Properties

Label 1240.2
Level 1240
Weight 2
Dimension 23362
Nonzero newspaces 36
Sturm bound 184320
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1240 = 2^{3} \cdot 5 \cdot 31 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(184320\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1240))\).

Total New Old
Modular forms 47520 24058 23462
Cusp forms 44641 23362 21279
Eisenstein series 2879 696 2183

Trace form

\( 23362 q - 52 q^{2} - 52 q^{3} - 52 q^{4} + 2 q^{5} - 164 q^{6} - 44 q^{7} - 52 q^{8} - 94 q^{9} - 82 q^{10} - 156 q^{11} - 76 q^{12} + 4 q^{13} - 76 q^{14} - 98 q^{15} - 196 q^{16} - 108 q^{17} - 108 q^{18}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1240))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1240.2.a \(\chi_{1240}(1, \cdot)\) 1240.2.a.a 1 1
1240.2.a.b 1
1240.2.a.c 1
1240.2.a.d 1
1240.2.a.e 1
1240.2.a.f 1
1240.2.a.g 1
1240.2.a.h 2
1240.2.a.i 2
1240.2.a.j 3
1240.2.a.k 4
1240.2.a.l 6
1240.2.a.m 6
1240.2.b \(\chi_{1240}(371, \cdot)\) n/a 128 1
1240.2.d \(\chi_{1240}(249, \cdot)\) 1240.2.d.a 22 1
1240.2.d.b 22
1240.2.g \(\chi_{1240}(621, \cdot)\) n/a 120 1
1240.2.i \(\chi_{1240}(1239, \cdot)\) None 0 1
1240.2.j \(\chi_{1240}(869, \cdot)\) n/a 180 1
1240.2.l \(\chi_{1240}(991, \cdot)\) None 0 1
1240.2.o \(\chi_{1240}(619, \cdot)\) n/a 188 1
1240.2.q \(\chi_{1240}(521, \cdot)\) 1240.2.q.a 2 2
1240.2.q.b 14
1240.2.q.c 16
1240.2.q.d 16
1240.2.q.e 16
1240.2.r \(\chi_{1240}(433, \cdot)\) 1240.2.r.a 96 2
1240.2.u \(\chi_{1240}(63, \cdot)\) None 0 2
1240.2.v \(\chi_{1240}(187, \cdot)\) n/a 360 2
1240.2.y \(\chi_{1240}(557, \cdot)\) n/a 376 2
1240.2.z \(\chi_{1240}(281, \cdot)\) n/a 128 4
1240.2.bb \(\chi_{1240}(99, \cdot)\) n/a 376 2
1240.2.be \(\chi_{1240}(471, \cdot)\) None 0 2
1240.2.bg \(\chi_{1240}(149, \cdot)\) n/a 376 2
1240.2.bh \(\chi_{1240}(119, \cdot)\) None 0 2
1240.2.bj \(\chi_{1240}(501, \cdot)\) n/a 256 2
1240.2.bm \(\chi_{1240}(129, \cdot)\) 1240.2.bm.a 96 2
1240.2.bo \(\chi_{1240}(491, \cdot)\) n/a 256 2
1240.2.bq \(\chi_{1240}(139, \cdot)\) n/a 752 4
1240.2.bt \(\chi_{1240}(151, \cdot)\) None 0 4
1240.2.bv \(\chi_{1240}(109, \cdot)\) n/a 752 4
1240.2.bw \(\chi_{1240}(399, \cdot)\) None 0 4
1240.2.by \(\chi_{1240}(101, \cdot)\) n/a 512 4
1240.2.cb \(\chi_{1240}(529, \cdot)\) n/a 192 4
1240.2.cd \(\chi_{1240}(91, \cdot)\) n/a 512 4
1240.2.ce \(\chi_{1240}(37, \cdot)\) n/a 752 4
1240.2.ch \(\chi_{1240}(67, \cdot)\) n/a 752 4
1240.2.ci \(\chi_{1240}(87, \cdot)\) None 0 4
1240.2.cl \(\chi_{1240}(57, \cdot)\) n/a 192 4
1240.2.cm \(\chi_{1240}(41, \cdot)\) n/a 256 8
1240.2.cn \(\chi_{1240}(77, \cdot)\) n/a 1504 8
1240.2.cq \(\chi_{1240}(163, \cdot)\) n/a 1504 8
1240.2.cr \(\chi_{1240}(47, \cdot)\) None 0 8
1240.2.cu \(\chi_{1240}(153, \cdot)\) n/a 384 8
1240.2.cv \(\chi_{1240}(11, \cdot)\) n/a 1024 8
1240.2.cx \(\chi_{1240}(9, \cdot)\) n/a 384 8
1240.2.da \(\chi_{1240}(381, \cdot)\) n/a 1024 8
1240.2.dc \(\chi_{1240}(79, \cdot)\) None 0 8
1240.2.dd \(\chi_{1240}(69, \cdot)\) n/a 1504 8
1240.2.df \(\chi_{1240}(551, \cdot)\) None 0 8
1240.2.di \(\chi_{1240}(179, \cdot)\) n/a 1504 8
1240.2.dk \(\chi_{1240}(17, \cdot)\) n/a 768 16
1240.2.dn \(\chi_{1240}(7, \cdot)\) None 0 16
1240.2.do \(\chi_{1240}(107, \cdot)\) n/a 3008 16
1240.2.dr \(\chi_{1240}(13, \cdot)\) n/a 3008 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1240))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1240)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(124))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(248))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(620))\)\(^{\oplus 2}\)