Properties

Label 1240.2.bm.a.129.4
Level $1240$
Weight $2$
Character 1240.129
Analytic conductor $9.901$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1240,2,Mod(129,1240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1240.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1240, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.90144985064\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(48\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 129.4
Character \(\chi\) \(=\) 1240.129
Dual form 1240.2.bm.a.769.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37824 - 1.37308i) q^{3} +(2.12977 + 0.681248i) q^{5} +(-3.56474 - 2.05811i) q^{7} +(2.27069 + 3.93295i) q^{9} +(1.14204 + 1.97808i) q^{11} +(-2.92397 + 1.68816i) q^{13} +(-4.12969 - 4.54451i) q^{15} +(2.40398 + 1.38794i) q^{17} +(2.28213 - 3.95276i) q^{19} +(5.65188 + 9.78934i) q^{21} +4.87944i q^{23} +(4.07180 + 2.90180i) q^{25} -4.23286i q^{27} -7.30900 q^{29} +(5.56400 - 0.204788i) q^{31} -6.27246i q^{33} +(-6.18999 - 6.81176i) q^{35} +(5.61746 + 3.24324i) q^{37} +9.27189 q^{39} +(-4.54906 - 7.87921i) q^{41} +(2.32676 + 1.34336i) q^{43} +(2.15672 + 9.92315i) q^{45} +2.34003i q^{47} +(4.97160 + 8.61106i) q^{49} +(-3.81150 - 6.60171i) q^{51} +(2.33560 - 1.34846i) q^{53} +(1.08472 + 4.99086i) q^{55} +(-10.8549 + 6.26708i) q^{57} +(-2.56422 + 4.44136i) q^{59} +15.1066 q^{61} -18.6933i q^{63} +(-7.37743 + 1.60343i) q^{65} +(3.02299 - 1.74532i) q^{67} +(6.69986 - 11.6045i) q^{69} +(-0.560430 - 0.970694i) q^{71} +(12.7125 - 7.33957i) q^{73} +(-5.69933 - 12.4921i) q^{75} -9.40178i q^{77} +(-0.334371 + 0.579148i) q^{79} +(1.00002 - 1.73208i) q^{81} +(6.52565 - 3.76759i) q^{83} +(4.17439 + 4.59369i) q^{85} +(17.3826 + 10.0358i) q^{87} +1.68677 q^{89} +13.8976 q^{91} +(-13.5137 - 7.15277i) q^{93} +(7.55321 - 6.86376i) q^{95} -9.64115i q^{97} +(-5.18645 + 8.98319i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 48 q^{9} + 12 q^{11} - 20 q^{15} - 8 q^{21} + 8 q^{25} - 24 q^{29} - 12 q^{31} + 4 q^{35} + 16 q^{39} + 60 q^{49} + 12 q^{51} + 2 q^{55} - 8 q^{59} + 24 q^{61} - 4 q^{69} + 8 q^{71} + 10 q^{75} + 84 q^{79}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1240\mathbb{Z}\right)^\times\).

\(n\) \(311\) \(497\) \(561\) \(621\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37824 1.37308i −1.37308 0.792747i −0.381764 0.924260i \(-0.624683\pi\)
−0.991314 + 0.131513i \(0.958017\pi\)
\(4\) 0 0
\(5\) 2.12977 + 0.681248i 0.952460 + 0.304663i
\(6\) 0 0
\(7\) −3.56474 2.05811i −1.34735 0.777891i −0.359473 0.933155i \(-0.617044\pi\)
−0.987873 + 0.155265i \(0.950377\pi\)
\(8\) 0 0
\(9\) 2.27069 + 3.93295i 0.756896 + 1.31098i
\(10\) 0 0
\(11\) 1.14204 + 1.97808i 0.344339 + 0.596413i 0.985233 0.171216i \(-0.0547697\pi\)
−0.640894 + 0.767629i \(0.721436\pi\)
\(12\) 0 0
\(13\) −2.92397 + 1.68816i −0.810965 + 0.468211i −0.847291 0.531129i \(-0.821768\pi\)
0.0363261 + 0.999340i \(0.488435\pi\)
\(14\) 0 0
\(15\) −4.12969 4.54451i −1.06628 1.17339i
\(16\) 0 0
\(17\) 2.40398 + 1.38794i 0.583051 + 0.336625i 0.762345 0.647171i \(-0.224048\pi\)
−0.179294 + 0.983796i \(0.557381\pi\)
\(18\) 0 0
\(19\) 2.28213 3.95276i 0.523556 0.906826i −0.476068 0.879408i \(-0.657938\pi\)
0.999624 0.0274172i \(-0.00872825\pi\)
\(20\) 0 0
\(21\) 5.65188 + 9.78934i 1.23334 + 2.13621i
\(22\) 0 0
\(23\) 4.87944i 1.01743i 0.860934 + 0.508717i \(0.169880\pi\)
−0.860934 + 0.508717i \(0.830120\pi\)
\(24\) 0 0
\(25\) 4.07180 + 2.90180i 0.814360 + 0.580359i
\(26\) 0 0
\(27\) 4.23286i 0.814614i
\(28\) 0 0
\(29\) −7.30900 −1.35725 −0.678624 0.734486i \(-0.737423\pi\)
−0.678624 + 0.734486i \(0.737423\pi\)
\(30\) 0 0
\(31\) 5.56400 0.204788i 0.999323 0.0367809i
\(32\) 0 0
\(33\) 6.27246i 1.09190i
\(34\) 0 0
\(35\) −6.18999 6.81176i −1.04630 1.15140i
\(36\) 0 0
\(37\) 5.61746 + 3.24324i 0.923504 + 0.533185i 0.884751 0.466064i \(-0.154328\pi\)
0.0387527 + 0.999249i \(0.487662\pi\)
\(38\) 0 0
\(39\) 9.27189 1.48469
\(40\) 0 0
\(41\) −4.54906 7.87921i −0.710445 1.23053i −0.964690 0.263386i \(-0.915161\pi\)
0.254246 0.967140i \(-0.418173\pi\)
\(42\) 0 0
\(43\) 2.32676 + 1.34336i 0.354828 + 0.204860i 0.666809 0.745228i \(-0.267659\pi\)
−0.311982 + 0.950088i \(0.600993\pi\)
\(44\) 0 0
\(45\) 2.15672 + 9.92315i 0.321505 + 1.47926i
\(46\) 0 0
\(47\) 2.34003i 0.341328i 0.985329 + 0.170664i \(0.0545912\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(48\) 0 0
\(49\) 4.97160 + 8.61106i 0.710228 + 1.23015i
\(50\) 0 0
\(51\) −3.81150 6.60171i −0.533717 0.924424i
\(52\) 0 0
\(53\) 2.33560 1.34846i 0.320820 0.185225i −0.330938 0.943652i \(-0.607365\pi\)
0.651758 + 0.758427i \(0.274032\pi\)
\(54\) 0 0
\(55\) 1.08472 + 4.99086i 0.146264 + 0.672967i
\(56\) 0 0
\(57\) −10.8549 + 6.26708i −1.43777 + 0.830095i
\(58\) 0 0
\(59\) −2.56422 + 4.44136i −0.333833 + 0.578216i −0.983260 0.182208i \(-0.941676\pi\)
0.649427 + 0.760424i \(0.275009\pi\)
\(60\) 0 0
\(61\) 15.1066 1.93421 0.967103 0.254386i \(-0.0818733\pi\)
0.967103 + 0.254386i \(0.0818733\pi\)
\(62\) 0 0
\(63\) 18.6933i 2.35513i
\(64\) 0 0
\(65\) −7.37743 + 1.60343i −0.915058 + 0.198881i
\(66\) 0 0
\(67\) 3.02299 1.74532i 0.369317 0.213225i −0.303843 0.952722i \(-0.598270\pi\)
0.673160 + 0.739497i \(0.264937\pi\)
\(68\) 0 0
\(69\) 6.69986 11.6045i 0.806568 1.39702i
\(70\) 0 0
\(71\) −0.560430 0.970694i −0.0665108 0.115200i 0.830852 0.556493i \(-0.187853\pi\)
−0.897363 + 0.441293i \(0.854520\pi\)
\(72\) 0 0
\(73\) 12.7125 7.33957i 1.48789 0.859032i 0.487982 0.872854i \(-0.337733\pi\)
0.999904 + 0.0138219i \(0.00439980\pi\)
\(74\) 0 0
\(75\) −5.69933 12.4921i −0.658102 1.44246i
\(76\) 0 0
\(77\) 9.40178i 1.07143i
\(78\) 0 0
\(79\) −0.334371 + 0.579148i −0.0376197 + 0.0651593i −0.884222 0.467066i \(-0.845311\pi\)
0.846603 + 0.532226i \(0.178644\pi\)
\(80\) 0 0
\(81\) 1.00002 1.73208i 0.111113 0.192454i
\(82\) 0 0
\(83\) 6.52565 3.76759i 0.716283 0.413546i −0.0970999 0.995275i \(-0.530957\pi\)
0.813383 + 0.581728i \(0.197623\pi\)
\(84\) 0 0
\(85\) 4.17439 + 4.59369i 0.452776 + 0.498256i
\(86\) 0 0
\(87\) 17.3826 + 10.0358i 1.86361 + 1.07595i
\(88\) 0 0
\(89\) 1.68677 0.178798 0.0893988 0.995996i \(-0.471505\pi\)
0.0893988 + 0.995996i \(0.471505\pi\)
\(90\) 0 0
\(91\) 13.8976 1.45687
\(92\) 0 0
\(93\) −13.5137 7.15277i −1.40131 0.741708i
\(94\) 0 0
\(95\) 7.55321 6.86376i 0.774943 0.704207i
\(96\) 0 0
\(97\) 9.64115i 0.978910i −0.872028 0.489455i \(-0.837196\pi\)
0.872028 0.489455i \(-0.162804\pi\)
\(98\) 0 0
\(99\) −5.18645 + 8.98319i −0.521258 + 0.902845i
\(100\) 0 0
\(101\) 16.3044 1.62235 0.811176 0.584802i \(-0.198828\pi\)
0.811176 + 0.584802i \(0.198828\pi\)
\(102\) 0 0
\(103\) −6.70436 + 3.87076i −0.660600 + 0.381397i −0.792505 0.609865i \(-0.791224\pi\)
0.131906 + 0.991262i \(0.457890\pi\)
\(104\) 0 0
\(105\) 5.36821 + 24.6993i 0.523883 + 2.41041i
\(106\) 0 0
\(107\) 17.6370 + 10.1827i 1.70504 + 0.984403i 0.940482 + 0.339845i \(0.110374\pi\)
0.764555 + 0.644559i \(0.222959\pi\)
\(108\) 0 0
\(109\) −5.70260 −0.546210 −0.273105 0.961984i \(-0.588051\pi\)
−0.273105 + 0.961984i \(0.588051\pi\)
\(110\) 0 0
\(111\) −8.90644 15.4264i −0.845362 1.46421i
\(112\) 0 0
\(113\) −12.6208 + 7.28663i −1.18727 + 0.685468i −0.957684 0.287821i \(-0.907069\pi\)
−0.229582 + 0.973289i \(0.573736\pi\)
\(114\) 0 0
\(115\) −3.32411 + 10.3921i −0.309975 + 0.969066i
\(116\) 0 0
\(117\) −13.2789 7.66656i −1.22763 0.708773i
\(118\) 0 0
\(119\) −5.71305 9.89530i −0.523715 0.907100i
\(120\) 0 0
\(121\) 2.89147 5.00818i 0.262861 0.455289i
\(122\) 0 0
\(123\) 24.9849i 2.25281i
\(124\) 0 0
\(125\) 6.69514 + 8.95405i 0.598832 + 0.800875i
\(126\) 0 0
\(127\) 12.0599 + 6.96277i 1.07014 + 0.617846i 0.928220 0.372032i \(-0.121339\pi\)
0.141921 + 0.989878i \(0.454672\pi\)
\(128\) 0 0
\(129\) −3.68906 6.38965i −0.324804 0.562577i
\(130\) 0 0
\(131\) −8.72379 + 15.1100i −0.762201 + 1.32017i 0.179513 + 0.983756i \(0.442548\pi\)
−0.941714 + 0.336415i \(0.890785\pi\)
\(132\) 0 0
\(133\) −16.2704 + 9.39372i −1.41082 + 0.814539i
\(134\) 0 0
\(135\) 2.88363 9.01499i 0.248183 0.775887i
\(136\) 0 0
\(137\) 19.2667 11.1236i 1.64606 0.950355i 0.667447 0.744658i \(-0.267387\pi\)
0.978616 0.205697i \(-0.0659461\pi\)
\(138\) 0 0
\(139\) 7.06107 0.598912 0.299456 0.954110i \(-0.403195\pi\)
0.299456 + 0.954110i \(0.403195\pi\)
\(140\) 0 0
\(141\) 3.21304 5.56514i 0.270587 0.468670i
\(142\) 0 0
\(143\) −6.67861 3.85590i −0.558494 0.322446i
\(144\) 0 0
\(145\) −15.5665 4.97924i −1.29272 0.413504i
\(146\) 0 0
\(147\) 27.3056i 2.25213i
\(148\) 0 0
\(149\) −2.33400 + 4.04261i −0.191209 + 0.331183i −0.945651 0.325183i \(-0.894574\pi\)
0.754442 + 0.656366i \(0.227907\pi\)
\(150\) 0 0
\(151\) −8.67244 −0.705753 −0.352877 0.935670i \(-0.614796\pi\)
−0.352877 + 0.935670i \(0.614796\pi\)
\(152\) 0 0
\(153\) 12.6063i 1.01916i
\(154\) 0 0
\(155\) 11.9895 + 3.35431i 0.963021 + 0.269425i
\(156\) 0 0
\(157\) 8.45888i 0.675092i 0.941309 + 0.337546i \(0.109597\pi\)
−0.941309 + 0.337546i \(0.890403\pi\)
\(158\) 0 0
\(159\) −7.40617 −0.587348
\(160\) 0 0
\(161\) 10.0424 17.3940i 0.791453 1.37084i
\(162\) 0 0
\(163\) 15.7378i 1.23268i −0.787481 0.616339i \(-0.788615\pi\)
0.787481 0.616339i \(-0.211385\pi\)
\(164\) 0 0
\(165\) 4.27310 13.3589i 0.332660 1.03999i
\(166\) 0 0
\(167\) −4.96540 2.86677i −0.384234 0.221838i 0.295425 0.955366i \(-0.404539\pi\)
−0.679659 + 0.733528i \(0.737872\pi\)
\(168\) 0 0
\(169\) −0.800248 + 1.38607i −0.0615575 + 0.106621i
\(170\) 0 0
\(171\) 20.7280 1.58511
\(172\) 0 0
\(173\) −6.27230 + 3.62131i −0.476874 + 0.275323i −0.719113 0.694893i \(-0.755452\pi\)
0.242239 + 0.970217i \(0.422118\pi\)
\(174\) 0 0
\(175\) −8.54272 18.7244i −0.645769 1.41543i
\(176\) 0 0
\(177\) 12.1967 7.04176i 0.916759 0.529291i
\(178\) 0 0
\(179\) −6.00032 + 10.3929i −0.448485 + 0.776799i −0.998288 0.0584958i \(-0.981370\pi\)
0.549803 + 0.835295i \(0.314703\pi\)
\(180\) 0 0
\(181\) 10.2741 + 17.7952i 0.763665 + 1.32271i 0.940949 + 0.338547i \(0.109936\pi\)
−0.177284 + 0.984160i \(0.556731\pi\)
\(182\) 0 0
\(183\) −35.9272 20.7426i −2.65582 1.53334i
\(184\) 0 0
\(185\) 9.75441 + 10.7342i 0.717159 + 0.789196i
\(186\) 0 0
\(187\) 6.34035i 0.463652i
\(188\) 0 0
\(189\) −8.71167 + 15.0890i −0.633681 + 1.09757i
\(190\) 0 0
\(191\) 1.45995 + 2.52870i 0.105638 + 0.182970i 0.913999 0.405717i \(-0.132978\pi\)
−0.808361 + 0.588688i \(0.799645\pi\)
\(192\) 0 0
\(193\) −8.09980 4.67642i −0.583036 0.336616i 0.179303 0.983794i \(-0.442616\pi\)
−0.762339 + 0.647178i \(0.775949\pi\)
\(194\) 0 0
\(195\) 19.7470 + 6.31646i 1.41411 + 0.452331i
\(196\) 0 0
\(197\) −10.8554 + 6.26734i −0.773412 + 0.446530i −0.834090 0.551628i \(-0.814007\pi\)
0.0606784 + 0.998157i \(0.480674\pi\)
\(198\) 0 0
\(199\) −7.40594 12.8275i −0.524993 0.909315i −0.999576 0.0291042i \(-0.990735\pi\)
0.474583 0.880211i \(-0.342599\pi\)
\(200\) 0 0
\(201\) −9.58586 −0.676134
\(202\) 0 0
\(203\) 26.0547 + 15.0427i 1.82868 + 1.05579i
\(204\) 0 0
\(205\) −4.32074 19.8799i −0.301774 1.38847i
\(206\) 0 0
\(207\) −19.1906 + 11.0797i −1.33384 + 0.770092i
\(208\) 0 0
\(209\) 10.4252 0.721123
\(210\) 0 0
\(211\) 1.57531 2.72852i 0.108449 0.187839i −0.806693 0.590971i \(-0.798745\pi\)
0.915142 + 0.403131i \(0.132078\pi\)
\(212\) 0 0
\(213\) 3.07806i 0.210905i
\(214\) 0 0
\(215\) 4.04029 + 4.44613i 0.275546 + 0.303224i
\(216\) 0 0
\(217\) −20.2557 10.7213i −1.37505 0.727808i
\(218\) 0 0
\(219\) −40.3112 −2.72398
\(220\) 0 0
\(221\) −9.37224 −0.630445
\(222\) 0 0
\(223\) −5.35828 3.09360i −0.358817 0.207163i 0.309745 0.950820i \(-0.399756\pi\)
−0.668562 + 0.743657i \(0.733090\pi\)
\(224\) 0 0
\(225\) −2.16682 + 22.6033i −0.144455 + 1.50688i
\(226\) 0 0
\(227\) −9.20130 + 5.31238i −0.610712 + 0.352595i −0.773244 0.634109i \(-0.781367\pi\)
0.162532 + 0.986703i \(0.448034\pi\)
\(228\) 0 0
\(229\) −11.8063 + 20.4490i −0.780180 + 1.35131i 0.151657 + 0.988433i \(0.451539\pi\)
−0.931837 + 0.362878i \(0.881794\pi\)
\(230\) 0 0
\(231\) −12.9094 + 22.3597i −0.849375 + 1.47116i
\(232\) 0 0
\(233\) 16.5643i 1.08516i 0.840003 + 0.542581i \(0.182553\pi\)
−0.840003 + 0.542581i \(0.817447\pi\)
\(234\) 0 0
\(235\) −1.59414 + 4.98371i −0.103990 + 0.325101i
\(236\) 0 0
\(237\) 1.59043 0.918236i 0.103310 0.0596458i
\(238\) 0 0
\(239\) 1.35855 + 2.35307i 0.0878771 + 0.152208i 0.906614 0.421962i \(-0.138658\pi\)
−0.818736 + 0.574169i \(0.805325\pi\)
\(240\) 0 0
\(241\) 0.0644726 0.111670i 0.00415304 0.00719328i −0.863941 0.503592i \(-0.832011\pi\)
0.868094 + 0.496399i \(0.165345\pi\)
\(242\) 0 0
\(243\) −15.7539 + 9.09549i −1.01061 + 0.583476i
\(244\) 0 0
\(245\) 4.72207 + 21.7264i 0.301682 + 1.38805i
\(246\) 0 0
\(247\) 15.4104i 0.980538i
\(248\) 0 0
\(249\) −20.6928 −1.31135
\(250\) 0 0
\(251\) −4.17415 + 7.22985i −0.263470 + 0.456344i −0.967162 0.254162i \(-0.918200\pi\)
0.703691 + 0.710506i \(0.251534\pi\)
\(252\) 0 0
\(253\) −9.65192 + 5.57254i −0.606811 + 0.350342i
\(254\) 0 0
\(255\) −3.62020 16.6567i −0.226706 1.04308i
\(256\) 0 0
\(257\) −10.7111 + 6.18406i −0.668141 + 0.385751i −0.795372 0.606122i \(-0.792724\pi\)
0.127231 + 0.991873i \(0.459391\pi\)
\(258\) 0 0
\(259\) −13.3499 23.1226i −0.829520 1.43677i
\(260\) 0 0
\(261\) −16.5965 28.7459i −1.02729 1.77933i
\(262\) 0 0
\(263\) 10.5188i 0.648619i −0.945951 0.324309i \(-0.894868\pi\)
0.945951 0.324309i \(-0.105132\pi\)
\(264\) 0 0
\(265\) 5.89292 1.28078i 0.361999 0.0786777i
\(266\) 0 0
\(267\) −4.01155 2.31607i −0.245503 0.141741i
\(268\) 0 0
\(269\) 13.2899 + 23.0187i 0.810297 + 1.40348i 0.912656 + 0.408728i \(0.134028\pi\)
−0.102359 + 0.994748i \(0.532639\pi\)
\(270\) 0 0
\(271\) 21.1898 1.28719 0.643596 0.765366i \(-0.277442\pi\)
0.643596 + 0.765366i \(0.277442\pi\)
\(272\) 0 0
\(273\) −33.0519 19.0825i −2.00039 1.15493i
\(274\) 0 0
\(275\) −1.08980 + 11.3683i −0.0657177 + 0.685535i
\(276\) 0 0
\(277\) 19.8454i 1.19240i −0.802838 0.596198i \(-0.796677\pi\)
0.802838 0.596198i \(-0.203323\pi\)
\(278\) 0 0
\(279\) 13.4395 + 21.4179i 0.804603 + 1.28226i
\(280\) 0 0
\(281\) −16.6305 −0.992093 −0.496047 0.868296i \(-0.665215\pi\)
−0.496047 + 0.868296i \(0.665215\pi\)
\(282\) 0 0
\(283\) 1.18974i 0.0707230i 0.999375 + 0.0353615i \(0.0112583\pi\)
−0.999375 + 0.0353615i \(0.988742\pi\)
\(284\) 0 0
\(285\) −27.3878 + 5.95253i −1.62231 + 0.352597i
\(286\) 0 0
\(287\) 37.4498i 2.21059i
\(288\) 0 0
\(289\) −4.64725 8.04927i −0.273368 0.473486i
\(290\) 0 0
\(291\) −13.2381 + 22.9290i −0.776028 + 1.34412i
\(292\) 0 0
\(293\) −15.5495 8.97749i −0.908409 0.524470i −0.0284904 0.999594i \(-0.509070\pi\)
−0.879919 + 0.475124i \(0.842403\pi\)
\(294\) 0 0
\(295\) −8.48686 + 7.71219i −0.494124 + 0.449021i
\(296\) 0 0
\(297\) 8.37292 4.83411i 0.485846 0.280503i
\(298\) 0 0
\(299\) −8.23727 14.2674i −0.476374 0.825103i
\(300\) 0 0
\(301\) −5.52953 9.57744i −0.318717 0.552034i
\(302\) 0 0
\(303\) −38.7759 22.3873i −2.22762 1.28612i
\(304\) 0 0
\(305\) 32.1736 + 10.2914i 1.84225 + 0.589282i
\(306\) 0 0
\(307\) 27.7860 + 16.0423i 1.58583 + 0.915580i 0.993984 + 0.109529i \(0.0349344\pi\)
0.591847 + 0.806050i \(0.298399\pi\)
\(308\) 0 0
\(309\) 21.2594 1.20941
\(310\) 0 0
\(311\) 0.874226 0.0495728 0.0247864 0.999693i \(-0.492109\pi\)
0.0247864 + 0.999693i \(0.492109\pi\)
\(312\) 0 0
\(313\) 18.7417 + 10.8205i 1.05934 + 0.611613i 0.925251 0.379356i \(-0.123854\pi\)
0.134094 + 0.990969i \(0.457188\pi\)
\(314\) 0 0
\(315\) 12.7347 39.8123i 0.717522 2.24317i
\(316\) 0 0
\(317\) 10.7548 + 6.20930i 0.604051 + 0.348749i 0.770634 0.637278i \(-0.219940\pi\)
−0.166582 + 0.986028i \(0.553273\pi\)
\(318\) 0 0
\(319\) −8.34720 14.4578i −0.467353 0.809480i
\(320\) 0 0
\(321\) −27.9634 48.4341i −1.56077 2.70333i
\(322\) 0 0
\(323\) 10.9724 6.33491i 0.610520 0.352484i
\(324\) 0 0
\(325\) −16.8045 1.61094i −0.932148 0.0893588i
\(326\) 0 0
\(327\) 13.5621 + 7.83011i 0.749989 + 0.433006i
\(328\) 0 0
\(329\) 4.81602 8.34159i 0.265516 0.459887i
\(330\) 0 0
\(331\) 12.4357 + 21.5392i 0.683527 + 1.18390i 0.973897 + 0.226989i \(0.0728880\pi\)
−0.290371 + 0.956914i \(0.593779\pi\)
\(332\) 0 0
\(333\) 29.4575i 1.61426i
\(334\) 0 0
\(335\) 7.62725 1.65772i 0.416721 0.0905711i
\(336\) 0 0
\(337\) 21.0328i 1.14573i 0.819650 + 0.572864i \(0.194168\pi\)
−0.819650 + 0.572864i \(0.805832\pi\)
\(338\) 0 0
\(339\) 40.0204 2.17361
\(340\) 0 0
\(341\) 6.75941 + 10.7721i 0.366043 + 0.583344i
\(342\) 0 0
\(343\) 12.1148i 0.654138i
\(344\) 0 0
\(345\) 22.1747 20.1506i 1.19384 1.08487i
\(346\) 0 0
\(347\) −2.11196 1.21934i −0.113376 0.0654575i 0.442240 0.896897i \(-0.354184\pi\)
−0.555616 + 0.831439i \(0.687517\pi\)
\(348\) 0 0
\(349\) −1.10585 −0.0591950 −0.0295975 0.999562i \(-0.509423\pi\)
−0.0295975 + 0.999562i \(0.509423\pi\)
\(350\) 0 0
\(351\) 7.14573 + 12.3768i 0.381411 + 0.660623i
\(352\) 0 0
\(353\) −7.17865 4.14459i −0.382081 0.220594i 0.296642 0.954989i \(-0.404133\pi\)
−0.678723 + 0.734394i \(0.737466\pi\)
\(354\) 0 0
\(355\) −0.532302 2.44914i −0.0282516 0.129987i
\(356\) 0 0
\(357\) 31.3779i 1.66069i
\(358\) 0 0
\(359\) −11.2797 19.5371i −0.595322 1.03113i −0.993501 0.113820i \(-0.963691\pi\)
0.398179 0.917308i \(-0.369642\pi\)
\(360\) 0 0
\(361\) −0.916214 1.58693i −0.0482218 0.0835226i
\(362\) 0 0
\(363\) −13.7532 + 7.94044i −0.721858 + 0.416765i
\(364\) 0 0
\(365\) 32.0747 6.97119i 1.67887 0.364889i
\(366\) 0 0
\(367\) 11.6575 6.73044i 0.608514 0.351326i −0.163869 0.986482i \(-0.552398\pi\)
0.772384 + 0.635156i \(0.219064\pi\)
\(368\) 0 0
\(369\) 20.6590 35.7825i 1.07547 1.86276i
\(370\) 0 0
\(371\) −11.1011 −0.576340
\(372\) 0 0
\(373\) 37.6534i 1.94962i 0.223038 + 0.974810i \(0.428403\pi\)
−0.223038 + 0.974810i \(0.571597\pi\)
\(374\) 0 0
\(375\) −3.62804 30.4879i −0.187351 1.57439i
\(376\) 0 0
\(377\) 21.3713 12.3387i 1.10068 0.635478i
\(378\) 0 0
\(379\) 12.6062 21.8346i 0.647538 1.12157i −0.336171 0.941801i \(-0.609132\pi\)
0.983709 0.179768i \(-0.0575348\pi\)
\(380\) 0 0
\(381\) −19.1209 33.1183i −0.979591 1.69670i
\(382\) 0 0
\(383\) 16.0646 9.27492i 0.820865 0.473926i −0.0298498 0.999554i \(-0.509503\pi\)
0.850715 + 0.525628i \(0.176170\pi\)
\(384\) 0 0
\(385\) 6.40495 20.0236i 0.326426 1.02050i
\(386\) 0 0
\(387\) 12.2014i 0.620230i
\(388\) 0 0
\(389\) 15.5210 26.8831i 0.786946 1.36303i −0.140884 0.990026i \(-0.544995\pi\)
0.927830 0.373004i \(-0.121672\pi\)
\(390\) 0 0
\(391\) −6.77237 + 11.7301i −0.342494 + 0.593216i
\(392\) 0 0
\(393\) 41.4945 23.9569i 2.09312 1.20847i
\(394\) 0 0
\(395\) −1.10668 + 1.00566i −0.0556829 + 0.0506003i
\(396\) 0 0
\(397\) −12.7056 7.33559i −0.637677 0.368163i 0.146042 0.989278i \(-0.453346\pi\)
−0.783719 + 0.621115i \(0.786680\pi\)
\(398\) 0 0
\(399\) 51.5932 2.58289
\(400\) 0 0
\(401\) −14.2916 −0.713686 −0.356843 0.934164i \(-0.616147\pi\)
−0.356843 + 0.934164i \(0.616147\pi\)
\(402\) 0 0
\(403\) −15.9233 + 9.99170i −0.793195 + 0.497722i
\(404\) 0 0
\(405\) 3.30978 3.00767i 0.164464 0.149452i
\(406\) 0 0
\(407\) 14.8157i 0.734386i
\(408\) 0 0
\(409\) 4.75939 8.24351i 0.235337 0.407615i −0.724034 0.689765i \(-0.757714\pi\)
0.959370 + 0.282149i \(0.0910474\pi\)
\(410\) 0 0
\(411\) −61.0944 −3.01356
\(412\) 0 0
\(413\) 18.2816 10.5549i 0.899578 0.519372i
\(414\) 0 0
\(415\) 16.4648 3.57849i 0.808224 0.175661i
\(416\) 0 0
\(417\) −16.7929 9.69540i −0.822353 0.474786i
\(418\) 0 0
\(419\) 26.7952 1.30903 0.654517 0.756048i \(-0.272872\pi\)
0.654517 + 0.756048i \(0.272872\pi\)
\(420\) 0 0
\(421\) 8.63288 + 14.9526i 0.420741 + 0.728745i 0.996012 0.0892181i \(-0.0284368\pi\)
−0.575271 + 0.817963i \(0.695103\pi\)
\(422\) 0 0
\(423\) −9.20319 + 5.31347i −0.447475 + 0.258350i
\(424\) 0 0
\(425\) 5.76102 + 12.6273i 0.279450 + 0.612513i
\(426\) 0 0
\(427\) −53.8513 31.0910i −2.60604 1.50460i
\(428\) 0 0
\(429\) 10.5889 + 18.3405i 0.511237 + 0.885488i
\(430\) 0 0
\(431\) 0.275374 0.476962i 0.0132643 0.0229745i −0.859317 0.511443i \(-0.829111\pi\)
0.872581 + 0.488469i \(0.162444\pi\)
\(432\) 0 0
\(433\) 31.8286i 1.52959i −0.644276 0.764793i \(-0.722841\pi\)
0.644276 0.764793i \(-0.277159\pi\)
\(434\) 0 0
\(435\) 30.1839 + 33.2158i 1.44721 + 1.59258i
\(436\) 0 0
\(437\) 19.2873 + 11.1355i 0.922635 + 0.532684i
\(438\) 0 0
\(439\) −9.28131 16.0757i −0.442973 0.767251i 0.554936 0.831893i \(-0.312743\pi\)
−0.997909 + 0.0646420i \(0.979409\pi\)
\(440\) 0 0
\(441\) −22.5779 + 39.1060i −1.07514 + 1.86219i
\(442\) 0 0
\(443\) −12.4649 + 7.19660i −0.592224 + 0.341921i −0.765976 0.642869i \(-0.777744\pi\)
0.173752 + 0.984789i \(0.444411\pi\)
\(444\) 0 0
\(445\) 3.59243 + 1.14911i 0.170298 + 0.0544731i
\(446\) 0 0
\(447\) 11.1016 6.40953i 0.525089 0.303160i
\(448\) 0 0
\(449\) −18.6994 −0.882478 −0.441239 0.897390i \(-0.645461\pi\)
−0.441239 + 0.897390i \(0.645461\pi\)
\(450\) 0 0
\(451\) 10.3905 17.9968i 0.489268 0.847436i
\(452\) 0 0
\(453\) 20.6252 + 11.9079i 0.969054 + 0.559484i
\(454\) 0 0
\(455\) 29.5987 + 9.46773i 1.38761 + 0.443854i
\(456\) 0 0
\(457\) 33.9720i 1.58914i −0.607171 0.794571i \(-0.707696\pi\)
0.607171 0.794571i \(-0.292304\pi\)
\(458\) 0 0
\(459\) 5.87495 10.1757i 0.274219 0.474961i
\(460\) 0 0
\(461\) 35.2728 1.64282 0.821409 0.570339i \(-0.193188\pi\)
0.821409 + 0.570339i \(0.193188\pi\)
\(462\) 0 0
\(463\) 14.1689i 0.658485i 0.944245 + 0.329243i \(0.106793\pi\)
−0.944245 + 0.329243i \(0.893207\pi\)
\(464\) 0 0
\(465\) −23.9082 24.4399i −1.10872 1.13337i
\(466\) 0 0
\(467\) 26.4262i 1.22286i −0.791298 0.611430i \(-0.790594\pi\)
0.791298 0.611430i \(-0.209406\pi\)
\(468\) 0 0
\(469\) −14.3682 −0.663463
\(470\) 0 0
\(471\) 11.6147 20.1172i 0.535177 0.926954i
\(472\) 0 0
\(473\) 6.13668i 0.282165i
\(474\) 0 0
\(475\) 20.7625 9.47259i 0.952648 0.434632i
\(476\) 0 0
\(477\) 10.6069 + 6.12387i 0.485654 + 0.280393i
\(478\) 0 0
\(479\) −6.19232 + 10.7254i −0.282935 + 0.490057i −0.972106 0.234541i \(-0.924641\pi\)
0.689172 + 0.724598i \(0.257975\pi\)
\(480\) 0 0
\(481\) −21.9004 −0.998572
\(482\) 0 0
\(483\) −47.7665 + 27.5780i −2.17345 + 1.25484i
\(484\) 0 0
\(485\) 6.56801 20.5334i 0.298238 0.932373i
\(486\) 0 0
\(487\) −18.0165 + 10.4018i −0.816407 + 0.471353i −0.849176 0.528110i \(-0.822901\pi\)
0.0327692 + 0.999463i \(0.489567\pi\)
\(488\) 0 0
\(489\) −21.6092 + 37.4282i −0.977202 + 1.69256i
\(490\) 0 0
\(491\) 1.24918 + 2.16364i 0.0563747 + 0.0976438i 0.892835 0.450383i \(-0.148713\pi\)
−0.836461 + 0.548027i \(0.815379\pi\)
\(492\) 0 0
\(493\) −17.5707 10.1444i −0.791345 0.456883i
\(494\) 0 0
\(495\) −17.1657 + 15.5988i −0.771541 + 0.701115i
\(496\) 0 0
\(497\) 4.61370i 0.206953i
\(498\) 0 0
\(499\) −6.48139 + 11.2261i −0.290147 + 0.502549i −0.973844 0.227216i \(-0.927038\pi\)
0.683697 + 0.729766i \(0.260371\pi\)
\(500\) 0 0
\(501\) 7.87261 + 13.6358i 0.351722 + 0.609201i
\(502\) 0 0
\(503\) 8.11146 + 4.68315i 0.361672 + 0.208811i 0.669814 0.742529i \(-0.266374\pi\)
−0.308142 + 0.951340i \(0.599707\pi\)
\(504\) 0 0
\(505\) 34.7246 + 11.1074i 1.54523 + 0.494271i
\(506\) 0 0
\(507\) 3.80636 2.19761i 0.169047 0.0975991i
\(508\) 0 0
\(509\) 13.6793 + 23.6932i 0.606324 + 1.05018i 0.991841 + 0.127483i \(0.0406900\pi\)
−0.385516 + 0.922701i \(0.625977\pi\)
\(510\) 0 0
\(511\) −60.4224 −2.67293
\(512\) 0 0
\(513\) −16.7315 9.65992i −0.738713 0.426496i
\(514\) 0 0
\(515\) −16.9157 + 3.67649i −0.745393 + 0.162005i
\(516\) 0 0
\(517\) −4.62875 + 2.67241i −0.203572 + 0.117532i
\(518\) 0 0
\(519\) 19.8894 0.873047
\(520\) 0 0
\(521\) −13.4354 + 23.2708i −0.588617 + 1.01951i 0.405797 + 0.913963i \(0.366994\pi\)
−0.994414 + 0.105551i \(0.966339\pi\)
\(522\) 0 0
\(523\) 1.01543i 0.0444018i −0.999754 0.0222009i \(-0.992933\pi\)
0.999754 0.0222009i \(-0.00706735\pi\)
\(524\) 0 0
\(525\) −5.39335 + 56.2609i −0.235385 + 2.45543i
\(526\) 0 0
\(527\) 13.6600 + 7.23019i 0.595038 + 0.314952i
\(528\) 0 0
\(529\) −0.808969 −0.0351725
\(530\) 0 0
\(531\) −23.2902 −1.01071
\(532\) 0 0
\(533\) 26.6027 + 15.3591i 1.15229 + 0.665275i
\(534\) 0 0
\(535\) 30.6258 + 33.7021i 1.32407 + 1.45707i
\(536\) 0 0
\(537\) 28.5404 16.4778i 1.23161 0.711070i
\(538\) 0 0
\(539\) −11.3556 + 19.6684i −0.489119 + 0.847178i
\(540\) 0 0
\(541\) 7.01355 12.1478i 0.301536 0.522275i −0.674948 0.737865i \(-0.735834\pi\)
0.976484 + 0.215590i \(0.0691674\pi\)
\(542\) 0 0
\(543\) 56.4284i 2.42157i
\(544\) 0 0
\(545\) −12.1452 3.88488i −0.520243 0.166410i
\(546\) 0 0
\(547\) 22.9681 13.2606i 0.982045 0.566984i 0.0791583 0.996862i \(-0.474777\pi\)
0.902887 + 0.429878i \(0.141443\pi\)
\(548\) 0 0
\(549\) 34.3024 + 59.4136i 1.46399 + 2.53571i
\(550\) 0 0
\(551\) −16.6801 + 28.8907i −0.710595 + 1.23079i
\(552\) 0 0
\(553\) 2.38390 1.37634i 0.101374 0.0585281i
\(554\) 0 0
\(555\) −8.45942 38.9221i −0.359082 1.65215i
\(556\) 0 0
\(557\) 22.2445i 0.942530i −0.881992 0.471265i \(-0.843798\pi\)
0.881992 0.471265i \(-0.156202\pi\)
\(558\) 0 0
\(559\) −9.07118 −0.383670
\(560\) 0 0
\(561\) 8.70579 15.0789i 0.367559 0.636631i
\(562\) 0 0
\(563\) 1.67777 0.968664i 0.0707098 0.0408243i −0.464228 0.885716i \(-0.653668\pi\)
0.534938 + 0.844891i \(0.320335\pi\)
\(564\) 0 0
\(565\) −31.8434 + 6.92091i −1.33966 + 0.291165i
\(566\) 0 0
\(567\) −7.12962 + 4.11629i −0.299416 + 0.172868i
\(568\) 0 0
\(569\) −9.16048 15.8664i −0.384027 0.665155i 0.607606 0.794238i \(-0.292130\pi\)
−0.991634 + 0.129083i \(0.958797\pi\)
\(570\) 0 0
\(571\) 15.6373 + 27.0847i 0.654402 + 1.13346i 0.982043 + 0.188655i \(0.0604129\pi\)
−0.327641 + 0.944802i \(0.606254\pi\)
\(572\) 0 0
\(573\) 8.01849i 0.334977i
\(574\) 0 0
\(575\) −14.1592 + 19.8681i −0.590478 + 0.828558i
\(576\) 0 0
\(577\) −18.0965 10.4480i −0.753365 0.434956i 0.0735433 0.997292i \(-0.476569\pi\)
−0.826909 + 0.562336i \(0.809903\pi\)
\(578\) 0 0
\(579\) 12.8422 + 22.2433i 0.533703 + 0.924400i
\(580\) 0 0
\(581\) −31.0164 −1.28678
\(582\) 0 0
\(583\) 5.33472 + 3.08000i 0.220942 + 0.127561i
\(584\) 0 0
\(585\) −23.0580 25.3742i −0.953333 1.04909i
\(586\) 0 0
\(587\) 0.785367i 0.0324156i 0.999869 + 0.0162078i \(0.00515932\pi\)
−0.999869 + 0.0162078i \(0.994841\pi\)
\(588\) 0 0
\(589\) 11.8883 22.4605i 0.489848 0.925469i
\(590\) 0 0
\(591\) 34.4222 1.41594
\(592\) 0 0
\(593\) 30.8993i 1.26888i −0.772972 0.634440i \(-0.781231\pi\)
0.772972 0.634440i \(-0.218769\pi\)
\(594\) 0 0
\(595\) −5.42631 24.9667i −0.222457 1.02353i
\(596\) 0 0
\(597\) 40.6757i 1.66475i
\(598\) 0 0
\(599\) 11.9294 + 20.6624i 0.487423 + 0.844241i 0.999895 0.0144625i \(-0.00460371\pi\)
−0.512473 + 0.858704i \(0.671270\pi\)
\(600\) 0 0
\(601\) 2.02090 3.50030i 0.0824342 0.142780i −0.821861 0.569688i \(-0.807064\pi\)
0.904295 + 0.426908i \(0.140397\pi\)
\(602\) 0 0
\(603\) 13.7285 + 7.92616i 0.559069 + 0.322778i
\(604\) 0 0
\(605\) 9.56997 8.69644i 0.389075 0.353560i
\(606\) 0 0
\(607\) 9.14269 5.27853i 0.371090 0.214249i −0.302844 0.953040i \(-0.597936\pi\)
0.673935 + 0.738791i \(0.264603\pi\)
\(608\) 0 0
\(609\) −41.3096 71.5503i −1.67395 2.89936i
\(610\) 0 0
\(611\) −3.95033 6.84217i −0.159813 0.276805i
\(612\) 0 0
\(613\) −41.7375 24.0971i −1.68576 0.973274i −0.957704 0.287757i \(-0.907091\pi\)
−0.728056 0.685517i \(-0.759576\pi\)
\(614\) 0 0
\(615\) −17.0209 + 53.2119i −0.686349 + 2.14571i
\(616\) 0 0
\(617\) 0.110124 + 0.0635803i 0.00443344 + 0.00255965i 0.502215 0.864743i \(-0.332519\pi\)
−0.497782 + 0.867302i \(0.665852\pi\)
\(618\) 0 0
\(619\) 17.3115 0.695810 0.347905 0.937530i \(-0.386893\pi\)
0.347905 + 0.937530i \(0.386893\pi\)
\(620\) 0 0
\(621\) 20.6540 0.828816
\(622\) 0 0
\(623\) −6.01291 3.47156i −0.240902 0.139085i
\(624\) 0 0
\(625\) 8.15915 + 23.6311i 0.326366 + 0.945244i
\(626\) 0 0
\(627\) −24.7935 14.3146i −0.990158 0.571668i
\(628\) 0 0
\(629\) 9.00284 + 15.5934i 0.358967 + 0.621749i
\(630\) 0 0
\(631\) 10.7298 + 18.5845i 0.427146 + 0.739839i 0.996618 0.0821720i \(-0.0261857\pi\)
−0.569472 + 0.822011i \(0.692852\pi\)
\(632\) 0 0
\(633\) −7.49295 + 4.32606i −0.297818 + 0.171945i
\(634\) 0 0
\(635\) 20.9413 + 23.0448i 0.831031 + 0.914506i
\(636\) 0 0
\(637\) −29.0736 16.7857i −1.15194 0.665073i
\(638\) 0 0
\(639\) 2.54512 4.40828i 0.100684 0.174389i
\(640\) 0 0
\(641\) −10.5859 18.3353i −0.418117 0.724201i 0.577633 0.816297i \(-0.303977\pi\)
−0.995750 + 0.0920961i \(0.970643\pi\)
\(642\) 0 0
\(643\) 32.0238i 1.26289i 0.775419 + 0.631447i \(0.217539\pi\)
−0.775419 + 0.631447i \(0.782461\pi\)
\(644\) 0 0
\(645\) −3.50391 16.1216i −0.137966 0.634788i
\(646\) 0 0
\(647\) 35.5581i 1.39793i 0.715154 + 0.698967i \(0.246356\pi\)
−0.715154 + 0.698967i \(0.753644\pi\)
\(648\) 0 0
\(649\) −11.7138 −0.459807
\(650\) 0 0
\(651\) 33.4518 + 53.3104i 1.31108 + 2.08940i
\(652\) 0 0
\(653\) 28.1902i 1.10317i −0.834119 0.551584i \(-0.814024\pi\)
0.834119 0.551584i \(-0.185976\pi\)
\(654\) 0 0
\(655\) −28.8733 + 26.2378i −1.12817 + 1.02520i
\(656\) 0 0
\(657\) 57.7323 + 33.3317i 2.25235 + 1.30040i
\(658\) 0 0
\(659\) 47.6941 1.85790 0.928950 0.370206i \(-0.120713\pi\)
0.928950 + 0.370206i \(0.120713\pi\)
\(660\) 0 0
\(661\) 2.17917 + 3.77443i 0.0847599 + 0.146808i 0.905289 0.424796i \(-0.139654\pi\)
−0.820529 + 0.571605i \(0.806321\pi\)
\(662\) 0 0
\(663\) 22.2895 + 12.8688i 0.865651 + 0.499784i
\(664\) 0 0
\(665\) −41.0516 + 8.92224i −1.59191 + 0.345990i
\(666\) 0 0
\(667\) 35.6639i 1.38091i
\(668\) 0 0
\(669\) 8.49552 + 14.7147i 0.328456 + 0.568902i
\(670\) 0 0
\(671\) 17.2524 + 29.8821i 0.666023 + 1.15358i
\(672\) 0 0
\(673\) −4.69122 + 2.70848i −0.180833 + 0.104404i −0.587684 0.809090i \(-0.699960\pi\)
0.406851 + 0.913495i \(0.366627\pi\)
\(674\) 0 0
\(675\) 12.2829 17.2354i 0.472769 0.663389i
\(676\) 0 0
\(677\) 32.1760 18.5768i 1.23663 0.713966i 0.268223 0.963357i \(-0.413564\pi\)
0.968403 + 0.249391i \(0.0802303\pi\)
\(678\) 0 0
\(679\) −19.8425 + 34.3682i −0.761485 + 1.31893i
\(680\) 0 0
\(681\) 29.1772 1.11807
\(682\) 0 0
\(683\) 33.3681i 1.27680i −0.769706 0.638398i \(-0.779597\pi\)
0.769706 0.638398i \(-0.220403\pi\)
\(684\) 0 0
\(685\) 48.6114 10.5653i 1.85735 0.403680i
\(686\) 0 0
\(687\) 56.1563 32.4218i 2.14250 1.23697i
\(688\) 0 0
\(689\) −4.55283 + 7.88573i −0.173449 + 0.300422i
\(690\) 0 0
\(691\) −26.0189 45.0661i −0.989806 1.71439i −0.618242 0.785988i \(-0.712155\pi\)
−0.371564 0.928407i \(-0.621178\pi\)
\(692\) 0 0
\(693\) 36.9767 21.3485i 1.40463 0.810963i
\(694\) 0 0
\(695\) 15.0384 + 4.81034i 0.570440 + 0.182467i
\(696\) 0 0
\(697\) 25.2553i 0.956613i
\(698\) 0 0
\(699\) 22.7441 39.3939i 0.860260 1.49001i
\(700\) 0 0
\(701\) −22.3461 + 38.7045i −0.843999 + 1.46185i 0.0424891 + 0.999097i \(0.486471\pi\)
−0.886488 + 0.462752i \(0.846862\pi\)
\(702\) 0 0
\(703\) 25.6395 14.8030i 0.967012 0.558305i
\(704\) 0 0
\(705\) 10.6343 9.66358i 0.400509 0.363951i
\(706\) 0 0
\(707\) −58.1212 33.5563i −2.18587 1.26201i
\(708\) 0 0
\(709\) −42.9707 −1.61380 −0.806899 0.590690i \(-0.798856\pi\)
−0.806899 + 0.590690i \(0.798856\pi\)
\(710\) 0 0
\(711\) −3.03701 −0.113897
\(712\) 0 0
\(713\) 0.999249 + 27.1492i 0.0374222 + 1.01675i
\(714\) 0 0
\(715\) −11.5971 12.7620i −0.433705 0.477270i
\(716\) 0 0
\(717\) 7.46157i 0.278657i
\(718\) 0 0
\(719\) −24.0650 + 41.6817i −0.897472 + 1.55447i −0.0667560 + 0.997769i \(0.521265\pi\)
−0.830716 + 0.556697i \(0.812068\pi\)
\(720\) 0 0
\(721\) 31.8657 1.18674
\(722\) 0 0
\(723\) −0.306663 + 0.177052i −0.0114049 + 0.00658463i
\(724\) 0 0
\(725\) −29.7608 21.2092i −1.10529 0.787691i
\(726\) 0 0
\(727\) 22.5946 + 13.0450i 0.837986 + 0.483812i 0.856579 0.516015i \(-0.172585\pi\)
−0.0185929 + 0.999827i \(0.505919\pi\)
\(728\) 0 0
\(729\) 43.9552 1.62797
\(730\) 0 0
\(731\) 3.72899 + 6.45880i 0.137922 + 0.238887i
\(732\) 0 0
\(733\) 7.46755 4.31139i 0.275820 0.159245i −0.355709 0.934597i \(-0.615761\pi\)
0.631530 + 0.775352i \(0.282427\pi\)
\(734\) 0 0
\(735\) 18.6019 58.1545i 0.686140 2.14506i
\(736\) 0 0
\(737\) 6.90477 + 3.98647i 0.254340 + 0.146843i
\(738\) 0 0
\(739\) −12.6306 21.8769i −0.464625 0.804754i 0.534560 0.845131i \(-0.320477\pi\)
−0.999185 + 0.0403769i \(0.987144\pi\)
\(740\) 0 0
\(741\) 21.1596 36.6496i 0.777319 1.34636i
\(742\) 0 0
\(743\) 41.0899i 1.50744i −0.657195 0.753720i \(-0.728257\pi\)
0.657195 0.753720i \(-0.271743\pi\)
\(744\) 0 0
\(745\) −7.72489 + 7.01977i −0.283018 + 0.257185i
\(746\) 0 0
\(747\) 29.6354 + 17.1100i 1.08430 + 0.626023i
\(748\) 0 0
\(749\) −41.9143 72.5978i −1.53152 2.65266i
\(750\) 0 0
\(751\) −5.21354 + 9.03012i −0.190245 + 0.329514i −0.945331 0.326112i \(-0.894262\pi\)
0.755087 + 0.655625i \(0.227595\pi\)
\(752\) 0 0
\(753\) 19.8543 11.4629i 0.723531 0.417731i
\(754\) 0 0
\(755\) −18.4703 5.90808i −0.672202 0.215017i
\(756\) 0 0
\(757\) 2.05850 1.18848i 0.0748175 0.0431959i −0.462125 0.886815i \(-0.652913\pi\)
0.536942 + 0.843619i \(0.319579\pi\)
\(758\) 0 0
\(759\) 30.6061 1.11093
\(760\) 0 0
\(761\) 19.7792 34.2585i 0.716994 1.24187i −0.245191 0.969475i \(-0.578851\pi\)
0.962185 0.272395i \(-0.0878159\pi\)
\(762\) 0 0
\(763\) 20.3283 + 11.7365i 0.735934 + 0.424891i
\(764\) 0 0
\(765\) −8.58802 + 26.8485i −0.310501 + 0.970709i
\(766\) 0 0
\(767\) 17.3152i 0.625217i
\(768\) 0 0
\(769\) 9.89681 17.1418i 0.356888 0.618148i −0.630551 0.776148i \(-0.717171\pi\)
0.987439 + 0.157999i \(0.0505044\pi\)
\(770\) 0 0
\(771\) 33.9648 1.22321
\(772\) 0 0
\(773\) 12.2441i 0.440388i 0.975456 + 0.220194i \(0.0706691\pi\)
−0.975456 + 0.220194i \(0.929331\pi\)
\(774\) 0 0
\(775\) 23.2497 + 15.3117i 0.835156 + 0.550014i
\(776\) 0 0
\(777\) 73.3216i 2.63040i
\(778\) 0 0
\(779\) −41.5262 −1.48783
\(780\) 0 0
\(781\) 1.28007 2.21715i 0.0458046 0.0793358i
\(782\) 0 0
\(783\) 30.9380i 1.10563i
\(784\) 0 0
\(785\) −5.76259 + 18.0154i −0.205676 + 0.642998i
\(786\) 0 0
\(787\) −23.9476 13.8262i −0.853640 0.492849i 0.00823762 0.999966i \(-0.497378\pi\)
−0.861877 + 0.507117i \(0.830711\pi\)
\(788\) 0 0
\(789\) −14.4432 + 25.0163i −0.514190 + 0.890604i
\(790\) 0 0
\(791\) 59.9866 2.13288
\(792\) 0 0
\(793\) −44.1714 + 25.5024i −1.56857 + 0.905616i
\(794\) 0 0
\(795\) −15.7734 5.04544i −0.559425 0.178943i
\(796\) 0 0
\(797\) −40.3412 + 23.2910i −1.42896 + 0.825009i −0.997039 0.0769033i \(-0.975497\pi\)
−0.431919 + 0.901912i \(0.642163\pi\)
\(798\) 0 0
\(799\) −3.24781 + 5.62538i −0.114899 + 0.199012i
\(800\) 0 0
\(801\) 3.83013 + 6.63399i 0.135331 + 0.234400i
\(802\) 0 0
\(803\) 29.0365 + 16.7642i 1.02467 + 0.591596i
\(804\) 0 0
\(805\) 33.2376 30.2037i 1.17147 1.06454i
\(806\) 0 0
\(807\) 72.9921i 2.56944i
\(808\) 0 0
\(809\) −8.62179 + 14.9334i −0.303126 + 0.525030i −0.976842 0.213960i \(-0.931364\pi\)
0.673716 + 0.738990i \(0.264697\pi\)
\(810\) 0 0
\(811\) −6.00444 10.4000i −0.210844 0.365193i 0.741135 0.671356i \(-0.234288\pi\)
−0.951979 + 0.306163i \(0.900955\pi\)
\(812\) 0 0
\(813\) −50.3946 29.0953i −1.76741 1.02042i
\(814\) 0 0
\(815\) 10.7213 33.5178i 0.375552 1.17408i
\(816\) 0 0
\(817\) 10.6199 6.13142i 0.371544 0.214511i
\(818\) 0 0
\(819\) 31.5572 + 54.6586i 1.10270 + 1.90993i
\(820\) 0 0
\(821\) −36.1816 −1.26275 −0.631373 0.775479i \(-0.717508\pi\)
−0.631373 + 0.775479i \(0.717508\pi\)
\(822\) 0 0
\(823\) 16.6892 + 9.63551i 0.581749 + 0.335873i 0.761828 0.647779i \(-0.224302\pi\)
−0.180079 + 0.983652i \(0.557635\pi\)
\(824\) 0 0
\(825\) 18.2014 25.5402i 0.633692 0.889196i
\(826\) 0 0
\(827\) −28.5214 + 16.4668i −0.991785 + 0.572607i −0.905807 0.423690i \(-0.860735\pi\)
−0.0859777 + 0.996297i \(0.527401\pi\)
\(828\) 0 0
\(829\) 14.6470 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(830\) 0 0
\(831\) −27.2493 + 47.1972i −0.945268 + 1.63725i
\(832\) 0 0
\(833\) 27.6011i 0.956321i
\(834\) 0 0
\(835\) −8.62215 9.48822i −0.298382 0.328353i
\(836\) 0 0
\(837\) −0.866837 23.5516i −0.0299623 0.814063i
\(838\) 0 0
\(839\) −29.6507 −1.02365 −0.511827 0.859088i \(-0.671031\pi\)
−0.511827 + 0.859088i \(0.671031\pi\)
\(840\) 0 0
\(841\) 24.4215 0.842120
\(842\) 0 0
\(843\) 39.5514 + 22.8350i 1.36222 + 0.786479i
\(844\) 0 0
\(845\) −2.64860 + 2.40684i −0.0911145 + 0.0827977i
\(846\) 0 0
\(847\) −20.6147 + 11.9019i −0.708330 + 0.408955i
\(848\) 0 0
\(849\) 1.63361 2.82950i 0.0560654 0.0971082i
\(850\) 0 0
\(851\) −15.8252 + 27.4101i −0.542481 + 0.939605i
\(852\) 0 0
\(853\) 23.0040i 0.787643i 0.919187 + 0.393822i \(0.128847\pi\)
−0.919187 + 0.393822i \(0.871153\pi\)
\(854\) 0 0
\(855\) 44.1458 + 14.1209i 1.50975 + 0.482925i
\(856\) 0 0
\(857\) 12.9021 7.44906i 0.440729 0.254455i −0.263178 0.964747i \(-0.584771\pi\)
0.703907 + 0.710292i \(0.251437\pi\)
\(858\) 0 0
\(859\) −10.2471 17.7485i −0.349627 0.605572i 0.636556 0.771230i \(-0.280358\pi\)
−0.986183 + 0.165659i \(0.947025\pi\)
\(860\) 0 0
\(861\) 51.4215 89.0647i 1.75244 3.03532i
\(862\) 0 0
\(863\) −30.6824 + 17.7145i −1.04444 + 0.603009i −0.921088 0.389354i \(-0.872698\pi\)
−0.123354 + 0.992363i \(0.539365\pi\)
\(864\) 0 0
\(865\) −15.8255 + 3.43956i −0.538084 + 0.116948i
\(866\) 0 0
\(867\) 25.5241i 0.866845i
\(868\) 0 0
\(869\) −1.52747 −0.0518158
\(870\) 0 0
\(871\) −5.89276 + 10.2066i −0.199669 + 0.345836i
\(872\) 0 0
\(873\) 37.9181 21.8920i 1.28333 0.740933i
\(874\) 0 0
\(875\) −5.43807 45.6982i −0.183840 1.54488i
\(876\) 0 0
\(877\) −41.6559 + 24.0500i −1.40662 + 0.812112i −0.995060 0.0992719i \(-0.968349\pi\)
−0.411558 + 0.911383i \(0.635015\pi\)
\(878\) 0 0
\(879\) 24.6536 + 42.7013i 0.831545 + 1.44028i
\(880\) 0 0
\(881\) 16.9746 + 29.4008i 0.571887 + 0.990538i 0.996372 + 0.0851026i \(0.0271218\pi\)
−0.424485 + 0.905435i \(0.639545\pi\)
\(882\) 0 0
\(883\) 20.4406i 0.687881i 0.938991 + 0.343941i \(0.111762\pi\)
−0.938991 + 0.343941i \(0.888238\pi\)
\(884\) 0 0
\(885\) 30.7733 6.68833i 1.03443 0.224826i
\(886\) 0 0
\(887\) 22.5353 + 13.0107i 0.756660 + 0.436858i 0.828095 0.560587i \(-0.189425\pi\)
−0.0714351 + 0.997445i \(0.522758\pi\)
\(888\) 0 0
\(889\) −28.6602 49.6410i −0.961233 1.66491i
\(890\) 0 0
\(891\) 4.56826 0.153042
\(892\) 0 0
\(893\) 9.24956 + 5.34024i 0.309525 + 0.178704i
\(894\) 0 0
\(895\) −19.8594 + 18.0466i −0.663826 + 0.603233i
\(896\) 0 0
\(897\) 45.2417i 1.51058i
\(898\) 0 0
\(899\) −40.6673 + 1.49679i −1.35633 + 0.0499208i
\(900\) 0 0
\(901\) 7.48633 0.249406
\(902\) 0 0
\(903\) 30.3699i 1.01065i
\(904\) 0 0
\(905\) 9.75840 + 44.8988i 0.324380 + 1.49249i
\(906\) 0 0
\(907\) 42.7134i 1.41827i −0.705071 0.709137i \(-0.749085\pi\)
0.705071 0.709137i \(-0.250915\pi\)
\(908\) 0 0
\(909\) 37.0223 + 64.1245i 1.22795 + 2.12688i
\(910\) 0 0
\(911\) −8.60589 + 14.9058i −0.285126 + 0.493852i −0.972640 0.232319i \(-0.925369\pi\)
0.687514 + 0.726171i \(0.258702\pi\)
\(912\) 0 0
\(913\) 14.9052 + 8.60550i 0.493289 + 0.284800i
\(914\) 0 0
\(915\) −62.3857 68.6522i −2.06241 2.26957i
\(916\) 0 0
\(917\) 62.1961 35.9090i 2.05390 1.18582i
\(918\) 0 0
\(919\) −21.4764 37.1982i −0.708440 1.22705i −0.965436 0.260641i \(-0.916066\pi\)
0.256996 0.966413i \(-0.417267\pi\)
\(920\) 0 0
\(921\) −44.0545 76.3047i −1.45165 2.51433i
\(922\) 0 0
\(923\) 3.27737 + 1.89219i 0.107876 + 0.0622822i
\(924\) 0 0
\(925\) 13.4619 + 29.5065i 0.442626 + 0.970169i
\(926\) 0 0
\(927\) −30.4470 17.5786i −1.00001 0.577356i
\(928\) 0 0
\(929\) 7.04620 0.231178 0.115589 0.993297i \(-0.463124\pi\)
0.115589 + 0.993297i \(0.463124\pi\)
\(930\) 0 0
\(931\) 45.3833 1.48738
\(932\) 0 0
\(933\) −2.07912 1.20038i −0.0680673 0.0392987i
\(934\) 0 0
\(935\) −4.31935 + 13.5035i −0.141258 + 0.441610i
\(936\) 0 0
\(937\) −13.0279 7.52169i −0.425604 0.245723i 0.271868 0.962335i \(-0.412359\pi\)
−0.697472 + 0.716612i \(0.745692\pi\)
\(938\) 0 0
\(939\) −29.7149 51.4677i −0.969709 1.67958i
\(940\) 0 0
\(941\) −9.13033 15.8142i −0.297640 0.515528i 0.677955 0.735103i \(-0.262866\pi\)
−0.975596 + 0.219575i \(0.929533\pi\)
\(942\) 0 0
\(943\) 38.4462 22.1969i 1.25198 0.722831i
\(944\) 0 0
\(945\) −28.8332 + 26.2013i −0.937944 + 0.852329i
\(946\) 0 0
\(947\) 31.5546 + 18.2180i 1.02539 + 0.592007i 0.915659 0.401955i \(-0.131669\pi\)
0.109727 + 0.993962i \(0.465002\pi\)
\(948\) 0 0
\(949\) −24.7807 + 42.9214i −0.804416 + 1.39329i
\(950\) 0 0
\(951\) −17.0517 29.5344i −0.552940 0.957720i
\(952\) 0 0
\(953\) 5.88586i 0.190662i 0.995446 + 0.0953309i \(0.0303909\pi\)
−0.995446 + 0.0953309i \(0.969609\pi\)
\(954\) 0 0
\(955\) 1.38667 + 6.38013i 0.0448716 + 0.206456i
\(956\) 0 0
\(957\) 45.8454i 1.48197i
\(958\) 0 0
\(959\) −91.5743 −2.95709
\(960\) 0 0
\(961\) 30.9161 2.27887i 0.997294 0.0735121i
\(962\) 0 0
\(963\) 92.4873i 2.98036i
\(964\) 0 0
\(965\) −14.0649 15.4777i −0.452764 0.498243i
\(966\) 0 0
\(967\) −23.8388 13.7634i −0.766606 0.442600i 0.0650568 0.997882i \(-0.479277\pi\)
−0.831662 + 0.555282i \(0.812610\pi\)
\(968\) 0 0
\(969\) −34.7933 −1.11772
\(970\) 0 0
\(971\) −17.6390 30.5516i −0.566061 0.980447i −0.996950 0.0780417i \(-0.975133\pi\)
0.430889 0.902405i \(-0.358200\pi\)
\(972\) 0 0
\(973\) −25.1709 14.5324i −0.806942 0.465888i
\(974\) 0 0
\(975\) 37.7533 + 26.9051i 1.20907 + 0.861654i
\(976\) 0 0
\(977\) 6.29430i 0.201373i −0.994918 0.100686i \(-0.967896\pi\)
0.994918 0.100686i \(-0.0321038\pi\)
\(978\) 0 0
\(979\) 1.92637 + 3.33657i 0.0615670 + 0.106637i
\(980\) 0 0
\(981\) −12.9488 22.4280i −0.413424 0.716071i
\(982\) 0 0
\(983\) −21.9695 + 12.6841i −0.700717 + 0.404559i −0.807614 0.589711i \(-0.799242\pi\)
0.106898 + 0.994270i \(0.465908\pi\)
\(984\) 0 0
\(985\) −27.3890 + 5.95278i −0.872685 + 0.189671i
\(986\) 0 0
\(987\) −22.9073 + 13.2255i −0.729148 + 0.420974i
\(988\) 0 0
\(989\) −6.55483 + 11.3533i −0.208431 + 0.361014i
\(990\) 0 0
\(991\) −30.6952 −0.975065 −0.487532 0.873105i \(-0.662103\pi\)
−0.487532 + 0.873105i \(0.662103\pi\)
\(992\) 0 0
\(993\) 68.3006i 2.16745i
\(994\) 0 0
\(995\) −7.03423 32.3648i −0.223000 1.02603i
\(996\) 0 0
\(997\) −26.9592 + 15.5649i −0.853805 + 0.492945i −0.861933 0.507022i \(-0.830746\pi\)
0.00812764 + 0.999967i \(0.497413\pi\)
\(998\) 0 0
\(999\) 13.7282 23.7779i 0.434340 0.752299i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1240.2.bm.a.129.4 96
5.4 even 2 inner 1240.2.bm.a.129.45 yes 96
31.25 even 3 inner 1240.2.bm.a.769.45 yes 96
155.149 even 6 inner 1240.2.bm.a.769.4 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1240.2.bm.a.129.4 96 1.1 even 1 trivial
1240.2.bm.a.129.45 yes 96 5.4 even 2 inner
1240.2.bm.a.769.4 yes 96 155.149 even 6 inner
1240.2.bm.a.769.45 yes 96 31.25 even 3 inner