Newspace parameters
| Level: | \( N \) | \(=\) | \( 1240 = 2^{3} \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1240.bm (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(9.90144985064\) |
| Analytic rank: | \(0\) |
| Dimension: | \(96\) |
| Relative dimension: | \(48\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 129.1 | 0 | −2.93193 | − | 1.69275i | 0 | 1.34090 | − | 1.78941i | 0 | −1.71429 | − | 0.989747i | 0 | 4.23082 | + | 7.32799i | 0 | ||||||||||
| 129.2 | 0 | −2.85813 | − | 1.65014i | 0 | −0.812038 | + | 2.08341i | 0 | 4.41525 | + | 2.54915i | 0 | 3.94592 | + | 6.83454i | 0 | ||||||||||
| 129.3 | 0 | −2.73522 | − | 1.57918i | 0 | −1.84059 | − | 1.26974i | 0 | −1.78971 | − | 1.03329i | 0 | 3.48762 | + | 6.04073i | 0 | ||||||||||
| 129.4 | 0 | −2.37824 | − | 1.37308i | 0 | 2.12977 | + | 0.681248i | 0 | −3.56474 | − | 2.05811i | 0 | 2.27069 | + | 3.93295i | 0 | ||||||||||
| 129.5 | 0 | −2.37481 | − | 1.37110i | 0 | 0.168346 | + | 2.22972i | 0 | −1.13648 | − | 0.656146i | 0 | 2.25981 | + | 3.91411i | 0 | ||||||||||
| 129.6 | 0 | −2.15418 | − | 1.24371i | 0 | −0.298019 | − | 2.21612i | 0 | 3.03290 | + | 1.75105i | 0 | 1.59365 | + | 2.76028i | 0 | ||||||||||
| 129.7 | 0 | −2.04398 | − | 1.18009i | 0 | 1.73978 | − | 1.40470i | 0 | 2.49105 | + | 1.43821i | 0 | 1.28522 | + | 2.22607i | 0 | ||||||||||
| 129.8 | 0 | −1.98728 | − | 1.14736i | 0 | −2.11933 | − | 0.713055i | 0 | −0.636841 | − | 0.367680i | 0 | 1.13286 | + | 1.96217i | 0 | ||||||||||
| 129.9 | 0 | −1.96809 | − | 1.13628i | 0 | 2.11469 | + | 0.726689i | 0 | 2.63463 | + | 1.52110i | 0 | 1.08224 | + | 1.87450i | 0 | ||||||||||
| 129.10 | 0 | −1.93450 | − | 1.11688i | 0 | 1.63121 | + | 1.52943i | 0 | 0.440222 | + | 0.254162i | 0 | 0.994857 | + | 1.72314i | 0 | ||||||||||
| 129.11 | 0 | −1.87851 | − | 1.08456i | 0 | −1.69077 | + | 1.46331i | 0 | −2.91592 | − | 1.68351i | 0 | 0.852530 | + | 1.47662i | 0 | ||||||||||
| 129.12 | 0 | −1.71744 | − | 0.991562i | 0 | 0.323977 | − | 2.21247i | 0 | 0.685764 | + | 0.395926i | 0 | 0.466389 | + | 0.807810i | 0 | ||||||||||
| 129.13 | 0 | −1.51820 | − | 0.876531i | 0 | −2.18524 | − | 0.474063i | 0 | 2.19364 | + | 1.26650i | 0 | 0.0366149 | + | 0.0634189i | 0 | ||||||||||
| 129.14 | 0 | −1.40720 | − | 0.812450i | 0 | 2.20245 | + | 0.386291i | 0 | 3.22236 | + | 1.86043i | 0 | −0.179851 | − | 0.311511i | 0 | ||||||||||
| 129.15 | 0 | −1.33572 | − | 0.771179i | 0 | 1.72053 | − | 1.42820i | 0 | −3.04063 | − | 1.75551i | 0 | −0.310567 | − | 0.537918i | 0 | ||||||||||
| 129.16 | 0 | −1.05633 | − | 0.609871i | 0 | −1.43197 | − | 1.71740i | 0 | −2.33623 | − | 1.34883i | 0 | −0.756116 | − | 1.30963i | 0 | ||||||||||
| 129.17 | 0 | −0.974079 | − | 0.562385i | 0 | −1.08755 | + | 1.95377i | 0 | 2.08447 | + | 1.20347i | 0 | −0.867447 | − | 1.50246i | 0 | ||||||||||
| 129.18 | 0 | −0.752453 | − | 0.434429i | 0 | −1.88544 | + | 1.20214i | 0 | −4.19131 | − | 2.41986i | 0 | −1.12254 | − | 1.94430i | 0 | ||||||||||
| 129.19 | 0 | −0.615013 | − | 0.355078i | 0 | 0.890025 | − | 2.05131i | 0 | −2.78589 | − | 1.60843i | 0 | −1.24784 | − | 2.16132i | 0 | ||||||||||
| 129.20 | 0 | −0.450527 | − | 0.260112i | 0 | 0.335380 | + | 2.21077i | 0 | −1.19305 | − | 0.688810i | 0 | −1.36468 | − | 2.36370i | 0 | ||||||||||
| See all 96 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 31.c | even | 3 | 1 | inner |
| 155.j | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1240.2.bm.a | ✓ | 96 |
| 5.b | even | 2 | 1 | inner | 1240.2.bm.a | ✓ | 96 |
| 31.c | even | 3 | 1 | inner | 1240.2.bm.a | ✓ | 96 |
| 155.j | even | 6 | 1 | inner | 1240.2.bm.a | ✓ | 96 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1240.2.bm.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
| 1240.2.bm.a | ✓ | 96 | 5.b | even | 2 | 1 | inner |
| 1240.2.bm.a | ✓ | 96 | 31.c | even | 3 | 1 | inner |
| 1240.2.bm.a | ✓ | 96 | 155.j | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(1240, [\chi])\).