.42810i
\(112\) 0 0
\(113\) 7.44675 7.44675i 0.700532 0.700532i −0.263993 0.964525i \(-0.585040\pi\)
0.964525 + 0.263993i \(0.0850395\pi\)
\(114\) 0 0
\(115\) −4.48346 3.27429i −0.418084 0.305329i
\(116\) 0 0
\(117\) 0.944701i 0.0873376i
\(118\) 0 0
\(119\) 2.10572i 0.193031i
\(120\) 0 0
\(121\) 3.56257i 0.323870i
\(122\) 0 0
\(123\) 19.6151i 1.76863i
\(124\) 0 0
\(125\) −5.00217 9.99891i −0.447408 0.894330i
\(126\) 0 0
\(127\) −2.89344 + 2.89344i −0.256751 + 0.256751i −0.823732 0.566980i \(-0.808112\pi\)
0.566980 + 0.823732i \(0.308112\pi\)
\(128\) 0 0
\(129\) 5.20206i 0.458016i
\(130\) 0 0
\(131\) −0.534493 0.534493i −0.0466989 0.0466989i 0.683372 0.730071i \(-0.260513\pi\)
−0.730071 + 0.683372i \(0.760513\pi\)
\(132\) 0 0
\(133\) 8.66546 0.751390
\(134\) 0 0
\(135\) 1.69520 + 10.8760i 0.145900 + 0.936060i
\(136\) 0 0
\(137\) 4.46199 4.46199i 0.381214 0.381214i −0.490326 0.871539i \(-0.663122\pi\)
0.871539 + 0.490326i \(0.163122\pi\)
\(138\) 0 0
\(139\) −13.3184 13.3184i −1.12965 1.12965i −0.990233 0.139419i \(-0.955476\pi\)
−0.139419 0.990233i \(-0.544524\pi\)
\(140\) 0 0
\(141\) 1.78485 1.78485i 0.150311 0.150311i
\(142\) 0 0
\(143\) 8.99841 + 8.99841i 0.752485 + 0.752485i
\(144\) 0 0
\(145\) 5.85150 8.01241i 0.485941 0.665395i
\(146\) 0 0
\(147\) 3.99816i 0.329763i
\(148\) 0 0
\(149\) −10.3862 + 10.3862i −0.850874 + 0.850874i −0.990241 0.139366i \(-0.955493\pi\)
0.139366 + 0.990241i \(0.455493\pi\)
\(150\) 0 0
\(151\) −6.86253 −0.558465 −0.279233 0.960223i \(-0.590080\pi\)
−0.279233 + 0.960223i \(0.590080\pi\)
\(152\) 0 0
\(153\) −0.192660 0.192660i −0.0155756 0.0155756i
\(154\) 0 0
\(155\) 18.9307 2.95065i 1.52055 0.237002i
\(156\) 0 0
\(157\) −4.58973 −0.366300 −0.183150 0.983085i \(-0.558629\pi\)
−0.183150 + 0.983085i \(0.558629\pi\)
\(158\) 0 0
\(159\) −23.8011 −1.88755
\(160\) 0 0
\(161\) 5.43593 0.428411
\(162\) 0 0
\(163\) 2.83480 0.222039 0.111019 0.993818i \(-0.464588\pi\)
0.111019 + 0.993818i \(0.464588\pi\)
\(164\) 0 0
\(165\) −12.4864 9.11891i −0.972068 0.709906i
\(166\) 0 0
\(167\) −10.6049 10.6049i −0.820629 0.820629i 0.165569 0.986198i \(-0.447054\pi\)
−0.986198 + 0.165569i \(0.947054\pi\)
\(168\) 0 0
\(169\) 1.87951 0.144578
\(170\) 0 0
\(171\) −0.792835 + 0.792835i −0.0606296 + 0.0606296i
\(172\) 0 0
\(173\) 1.19118i 0.0905636i 0.998974 + 0.0452818i \(0.0144186\pi\)
−0.998974 + 0.0452818i \(0.985581\pi\)
\(174\) 0 0
\(175\) 9.72932 + 5.01773i 0.735467 + 0.379305i
\(176\) 0 0
\(177\) 7.90366 + 7.90366i 0.594075 + 0.594075i
\(178\) 0 0
\(179\) −3.66019 + 3.66019i −0.273575 + 0.273575i −0.830538 0.556962i \(-0.811967\pi\)
0.556962 + 0.830538i \(0.311967\pi\)
\(180\) 0 0
\(181\) −6.16389 6.16389i −0.458158 0.458158i 0.439892 0.898050i \(-0.355017\pi\)
−0.898050 + 0.439892i \(0.855017\pi\)
\(182\) 0 0
\(183\) −14.1990 + 14.1990i −1.04962 + 1.04962i
\(184\) 0 0
\(185\) −18.3459 + 2.85950i −1.34882 + 0.210235i
\(186\) 0 0
\(187\) −3.67023 −0.268393
\(188\) 0 0
\(189\) −7.62094 7.62094i −0.554342 0.554342i
\(190\) 0 0
\(191\) 10.5198i 0.761184i 0.924743 + 0.380592i \(0.124280\pi\)
−0.924743 + 0.380592i \(0.875720\pi\)
\(192\) 0 0
\(193\) 5.63558 5.63558i 0.405658 0.405658i −0.474563 0.880221i \(-0.657394\pi\)
0.880221 + 0.474563i \(0.157394\pi\)
\(194\) 0 0
\(195\) 13.3502 2.08085i 0.956031 0.149013i
\(196\) 0 0
\(197\) 9.83517i 0.700727i 0.936614 + 0.350364i \(0.113942\pi\)
−0.936614 + 0.350364i \(0.886058\pi\)
\(198\) 0 0
\(199\) 26.3116i 1.86518i −0.360934 0.932592i \(-0.617542\pi\)
0.360934 0.932592i \(-0.382458\pi\)
\(200\) 0 0
\(201\) 23.6373i 1.66725i
\(202\) 0 0
\(203\) 9.71458i 0.681830i
\(204\) 0 0
\(205\) 23.9171 3.72786i 1.67044 0.260365i
\(206\) 0 0
\(207\) −0.497354 + 0.497354i −0.0345685 + 0.0345685i
\(208\) 0 0
\(209\) 15.1037i 1.04475i
\(210\) 0 0
\(211\) 18.6349 + 18.6349i 1.28288 + 1.28288i 0.939023 + 0.343853i \(0.111732\pi\)
0.343853 + 0.939023i \(0.388268\pi\)
\(212\) 0 0
\(213\) 0.243545 0.0166874
\(214\) 0 0
\(215\) 6.34298 0.988654i 0.432588 0.0674257i
\(216\) 0 0
\(217\) −13.2650 + 13.2650i −0.900484 + 0.900484i
\(218\) 0 0
\(219\) 13.3469 + 13.3469i 0.901900 + 0.901900i
\(220\) 0 0
\(221\) 2.26788 2.26788i 0.152554 0.152554i
\(222\) 0 0
\(223\) 18.4764 + 18.4764i 1.23727 + 1.23727i 0.961113 + 0.276157i \(0.0890610\pi\)
0.276157 + 0.961113i \(0.410939\pi\)
\(224\) 0 0
\(225\) −1.34926 + 0.431081i −0.0899509 + 0.0287387i
\(226\) 0 0
\(227\) 23.4080i 1.55364i 0.629721 + 0.776821i \(0.283169\pi\)
−0.629721 + 0.776821i \(0.716831\pi\)
\(228\) 0 0
\(229\) −1.09387 + 1.09387i −0.0722850 + 0.0722850i −0.742325 0.670040i \(-0.766277\pi\)
0.670040 + 0.742325i \(0.266277\pi\)
\(230\) 0 0
\(231\) 15.1391 0.996079
\(232\) 0 0
\(233\) −3.14271 3.14271i −0.205886 0.205886i 0.596630 0.802516i \(-0.296506\pi\)
−0.802516 + 0.596630i \(0.796506\pi\)
\(234\) 0 0
\(235\) −2.51551 1.83709i −0.164094 0.119839i
\(236\) 0 0
\(237\) −14.2803 −0.927603
\(238\) 0 0
\(239\) 9.46338 0.612135 0.306068 0.952010i \(-0.400987\pi\)
0.306068 + 0.952010i \(0.400987\pi\)
\(240\) 0 0
\(241\) 5.06898 0.326522 0.163261 0.986583i \(-0.447799\pi\)
0.163261 + 0.986583i \(0.447799\pi\)
\(242\) 0 0
\(243\) 2.93449 0.188248
\(244\) 0 0
\(245\) 4.87504 0.759853i 0.311455 0.0485452i
\(246\) 0 0
\(247\) −9.33281 9.33281i −0.593832 0.593832i
\(248\) 0 0
\(249\) 21.9213 1.38921
\(250\) 0 0
\(251\) −7.15197 + 7.15197i −0.451428 + 0.451428i −0.895828 0.444400i \(-0.853417\pi\)
0.444400 + 0.895828i \(0.353417\pi\)
\(252\) 0 0
\(253\) 9.47473i 0.595671i
\(254\) 0 0
\(255\) −2.29825 + 3.14698i −0.143922 + 0.197071i
\(256\) 0 0
\(257\) 4.88244 + 4.88244i 0.304558 + 0.304558i 0.842794 0.538236i \(-0.180909\pi\)
−0.538236 + 0.842794i \(0.680909\pi\)
\(258\) 0 0
\(259\) 12.8552 12.8552i 0.798781 0.798781i
\(260\) 0 0
\(261\) −0.888824 0.888824i −0.0550168 0.0550168i
\(262\) 0 0
\(263\) −11.9619 + 11.9619i −0.737605 + 0.737605i −0.972114 0.234509i \(-0.924652\pi\)
0.234509 + 0.972114i \(0.424652\pi\)
\(264\) 0 0
\(265\) 4.52341 + 29.0212i 0.277871 + 1.78276i
\(266\) 0 0
\(267\) −28.5991 −1.75024
\(268\) 0 0
\(269\) −12.6832 12.6832i −0.773309 0.773309i 0.205375 0.978683i \(-0.434159\pi\)
−0.978683 + 0.205375i \(0.934159\pi\)
\(270\) 0 0
\(271\) 8.14653i 0.494867i 0.968905 + 0.247433i \(0.0795871\pi\)
−0.968905 + 0.247433i \(0.920413\pi\)
\(272\) 0 0
\(273\) −9.35465 + 9.35465i −0.566169 + 0.566169i
\(274\) 0 0
\(275\) −8.74582 + 16.9580i −0.527393 + 1.02261i
\(276\) 0 0
\(277\) 13.5277i 0.812800i −0.913695 0.406400i \(-0.866784\pi\)
0.913695 0.406400i \(-0.133216\pi\)
\(278\) 0 0
\(279\) 2.42732i 0.145320i
\(280\) 0 0
\(281\) 28.4048i 1.69449i 0.531202 + 0.847245i \(0.321741\pi\)
−0.531202 + 0.847245i \(0.678259\pi\)
\(282\) 0 0
\(283\) 22.7335i 1.35136i 0.737193 + 0.675682i \(0.236151\pi\)
−0.737193 + 0.675682i \(0.763849\pi\)
\(284\) 0 0
\(285\) 12.9505 + 9.45778i 0.767119 + 0.560231i
\(286\) 0 0
\(287\) −16.7590 + 16.7590i −0.989250 + 0.989250i
\(288\) 0 0
\(289\) 16.0750i 0.945588i
\(290\) 0 0
\(291\) 5.44592 + 5.44592i 0.319245 + 0.319245i
\(292\) 0 0
\(293\) −5.40978 −0.316043 −0.158021 0.987436i \(-0.550511\pi\)
−0.158021 + 0.987436i \(0.550511\pi\)
\(294\) 0 0
\(295\) 8.13500 11.1392i 0.473638 0.648549i
\(296\) 0 0
\(297\) 13.2832 13.2832i 0.770768 0.770768i
\(298\) 0 0
\(299\) −5.85457 5.85457i −0.338578 0.338578i
\(300\) 0 0
\(301\) −4.44459 + 4.44459i −0.256182 + 0.256182i
\(302\) 0 0
\(303\) 12.4109 + 12.4109i 0.712987 + 0.712987i
\(304\) 0 0
\(305\) 20.0117 + 14.6146i 1.14587 + 0.836831i
\(306\) 0 0
\(307\) 18.6048i 1.06183i −0.847424 0.530917i \(-0.821848\pi\)
0.847424 0.530917i \(-0.178152\pi\)
\(308\) 0 0
\(309\) −8.07043 + 8.07043i −0.459111 + 0.459111i
\(310\) 0 0
\(311\) 11.2873 0.640042 0.320021 0.947410i \(-0.396310\pi\)
0.320021 + 0.947410i \(0.396310\pi\)
\(312\) 0 0
\(313\) −23.2411 23.2411i −1.31366 1.31366i −0.918694 0.394971i \(-0.870755\pi\)
−0.394971 0.918694i \(-0.629245\pi\)
\(314\) 0 0
\(315\) 0.817951 1.12001i 0.0460863 0.0631056i
\(316\) 0 0
\(317\) 3.16629 0.177837 0.0889184 0.996039i \(-0.471659\pi\)
0.0889184 + 0.996039i \(0.471659\pi\)
\(318\) 0 0
\(319\) −16.9324 −0.948030
\(320\) 0 0
\(321\) 25.4021 1.41781
\(322\) 0 0
\(323\) 3.80662 0.211806
\(324\) 0 0
\(325\) −5.07444 15.8828i −0.281479 0.881017i
\(326\) 0 0
\(327\) −12.7085 12.7085i −0.702781 0.702781i
\(328\) 0 0
\(329\) 3.04991 0.168147
\(330\) 0 0
\(331\) 5.20766 5.20766i 0.286239 0.286239i −0.549352 0.835591i \(-0.685125\pi\)
0.835591 + 0.549352i \(0.185125\pi\)
\(332\) 0 0
\(333\) 2.35234i 0.128907i
\(334\) 0 0
\(335\) 28.8215 4.49228i 1.57468 0.245440i
\(336\) 0 0
\(337\) −20.1503 20.1503i −1.09765 1.09765i −0.994684 0.102970i \(-0.967165\pi\)
−0.102970 0.994684i \(-0.532835\pi\)
\(338\) 0 0
\(339\) −13.4934 + 13.4934i −0.732861 + 0.732861i
\(340\) 0 0
\(341\) −23.1206 23.1206i −1.25205 1.25205i
\(342\) 0 0
\(343\) −14.2530 + 14.2530i −0.769589 + 0.769589i
\(344\) 0 0
\(345\) 8.12396 + 5.93296i 0.437379 + 0.319420i
\(346\) 0 0
\(347\) 12.9438 0.694861 0.347430 0.937706i \(-0.387054\pi\)
0.347430 + 0.937706i \(0.387054\pi\)
\(348\) 0 0
\(349\) 0.0888151 + 0.0888151i 0.00475416 + 0.00475416i 0.709480 0.704726i \(-0.248930\pi\)
−0.704726 + 0.709480i \(0.748930\pi\)
\(350\) 0 0
\(351\) 16.4157i 0.876206i
\(352\) 0 0
\(353\) 6.22306 6.22306i 0.331220 0.331220i −0.521830 0.853050i \(-0.674750\pi\)
0.853050 + 0.521830i \(0.174750\pi\)
\(354\) 0 0
\(355\) −0.0462857 0.296959i −0.00245659 0.0157609i
\(356\) 0 0
\(357\) 3.81553i 0.201939i
\(358\) 0 0
\(359\) 22.4574i 1.18525i 0.805477 + 0.592627i \(0.201909\pi\)
−0.805477 + 0.592627i \(0.798091\pi\)
\(360\) 0 0
\(361\) 3.33498i 0.175525i
\(362\) 0 0
\(363\) 6.45533i 0.338817i
\(364\) 0 0
\(365\) 13.7376 18.8107i 0.719057 0.984599i
\(366\) 0 0
\(367\) −12.7444 + 12.7444i −0.665252 + 0.665252i −0.956613 0.291361i \(-0.905892\pi\)
0.291361 + 0.956613i \(0.405892\pi\)
\(368\) 0 0
\(369\) 3.06668i 0.159645i
\(370\) 0 0
\(371\) −20.3354 20.3354i −1.05576 1.05576i
\(372\) 0 0
\(373\) −24.3812 −1.26241 −0.631205 0.775616i \(-0.717439\pi\)
−0.631205 + 0.775616i \(0.717439\pi\)
\(374\) 0 0
\(375\) 9.06387 + 18.1179i 0.468056 + 0.935603i
\(376\) 0 0
\(377\) 10.4627 10.4627i 0.538858 0.538858i
\(378\) 0 0
\(379\) −20.9815 20.9815i −1.07775 1.07775i −0.996711 0.0810340i \(-0.974178\pi\)
−0.0810340 0.996711i \(-0.525822\pi\)
\(380\) 0 0
\(381\) 5.24287 5.24287i 0.268601 0.268601i
\(382\) 0 0
\(383\) −13.4514 13.4514i −0.687333 0.687333i 0.274309 0.961642i \(-0.411551\pi\)
−0.961642 + 0.274309i \(0.911551\pi\)
\(384\) 0 0
\(385\) −2.87719 18.4594i −0.146635 0.940778i
\(386\) 0 0
\(387\) 0.813305i 0.0413426i
\(388\) 0 0
\(389\) 7.64401 7.64401i 0.387567 0.387567i −0.486252 0.873819i \(-0.661636\pi\)
0.873819 + 0.486252i \(0.161636\pi\)
\(390\) 0 0
\(391\) 2.38793 0.120763
\(392\) 0 0
\(393\) 0.968494 + 0.968494i 0.0488541 + 0.0488541i
\(394\) 0 0
\(395\) 2.71397 + 17.4122i 0.136555 + 0.876104i
\(396\) 0 0
\(397\) 0.575578 0.0288874 0.0144437 0.999896i \(-0.495402\pi\)
0.0144437 + 0.999896i \(0.495402\pi\)
\(398\) 0 0
\(399\) −15.7017 −0.786067
\(400\) 0 0
\(401\) −16.7178 −0.834845 −0.417422 0.908713i \(-0.637066\pi\)
−0.417422 + 0.908713i \(0.637066\pi\)
\(402\) 0 0
\(403\) 28.5731 1.42333
\(404\) 0 0
\(405\) −3.36435 21.5849i −0.167176 1.07256i
\(406\) 0 0
\(407\) 22.4063 + 22.4063i 1.11064 + 1.11064i
\(408\) 0 0
\(409\) −14.4690 −0.715448 −0.357724 0.933827i \(-0.616447\pi\)
−0.357724 + 0.933827i \(0.616447\pi\)
\(410\) 0 0
\(411\) −8.08507 + 8.08507i −0.398807 + 0.398807i
\(412\) 0 0
\(413\) 13.5056i 0.664568i
\(414\) 0 0
\(415\) −4.16615 26.7291i −0.204508 1.31208i
\(416\) 0 0
\(417\) 24.1328 + 24.1328i 1.18179 + 1.18179i
\(418\) 0 0
\(419\) 24.5270 24.5270i 1.19822 1.19822i 0.223527 0.974698i \(-0.428243\pi\)
0.974698 0.223527i \(-0.0717570\pi\)
\(420\) 0 0
\(421\) 10.6240 + 10.6240i 0.517783 + 0.517783i 0.916900 0.399117i \(-0.130683\pi\)
−0.399117 + 0.916900i \(0.630683\pi\)
\(422\) 0 0
\(423\) −0.279048 + 0.279048i −0.0135678 + 0.0135678i
\(424\) 0 0
\(425\) 4.27396 + 2.20422i 0.207317 + 0.106920i
\(426\) 0 0
\(427\) −24.2630 −1.17417
\(428\) 0 0
\(429\) −16.3050 16.3050i −0.787213 0.787213i
\(430\) 0 0
\(431\) 2.25550i 0.108644i −0.998523 0.0543219i \(-0.982700\pi\)
0.998523 0.0543219i \(-0.0172997\pi\)
\(432\) 0 0
\(433\) 19.9639 19.9639i 0.959404 0.959404i −0.0398034 0.999208i \(-0.512673\pi\)
0.999208 + 0.0398034i \(0.0126732\pi\)
\(434\) 0 0
\(435\) −10.6028 + 14.5184i −0.508367 + 0.696103i
\(436\) 0 0
\(437\) 9.82683i 0.470081i
\(438\) 0 0
\(439\) 21.0582i 1.00505i −0.864561 0.502527i \(-0.832404\pi\)
0.864561 0.502527i \(-0.167596\pi\)
\(440\) 0 0
\(441\) 0.625084i 0.0297659i
\(442\) 0 0
\(443\) 19.4033i 0.921877i 0.887432 + 0.460938i \(0.152487\pi\)
−0.887432 + 0.460938i \(0.847513\pi\)
\(444\) 0 0
\(445\) 5.43528 + 34.8715i 0.257657 + 1.65307i
\(446\) 0 0
\(447\) 18.8197 18.8197i 0.890142 0.890142i
\(448\) 0 0
\(449\) 11.7669i 0.555313i −0.960680 0.277656i \(-0.910442\pi\)
0.960680 0.277656i \(-0.0895577\pi\)
\(450\) 0 0
\(451\) −29.2106 29.2106i −1.37547 1.37547i
\(452\) 0 0
\(453\) 12.4348 0.584238
\(454\) 0 0
\(455\) 13.1842 + 9.62846i 0.618084 + 0.451389i
\(456\) 0 0
\(457\) 16.1247 16.1247i 0.754280 0.754280i −0.220995 0.975275i \(-0.570930\pi\)
0.975275 + 0.220995i \(0.0709305\pi\)
\(458\) 0 0
\(459\) −3.34778 3.34778i −0.156261 0.156261i
\(460\) 0 0
\(461\) −2.87775 + 2.87775i −0.134030 + 0.134030i −0.770939 0.636909i \(-0.780213\pi\)
0.636909 + 0.770939i \(0.280213\pi\)
\(462\) 0 0
\(463\) −9.81984 9.81984i −0.456367 0.456367i 0.441094 0.897461i \(-0.354590\pi\)
−0.897461 + 0.441094i \(0.854590\pi\)
\(464\) 0 0
\(465\) −34.3022 + 5.34654i −1.59073 + 0.247940i
\(466\) 0 0
\(467\) 21.7864i 1.00816i 0.863658 + 0.504078i \(0.168168\pi\)
−0.863658 + 0.504078i \(0.831832\pi\)
\(468\) 0 0
\(469\) −20.1955 + 20.1955i −0.932541 + 0.932541i
\(470\) 0 0
\(471\) 8.31652 0.383205
\(472\) 0 0
\(473\) −7.74685 7.74685i −0.356200 0.356200i
\(474\) 0 0
\(475\) 9.07083 17.5882i 0.416198 0.807003i
\(476\) 0 0
\(477\) 3.72113 0.170379
\(478\) 0 0
\(479\) 9.22756 0.421618 0.210809 0.977527i \(-0.432390\pi\)
0.210809 + 0.977527i \(0.432390\pi\)
\(480\) 0 0
\(481\) −27.6904 −1.26257
\(482\) 0 0
\(483\) −9.84982 −0.448183
\(484\) 0 0
\(485\) 5.60532 7.67532i 0.254525 0.348518i
\(486\) 0 0
\(487\) −25.1713 25.1713i −1.14062 1.14062i −0.988337 0.152284i \(-0.951337\pi\)
−0.152284 0.988337i \(-0.548663\pi\)
\(488\) 0 0
\(489\) −5.13662 −0.232286
\(490\) 0 0
\(491\) 20.1548 20.1548i 0.909574 0.909574i −0.0866633 0.996238i \(-0.527620\pi\)
0.996238 + 0.0866633i \(0.0276204\pi\)
\(492\) 0 0
\(493\) 4.26749i 0.192198i
\(494\) 0 0
\(495\) 1.95217 + 1.42568i 0.0877433 + 0.0640793i
\(496\) 0 0
\(497\) 0.208082 + 0.208082i 0.00933376 + 0.00933376i
\(498\) 0 0
\(499\) 3.44858 3.44858i 0.154380 0.154380i −0.625691 0.780071i \(-0.715183\pi\)
0.780071 + 0.625691i \(0.215183\pi\)
\(500\) 0 0
\(501\) 19.2159 + 19.2159i 0.858501 + 0.858501i
\(502\) 0 0
\(503\) −14.8039 + 14.8039i −0.660074 + 0.660074i −0.955397 0.295323i \(-0.904573\pi\)
0.295323 + 0.955397i \(0.404573\pi\)
\(504\) 0 0
\(505\) 12.7742 17.4916i 0.568443 0.778364i
\(506\) 0 0
\(507\) −3.40564 −0.151250
\(508\) 0 0
\(509\) −14.7467 14.7467i −0.653635 0.653635i 0.300232 0.953866i \(-0.402936\pi\)
−0.953866 + 0.300232i \(0.902936\pi\)
\(510\) 0 0
\(511\) 22.8069i 1.00892i
\(512\) 0 0
\(513\) −13.7768 + 13.7768i −0.608261 + 0.608261i
\(514\) 0 0
\(515\) 11.3742 + 8.30665i 0.501208 + 0.366035i
\(516\) 0 0
\(517\) 5.31594i 0.233795i
\(518\) 0 0
\(519\) 2.15840i 0.0947431i
\(520\) 0 0
\(521\) 15.2957i 0.670118i 0.942197 + 0.335059i \(0.108756\pi\)
−0.942197 + 0.335059i \(0.891244\pi\)
\(522\) 0 0
\(523\) 0.856013i 0.0374308i 0.999825 + 0.0187154i \(0.00595765\pi\)
−0.999825 + 0.0187154i \(0.994042\pi\)
\(524\) 0 0
\(525\) −17.6294 9.09206i −0.769409 0.396810i
\(526\) 0 0
\(527\) −5.82712 + 5.82712i −0.253833 + 0.253833i
\(528\) 0 0
\(529\) 16.8355i 0.731980i
\(530\) 0 0
\(531\) −1.23568 1.23568i −0.0536239 0.0536239i
\(532\) 0 0
\(533\) 36.0992 1.56363
\(534\) 0 0
\(535\) −4.82768 30.9733i −0.208719 1.33909i
\(536\) 0 0
\(537\) 6.63221 6.63221i 0.286201 0.286201i
\(538\) 0 0
\(539\) −5.95402 5.95402i −0.256458 0.256458i
\(540\) 0 0
\(541\) 3.59516 3.59516i 0.154568 0.154568i −0.625587 0.780155i \(-0.715140\pi\)
0.780155 + 0.625587i \(0.215140\pi\)
\(542\) 0 0
\(543\) 11.1689 + 11.1689i 0.479302 + 0.479302i
\(544\) 0 0
\(545\) −13.0805 + 17.9110i −0.560306 + 0.767222i
\(546\) 0 0
\(547\) 2.45850i 0.105118i −0.998618 0.0525589i \(-0.983262\pi\)
0.998618 0.0525589i \(-0.0167377\pi\)
\(548\) 0 0
\(549\) 2.21991 2.21991i 0.0947436 0.0947436i
\(550\) 0 0
\(551\) 17.5616 0.748149
\(552\) 0 0
\(553\) −12.2009 12.2009i −0.518836 0.518836i
\(554\) 0 0
\(555\) 33.2425 5.18137i 1.41107 0.219937i
\(556\) 0 0
\(557\) 13.9664 0.591774 0.295887 0.955223i \(-0.404385\pi\)
0.295887 + 0.955223i \(0.404385\pi\)
\(558\) 0 0
\(559\) 9.57377 0.404927
\(560\) 0 0
\(561\) 6.65039 0.280780
\(562\) 0 0
\(563\) −3.68729 −0.155401 −0.0777004 0.996977i \(-0.524758\pi\)
−0.0777004 + 0.996977i \(0.524758\pi\)
\(564\) 0 0
\(565\) 19.0172 + 13.8884i 0.800061 + 0.584288i
\(566\) 0 0
\(567\) 15.1248 + 15.1248i 0.635180 + 0.635180i
\(568\) 0 0
\(569\) −2.38759 −0.100093 −0.0500466 0.998747i \(-0.515937\pi\)
−0.0500466 + 0.998747i \(0.515937\pi\)
\(570\) 0 0
\(571\) 12.9632 12.9632i 0.542491 0.542491i −0.381767 0.924258i \(-0.624684\pi\)
0.924258 + 0.381767i \(0.124684\pi\)
\(572\) 0 0
\(573\) 19.0617i 0.796313i
\(574\) 0 0
\(575\) 5.69023 11.0333i 0.237299 0.460119i
\(576\) 0 0
\(577\) 4.15876 + 4.15876i 0.173131 + 0.173131i 0.788354 0.615222i \(-0.210934\pi\)
−0.615222 + 0.788354i \(0.710934\pi\)
\(578\) 0 0
\(579\) −10.2116 + 10.2116i −0.424379 + 0.424379i
\(580\) 0 0
\(581\) 18.7293 + 18.7293i 0.777024 + 0.777024i
\(582\) 0 0
\(583\) 35.4443 35.4443i 1.46795 1.46795i
\(584\) 0 0
\(585\) −2.08721 + 0.325325i −0.0862957 + 0.0134505i
\(586\) 0 0
\(587\) 33.0229 1.36300 0.681500 0.731818i \(-0.261328\pi\)
0.681500 + 0.731818i \(0.261328\pi\)
\(588\) 0 0
\(589\) 23.9798 + 23.9798i 0.988070 + 0.988070i
\(590\) 0 0
\(591\) 17.8212i 0.733066i
\(592\) 0 0
\(593\) −11.3559 + 11.3559i −0.466330 + 0.466330i −0.900723 0.434394i \(-0.856963\pi\)
0.434394 + 0.900723i \(0.356963\pi\)
\(594\) 0 0
\(595\) −4.65235 + 0.725142i −0.190728 + 0.0297279i
\(596\) 0 0
\(597\) 47.6763i 1.95126i
\(598\) 0 0
\(599\) 15.5317i 0.634607i 0.948324 + 0.317304i \(0.102777\pi\)
−0.948324 + 0.317304i \(0.897223\pi\)
\(600\) 0 0
\(601\) 23.2823i 0.949705i 0.880065 + 0.474853i \(0.157499\pi\)
−0.880065 + 0.474853i \(0.842501\pi\)
\(602\) 0 0
\(603\) 3.69552i 0.150493i
\(604\) 0 0
\(605\) 7.87111 1.22684i 0.320006 0.0498780i
\(606\) 0 0
\(607\) 23.0138 23.0138i 0.934099 0.934099i −0.0638595 0.997959i \(-0.520341\pi\)
0.997959 + 0.0638595i \(0.0203410\pi\)
\(608\) 0 0
\(609\) 17.6027i 0.713297i
\(610\) 0 0
\(611\) −3.28480 3.28480i −0.132889 0.132889i
\(612\) 0 0
\(613\) 23.8396 0.962874 0.481437 0.876481i \(-0.340115\pi\)
0.481437 + 0.876481i \(0.340115\pi\)
\(614\) 0 0
\(615\) −43.3375 + 6.75483i −1.74753 + 0.272381i
\(616\) 0 0
\(617\) 7.51162 7.51162i 0.302406 0.302406i −0.539548 0.841955i \(-0.681405\pi\)
0.841955 + 0.539548i \(0.181405\pi\)
\(618\) 0 0
\(619\) −3.21702 3.21702i −0.129303 0.129303i 0.639494 0.768796i \(-0.279144\pi\)
−0.768796 + 0.639494i \(0.779144\pi\)
\(620\) 0 0
\(621\) −8.64233 + 8.64233i −0.346805 + 0.346805i
\(622\) 0 0
\(623\) −24.4348 24.4348i −0.978961 0.978961i
\(624\) 0 0
\(625\) 20.3689 14.4951i 0.814757 0.579803i
\(626\) 0 0
\(627\) 27.3678i 1.09296i
\(628\) 0 0
\(629\) 5.64710 5.64710i 0.225165 0.225165i
\(630\) 0 0
\(631\) −17.5142 −0.697231 −0.348616 0.937266i \(-0.613348\pi\)
−0.348616 + 0.937266i \(0.613348\pi\)
\(632\) 0 0
\(633\) −33.7661 33.7661i −1.34208 1.34208i
\(634\) 0 0
\(635\) −7.38916 5.39634i −0.293230 0.214147i
\(636\) 0 0
\(637\) 7.35814 0.291540
\(638\) 0 0
\(639\) −0.0380764 −0.00150628
\(640\) 0 0
\(641\) −4.81236 −0.190077 −0.0950383 0.995474i \(-0.530297\pi\)
−0.0950383 + 0.995474i \(0.530297\pi\)
\(642\) 0 0
\(643\) 0.379678 0.0149730 0.00748652 0.999972i \(-0.497617\pi\)
0.00748652 + 0.999972i \(0.497617\pi\)
\(644\) 0 0
\(645\) −11.4934 + 1.79143i −0.452552 + 0.0705374i
\(646\) 0 0
\(647\) −10.4814 10.4814i −0.412066 0.412066i 0.470392 0.882458i \(-0.344113\pi\)
−0.882458 + 0.470392i \(0.844113\pi\)
\(648\) 0 0
\(649\) −23.5401 −0.924028
\(650\) 0 0
\(651\) 24.0359 24.0359i 0.942041 0.942041i
\(652\) 0 0
\(653\) 3.39325i 0.132788i −0.997793 0.0663941i \(-0.978851\pi\)
0.997793 0.0663941i \(-0.0211495\pi\)
\(654\) 0 0
\(655\) 0.996843 1.36497i 0.0389499 0.0533337i
\(656\) 0 0
\(657\) −2.08669 2.08669i −0.0814096 0.0814096i
\(658\) 0 0
\(659\) −3.63069 + 3.63069i −0.141431 + 0.141431i −0.774278 0.632846i \(-0.781887\pi\)
0.632846 + 0.774278i \(0.281887\pi\)
\(660\) 0 0
\(661\) 7.92705 + 7.92705i 0.308327 + 0.308327i 0.844260 0.535934i \(-0.180040\pi\)
−0.535934 + 0.844260i \(0.680040\pi\)
\(662\) 0 0
\(663\) −4.10937 + 4.10937i −0.159595 + 0.159595i
\(664\) 0 0
\(665\) 2.98411 + 19.1454i 0.115719 + 0.742426i
\(666\) 0 0
\(667\) 11.0166 0.426563
\(668\) 0 0
\(669\) −33.4789 33.4789i −1.29437 1.29437i
\(670\) 0 0
\(671\) 42.2900i 1.63259i
\(672\) 0 0
\(673\) −6.74727 + 6.74727i −0.260088 + 0.260088i −0.825090 0.565002i \(-0.808876\pi\)
0.565002 + 0.825090i \(0.308876\pi\)
\(674\) 0 0
\(675\) −23.4456 + 7.49073i −0.902423 + 0.288318i
\(676\) 0 0
\(677\) 21.3785i 0.821641i 0.911716 + 0.410821i \(0.134758\pi\)
−0.911716 + 0.410821i \(0.865242\pi\)
\(678\) 0 0
\(679\) 9.30588i 0.357127i
\(680\) 0 0
\(681\) 42.4149i 1.62534i
\(682\) 0 0
\(683\) 14.6001i 0.558658i −0.960195 0.279329i \(-0.909888\pi\)
0.960195 0.279329i \(-0.0901120\pi\)
\(684\) 0 0
\(685\) 11.3949 + 8.32172i 0.435375 + 0.317957i
\(686\) 0 0
\(687\) 1.98208 1.98208i 0.0756210 0.0756210i
\(688\) 0 0
\(689\) 43.8031i 1.66876i
\(690\) 0 0
\(691\) 21.0583 + 21.0583i 0.801097 + 0.801097i 0.983267 0.182170i \(-0.0583121\pi\)
−0.182170 + 0.983267i \(0.558312\pi\)
\(692\) 0 0
\(693\) −2.36689 −0.0899106
\(694\) 0 0
\(695\) 24.8391 34.0120i 0.942202 1.29015i
\(696\) 0 0
\(697\) −7.36198 + 7.36198i −0.278855 + 0.278855i
\(698\) 0 0
\(699\) 5.69455 + 5.69455i 0.215388 + 0.215388i
\(700\) 0 0
\(701\) −27.3282 + 27.3282i −1.03217 + 1.03217i −0.0327069 + 0.999465i \(0.510413\pi\)
−0.999465 + 0.0327069i \(0.989587\pi\)
\(702\) 0 0
\(703\) −23.2390 23.2390i −0.876475 0.876475i
\(704\) 0 0
\(705\) 4.55807 + 3.32878i 0.171667 + 0.125369i
\(706\) 0 0
\(707\) 21.2075i 0.797590i
\(708\) 0 0
\(709\) −28.3895 + 28.3895i −1.06619 + 1.06619i −0.0685403 + 0.997648i \(0.521834\pi\)
−0.997648 + 0.0685403i \(0.978166\pi\)
\(710\) 0 0
\(711\) 2.23262 0.0837296
\(712\) 0 0
\(713\) 15.0428 + 15.0428i 0.563356 + 0.563356i
\(714\) 0 0
\(715\) −16.7822 + 22.9798i −0.627621 + 0.859395i
\(716\) 0 0
\(717\) −17.1475 −0.640385
\(718\) 0 0
\(719\) −22.2952 −0.831471 −0.415736 0.909486i \(-0.636476\pi\)
−0.415736 + 0.909486i \(0.636476\pi\)
\(720\) 0 0
\(721\) −13.7906 −0.513588
\(722\) 0 0
\(723\) −9.18491 −0.341591
\(724\) 0 0
\(725\) 19.7176 + 10.1690i 0.732295 + 0.377669i
\(726\) 0 0
\(727\) −20.3177 20.3177i −0.753543 0.753543i 0.221596 0.975139i \(-0.428873\pi\)
−0.975139 + 0.221596i \(0.928873\pi\)
\(728\) 0 0
\(729\) 23.9916 0.888578
\(730\) 0 0
\(731\) −1.95245 + 1.95245i −0.0722139 + 0.0722139i
\(732\) 0 0
\(733\) 1.80400i 0.0666323i 0.999445 + 0.0333162i \(0.0106068\pi\)
−0.999445 + 0.0333162i \(0.989393\pi\)
\(734\) 0 0
\(735\) −8.83351 + 1.37684i −0.325829 + 0.0507856i
\(736\) 0 0
\(737\) −35.2004 35.2004i −1.29662 1.29662i
\(738\) 0 0
\(739\) 0.240927 0.240927i 0.00886264 0.00886264i −0.702662 0.711524i \(-0.748005\pi\)
0.711524 + 0.702662i \(0.248005\pi\)
\(740\) 0 0
\(741\) 16.9109 + 16.9109i 0.621238 + 0.621238i
\(742\) 0 0
\(743\) −35.9128 + 35.9128i −1.31751 + 1.31751i −0.401775 + 0.915738i \(0.631607\pi\)
−0.915738 + 0.401775i \(0.868393\pi\)
\(744\) 0 0
\(745\) −26.5240 19.3706i −0.971763 0.709683i
\(746\) 0 0
\(747\) −3.42723 −0.125396
\(748\) 0 0
\(749\) 21.7033 + 21.7033i 0.793021 + 0.793021i
\(750\) 0 0
\(751\) 22.2372i 0.811448i −0.913996 0.405724i \(-0.867019\pi\)
0.913996 0.405724i \(-0.132981\pi\)
\(752\) 0 0
\(753\) 12.9593 12.9593i 0.472262 0.472262i
\(754\) 0 0
\(755\) −2.36324 15.1620i −0.0860072 0.551803i
\(756\) 0 0
\(757\) 8.65429i 0.314545i −0.987555 0.157273i \(-0.949730\pi\)
0.987555 0.157273i \(-0.0502702\pi\)
\(758\) 0 0
\(759\) 17.1681i 0.623162i
\(760\) 0 0
\(761\) 51.2052i 1.85619i −0.372345 0.928094i \(-0.621446\pi\)
0.372345 0.928094i \(-0.378554\pi\)
\(762\) 0 0
\(763\) 21.7160i 0.786172i
\(764\) 0 0
\(765\) 0.359315 0.492007i 0.0129911 0.0177885i
\(766\) 0 0
\(767\) 14.5457 14.5457i 0.525216 0.525216i
\(768\) 0 0
\(769\) 6.33900i 0.228590i −0.993447 0.114295i \(-0.963539\pi\)
0.993447 0.114295i \(-0.0364610\pi\)
\(770\) 0 0
\(771\) −8.84691 8.84691i −0.318614 0.318614i
\(772\) 0 0
\(773\) −49.9518 −1.79664 −0.898321 0.439341i \(-0.855212\pi\)
−0.898321 + 0.439341i \(0.855212\pi\)
\(774\) 0 0
\(775\) 13.0383 + 40.8093i 0.468350 + 1.46591i
\(776\) 0 0
\(777\) −23.2934 + 23.2934i −0.835645 + 0.835645i
\(778\) 0 0
\(779\) 30.2961 + 30.2961i 1.08547 + 1.08547i
\(780\) 0 0
\(781\) −0.362683 + 0.362683i −0.0129778 + 0.0129778i
\(782\) 0 0
\(783\) −15.4448 15.4448i −0.551951 0.551951i
\(784\) 0 0
\(785\) −1.58056 10.1405i −0.0564126 0.361930i
\(786\) 0 0
\(787\) 41.6365i 1.48418i −0.670300 0.742090i \(-0.733835\pi\)
0.670300 0.742090i \(-0.266165\pi\)
\(788\) 0 0
\(789\) 21.6749 21.6749i 0.771645 0.771645i
\(790\) 0 0
\(791\) −23.0573 −0.819822
\(792\) 0 0
\(793\) 26.1316 + 26.1316i 0.927959 + 0.927959i
\(794\) 0 0
\(795\) −8.19635 52.5860i −0.290695 1.86503i
\(796\) 0 0
\(797\) −29.3268 −1.03881 −0.519405 0.854528i \(-0.673846\pi\)
−0.519405 + 0.854528i \(0.673846\pi\)
\(798\) 0 0
\(799\) 1.33978 0.0473982
\(800\) 0 0
\(801\) 4.47127 0.157984
\(802\) 0 0
\(803\) −39.7521 −1.40282
\(804\) 0 0
\(805\) 1.87196 + 12.0101i 0.0659780 + 0.423300i
\(806\) 0 0
\(807\) 22.9818 + 22.9818i 0.808997 + 0.808997i
\(808\) 0 0
\(809\) 6.43307 0.226175 0.113087 0.993585i \(-0.463926\pi\)
0.113087 + 0.993585i \(0.463926\pi\)
\(810\) 0 0
\(811\) −14.4038 + 14.4038i −0.505786 + 0.505786i −0.913230 0.407444i \(-0.866420\pi\)
0.407444 + 0.913230i \(0.366420\pi\)
\(812\) 0 0
\(813\) 14.7614i 0.517705i
\(814\) 0 0
\(815\) 0.976217 + 6.26319i 0.0341954 + 0.219390i
\(816\) 0 0
\(817\) 8.03473 + 8.03473i 0.281100 + 0.281100i
\(818\) 0 0
\(819\) 1.46253 1.46253i 0.0511050 0.0511050i
\(820\) 0 0
\(821\) −20.5284 20.5284i −0.716446 0.716446i 0.251429 0.967876i \(-0.419099\pi\)
−0.967876 + 0.251429i \(0.919099\pi\)
\(822\) 0 0
\(823\) 13.8988 13.8988i 0.484481 0.484481i −0.422078 0.906559i \(-0.638699\pi\)
0.906559 + 0.422078i \(0.138699\pi\)
\(824\) 0 0
\(825\) 15.8473 30.7277i 0.551732 1.06980i
\(826\) 0 0
\(827\) 29.3843 1.02179 0.510897 0.859642i \(-0.329313\pi\)
0.510897 + 0.859642i \(0.329313\pi\)
\(828\) 0 0
\(829\) 34.7193 + 34.7193i 1.20585 + 1.20585i 0.972359 + 0.233492i \(0.0750154\pi\)
0.233492 + 0.972359i \(0.424985\pi\)
\(830\) 0 0
\(831\) 24.5120i 0.850310i
\(832\) 0 0
\(833\) −1.50060 + 1.50060i −0.0519927 + 0.0519927i
\(834\) 0 0
\(835\) 19.7783 27.0823i 0.684457 0.937220i
\(836\) 0 0
\(837\) 42.1787i 1.45791i
\(838\) 0 0
\(839\) 4.78293i 0.165125i 0.996586 + 0.0825626i \(0.0263104\pi\)
−0.996586 + 0.0825626i \(0.973690\pi\)
\(840\) 0 0
\(841\) 9.31222i 0.321111i
\(842\) 0 0
\(843\) 51.4692i 1.77269i
\(844\) 0 0
\(845\) 0.647244 + 4.15257i 0.0222659 + 0.142853i
\(846\) 0 0
\(847\) −5.51537 + 5.51537i −0.189510 + 0.189510i
\(848\) 0 0
\(849\) 41.1927i 1.41373i
\(850\) 0 0
\(851\) −14.5781 14.5781i −0.499729 0.499729i
\(852\) 0 0
\(853\) 45.2839 1.55049 0.775246 0.631659i \(-0.217626\pi\)
0.775246 + 0.631659i \(0.217626\pi\)
\(854\) 0 0
\(855\) −2.02471 1.47866i −0.0692436 0.0505690i
\(856\) 0 0
\(857\) −2.73476 + 2.73476i −0.0934175 + 0.0934175i −0.752271 0.658854i \(-0.771042\pi\)
0.658854 + 0.752271i \(0.271042\pi\)
\(858\) 0 0
\(859\) −5.94695 5.94695i −0.202907 0.202907i 0.598337 0.801244i \(-0.295828\pi\)
−0.801244 + 0.598337i \(0.795828\pi\)
\(860\) 0 0
\(861\) 30.3670 30.3670i 1.03490 1.03490i
\(862\) 0 0
\(863\) 34.3328 + 34.3328i 1.16870 + 1.16870i 0.982514 + 0.186187i \(0.0596130\pi\)
0.186187 + 0.982514i \(0.440387\pi\)
\(864\) 0 0
\(865\) −2.63178 + 0.410204i −0.0894832 + 0.0139474i
\(866\) 0 0
\(867\) 29.1276i 0.989227i
\(868\) 0 0
\(869\) 21.2660 21.2660i 0.721399 0.721399i
\(870\) 0 0
\(871\) 43.5016 1.47400
\(872\) 0 0
\(873\) −0.851430 0.851430i −0.0288165 0.0288165i
\(874\) 0 0
\(875\) −7.73566 + 23.2238i −0.261513 + 0.785108i
\(876\) 0 0
\(877\) 3.27398 0.110555 0.0552773 0.998471i \(-0.482396\pi\)
0.0552773 + 0.998471i \(0.482396\pi\)
\(878\) 0 0
\(879\) 9.80244 0.330628
\(880\) 0 0
\(881\) 39.5807 1.33351 0.666753 0.745279i \(-0.267684\pi\)
0.666753 + 0.745279i \(0.267684\pi\)
\(882\) 0 0
\(883\) 17.8181 0.599628 0.299814 0.953998i \(-0.403075\pi\)
0.299814 + 0.953998i \(0.403075\pi\)
\(884\) 0 0
\(885\) −14.7405 + 20.1841i −0.495497 + 0.678479i
\(886\) 0 0
\(887\) 20.2924 + 20.2924i 0.681352 + 0.681352i 0.960305 0.278953i \(-0.0899872\pi\)
−0.278953 + 0.960305i \(0.589987\pi\)
\(888\) 0 0
\(889\) 8.95892 0.300473
\(890\) 0 0
\(891\) −26.3622 + 26.3622i −0.883167 + 0.883167i
\(892\) 0 0
\(893\) 5.51349i 0.184502i
\(894\) 0 0
\(895\) −9.34724 6.82633i −0.312444 0.228179i
\(896\) 0 0
\(897\) 10.6084 + 10.6084i 0.354204 + 0.354204i
\(898\) 0 0
\(899\) −26.8830 + 26.8830i −0.896599 + 0.896599i
\(900\) 0 0
\(901\) −8.93308 8.93308i −0.297604 0.297604i
\(902\) 0 0
\(903\) 8.05354 8.05354i 0.268005 0.268005i
\(904\) 0 0
\(905\) 11.4958 15.7411i 0.382133 0.523251i
\(906\) 0 0
\(907\) −31.2744 −1.03845 −0.519225 0.854638i \(-0.673779\pi\)
−0.519225 + 0.854638i \(0.673779\pi\)
\(908\) 0 0
\(909\) −1.94035 1.94035i −0.0643574 0.0643574i
\(910\) 0 0
\(911\) 16.8051i 0.556777i −0.960469 0.278388i \(-0.910200\pi\)
0.960469 0.278388i \(-0.0898002\pi\)
\(912\) 0 0
\(913\) −32.6449 + 32.6449i −1.08039 + 1.08039i
\(914\) 0 0
\(915\) −36.2609 26.4815i −1.19875 0.875451i
\(916\) 0 0
\(917\) 1.65494i 0.0546511i
\(918\) 0 0
\(919\) 6.78337i 0.223763i −0.993722 0.111881i \(-0.964312\pi\)
0.993722 0.111881i \(-0.0356876\pi\)
\(920\) 0 0
\(921\) 33.7117i 1.11084i
\(922\) 0 0
\(923\) 0.448214i 0.0147532i
\(924\) 0 0
\(925\) −12.6355 39.5486i −0.415453 1.30035i
\(926\) 0 0
\(927\) 1.26175 1.26175i 0.0414414 0.0414414i
\(928\) 0 0
\(929\) 43.0476i 1.41235i 0.708039 + 0.706173i \(0.249580\pi\)
−0.708039 + 0.706173i \(0.750420\pi\)
\(930\) 0 0
\(931\) 6.17528 + 6.17528i 0.202387 + 0.202387i
\(932\) 0 0
\(933\) −20.4524 −0.669580
\(934\) 0 0
\(935\) −1.26391 8.10896i −0.0413343 0.265192i
\(936\) 0 0
\(937\) 11.1198 11.1198i 0.363268 0.363268i −0.501747 0.865015i \(-0.667309\pi\)
0.865015 + 0.501747i \(0.167309\pi\)
\(938\) 0 0
\(939\) 42.1125 + 42.1125i 1.37429 + 1.37429i
\(940\) 0 0
\(941\) 2.76429 2.76429i 0.0901131 0.0901131i −0.660613 0.750726i \(-0.729704\pi\)
0.750726 + 0.660613i \(0.229704\pi\)
\(942\) 0 0
\(943\) 19.0050 + 19.0050i 0.618889 + 0.618889i
\(944\) 0 0
\(945\) 14.2132 19.4621i 0.462357 0.633101i
\(946\) 0 0
\(947\) 6.77325i 0.220101i −0.993926 0.110051i \(-0.964899\pi\)
0.993926 0.110051i \(-0.0351013\pi\)
\(948\) 0 0
\(949\) 24.5634 24.5634i 0.797360 0.797360i
\(950\) 0 0
\(951\) −5.73728 −0.186044
\(952\) 0 0
\(953\) 28.6073 + 28.6073i 0.926682 + 0.926682i 0.997490 0.0708083i \(-0.0225579\pi\)
−0.0708083 + 0.997490i \(0.522558\pi\)
\(954\) 0 0
\(955\) −23.2423 + 3.62268i −0.752103 + 0.117227i
\(956\) 0 0
\(957\) 30.6812 0.991782
\(958\) 0 0
\(959\) −13.8156 −0.446129
\(960\) 0 0
\(961\) −42.4158 −1.36825
\(962\) 0 0
\(963\) −3.97143 −0.127978
\(964\) 0 0
\(965\) 14.3919 + 10.5105i 0.463292 + 0.338344i
\(966\) 0 0
\(967\) 18.3434 + 18.3434i 0.589882 + 0.589882i 0.937600 0.347717i \(-0.113043\pi\)
−0.347717 + 0.937600i \(0.613043\pi\)
\(968\) 0 0
\(969\) −6.89753 −0.221581
\(970\) 0 0
\(971\) −9.66321 + 9.66321i −0.310107 + 0.310107i −0.844951 0.534844i \(-0.820370\pi\)
0.534844 + 0.844951i \(0.320370\pi\)
\(972\) 0 0
\(973\) 41.2376i 1.32202i
\(974\) 0 0
\(975\) 9.19481 + 28.7793i 0.294470 + 0.921677i
\(976\) 0 0
\(977\) −40.1076 40.1076i −1.28316 1.28316i −0.938862 0.344293i \(-0.888119\pi\)
−0.344293 0.938862i \(-0.611881\pi\)
\(978\) 0 0
\(979\) 42.5895 42.5895i 1.36117 1.36117i
\(980\) 0 0
\(981\) 1.98688 + 1.98688i 0.0634362 + 0.0634362i
\(982\) 0 0
\(983\) 39.6507 39.6507i 1.26466 1.26466i 0.315854 0.948808i \(-0.397709\pi\)
0.948808 0.315854i \(-0.102291\pi\)
\(984\) 0 0
\(985\) −21.7297 + 3.38692i −0.692367 + 0.107916i
\(986\) 0 0
\(987\) −5.52640 −0.175907
\(988\) 0 0
\(989\) 5.04027 + 5.04027i 0.160271 + 0.160271i
\(990\) 0 0
\(991\) 5.77959i 0.183595i −0.995778 0.0917974i \(-0.970739\pi\)
0.995778 0.0917974i \(-0.0292612\pi\)
\(992\) 0 0
\(993\) −9.43621 + 9.43621i −0.299449 + 0.299449i
\(994\) 0 0
\(995\) 58.1327 9.06090i 1.84293 0.287250i
\(996\) 0 0
\(997\) 28.8109i 0.912449i −0.889865 0.456225i \(-0.849201\pi\)
0.889865 0.456225i \(-0.150799\pi\)
\(998\) 0 0
\(999\) 40.8756i 1.29325i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.s.d.1087.5 yes 32
4.3 odd 2 inner 1280.2.s.d.1087.12 yes 32
5.3 odd 4 1280.2.j.c.63.5 32
8.3 odd 2 1280.2.s.c.1087.5 yes 32
8.5 even 2 1280.2.s.c.1087.12 yes 32
16.3 odd 4 1280.2.j.c.447.12 yes 32
16.5 even 4 1280.2.j.d.447.12 yes 32
16.11 odd 4 1280.2.j.d.447.5 yes 32
16.13 even 4 1280.2.j.c.447.5 yes 32
20.3 even 4 1280.2.j.c.63.12 yes 32
40.3 even 4 1280.2.j.d.63.5 yes 32
40.13 odd 4 1280.2.j.d.63.12 yes 32
80.3 even 4 inner 1280.2.s.d.703.5 yes 32
80.13 odd 4 inner 1280.2.s.d.703.12 yes 32
80.43 even 4 1280.2.s.c.703.12 yes 32
80.53 odd 4 1280.2.s.c.703.5 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.j.c.63.5 32 5.3 odd 4
1280.2.j.c.63.12 yes 32 20.3 even 4
1280.2.j.c.447.5 yes 32 16.13 even 4
1280.2.j.c.447.12 yes 32 16.3 odd 4
1280.2.j.d.63.5 yes 32 40.3 even 4
1280.2.j.d.63.12 yes 32 40.13 odd 4
1280.2.j.d.447.5 yes 32 16.11 odd 4
1280.2.j.d.447.12 yes 32 16.5 even 4
1280.2.s.c.703.5 yes 32 80.53 odd 4
1280.2.s.c.703.12 yes 32 80.43 even 4
1280.2.s.c.1087.5 yes 32 8.3 odd 2
1280.2.s.c.1087.12 yes 32 8.5 even 2
1280.2.s.d.703.5 yes 32 80.3 even 4 inner
1280.2.s.d.703.12 yes 32 80.13 odd 4 inner
1280.2.s.d.1087.5 yes 32 1.1 even 1 trivial
1280.2.s.d.1087.12 yes 32 4.3 odd 2 inner