Properties

Label 1240.2.bm
Level $1240$
Weight $2$
Character orbit 1240.bm
Rep. character $\chi_{1240}(129,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $1$
Sturm bound $384$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1240.bm (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 155 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(384\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1240, [\chi])\).

Total New Old
Modular forms 400 96 304
Cusp forms 368 96 272
Eisenstein series 32 0 32

Trace form

\( 96 q + 48 q^{9} + 12 q^{11} - 20 q^{15} - 8 q^{21} + 8 q^{25} - 24 q^{29} - 12 q^{31} + 4 q^{35} + 16 q^{39} + 60 q^{49} + 12 q^{51} + 2 q^{55} - 8 q^{59} + 24 q^{61} - 4 q^{69} + 8 q^{71} + 10 q^{75} + 84 q^{79}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1240.2.bm.a 1240.bm 155.j $96$ $9.901$ None 1240.2.bm.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1240, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1240, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(620, [\chi])\)\(^{\oplus 2}\)