Properties

Label 1188.3.e.c.485.8
Level $1188$
Weight $3$
Character 1188.485
Analytic conductor $32.371$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1188,3,Mod(485,1188)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1188, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1188.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1188 = 2^{2} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1188.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3706554060\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 46x^{6} + 637x^{4} + 2880x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.8
Root \(1.18638i\) of defining polynomial
Character \(\chi\) \(=\) 1188.485
Dual form 1188.3.e.c.485.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.47276i q^{5} +2.36935 q^{7} -3.31662i q^{11} -11.3098 q^{13} -24.1204i q^{17} -27.4239 q^{19} -28.7633i q^{23} -16.8966 q^{25} +2.39074i q^{29} -46.9354 q^{31} +15.3363i q^{35} +69.0057 q^{37} +13.5656i q^{41} +55.5865 q^{43} -39.7402i q^{47} -43.3862 q^{49} -99.2946i q^{53} +21.4677 q^{55} +43.6773i q^{59} -8.08001 q^{61} -73.2056i q^{65} -7.40346 q^{67} +60.2234i q^{71} +104.544 q^{73} -7.85826i q^{77} -56.7966 q^{79} -153.111i q^{83} +156.126 q^{85} +40.0175i q^{89} -26.7969 q^{91} -177.508i q^{95} +54.2828 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 20 q^{13} + 16 q^{19} - 12 q^{25} - 32 q^{31} - 20 q^{37} - 48 q^{43} + 84 q^{49} + 36 q^{61} + 16 q^{67} + 200 q^{73} - 28 q^{79} - 60 q^{85} - 228 q^{91} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1188\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(541\) \(595\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.47276i 1.29455i 0.762256 + 0.647276i \(0.224092\pi\)
−0.762256 + 0.647276i \(0.775908\pi\)
\(6\) 0 0
\(7\) 2.36935 0.338479 0.169240 0.985575i \(-0.445869\pi\)
0.169240 + 0.985575i \(0.445869\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 3.31662i − 0.301511i
\(12\) 0 0
\(13\) −11.3098 −0.869984 −0.434992 0.900434i \(-0.643249\pi\)
−0.434992 + 0.900434i \(0.643249\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 24.1204i − 1.41885i −0.704782 0.709424i \(-0.748955\pi\)
0.704782 0.709424i \(-0.251045\pi\)
\(18\) 0 0
\(19\) −27.4239 −1.44336 −0.721682 0.692225i \(-0.756631\pi\)
−0.721682 + 0.692225i \(0.756631\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 28.7633i − 1.25058i −0.780394 0.625288i \(-0.784981\pi\)
0.780394 0.625288i \(-0.215019\pi\)
\(24\) 0 0
\(25\) −16.8966 −0.675865
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.39074i 0.0824394i 0.999150 + 0.0412197i \(0.0131244\pi\)
−0.999150 + 0.0412197i \(0.986876\pi\)
\(30\) 0 0
\(31\) −46.9354 −1.51405 −0.757023 0.653388i \(-0.773347\pi\)
−0.757023 + 0.653388i \(0.773347\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 15.3363i 0.438179i
\(36\) 0 0
\(37\) 69.0057 1.86502 0.932510 0.361144i \(-0.117614\pi\)
0.932510 + 0.361144i \(0.117614\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 13.5656i 0.330869i 0.986221 + 0.165434i \(0.0529026\pi\)
−0.986221 + 0.165434i \(0.947097\pi\)
\(42\) 0 0
\(43\) 55.5865 1.29271 0.646355 0.763037i \(-0.276293\pi\)
0.646355 + 0.763037i \(0.276293\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 39.7402i − 0.845537i −0.906238 0.422768i \(-0.861058\pi\)
0.906238 0.422768i \(-0.138942\pi\)
\(48\) 0 0
\(49\) −43.3862 −0.885432
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 99.2946i − 1.87348i −0.350023 0.936741i \(-0.613826\pi\)
0.350023 0.936741i \(-0.386174\pi\)
\(54\) 0 0
\(55\) 21.4677 0.390322
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 43.6773i 0.740294i 0.928973 + 0.370147i \(0.120693\pi\)
−0.928973 + 0.370147i \(0.879307\pi\)
\(60\) 0 0
\(61\) −8.08001 −0.132459 −0.0662296 0.997804i \(-0.521097\pi\)
−0.0662296 + 0.997804i \(0.521097\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 73.2056i − 1.12624i
\(66\) 0 0
\(67\) −7.40346 −0.110499 −0.0552497 0.998473i \(-0.517595\pi\)
−0.0552497 + 0.998473i \(0.517595\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 60.2234i 0.848217i 0.905611 + 0.424108i \(0.139412\pi\)
−0.905611 + 0.424108i \(0.860588\pi\)
\(72\) 0 0
\(73\) 104.544 1.43211 0.716055 0.698044i \(-0.245946\pi\)
0.716055 + 0.698044i \(0.245946\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 7.85826i − 0.102055i
\(78\) 0 0
\(79\) −56.7966 −0.718944 −0.359472 0.933156i \(-0.617043\pi\)
−0.359472 + 0.933156i \(0.617043\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 153.111i − 1.84471i −0.386346 0.922354i \(-0.626263\pi\)
0.386346 0.922354i \(-0.373737\pi\)
\(84\) 0 0
\(85\) 156.126 1.83677
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 40.0175i 0.449635i 0.974401 + 0.224817i \(0.0721786\pi\)
−0.974401 + 0.224817i \(0.927821\pi\)
\(90\) 0 0
\(91\) −26.7969 −0.294472
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 177.508i − 1.86851i
\(96\) 0 0
\(97\) 54.2828 0.559616 0.279808 0.960056i \(-0.409729\pi\)
0.279808 + 0.960056i \(0.409729\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 39.6119i − 0.392197i −0.980584 0.196098i \(-0.937173\pi\)
0.980584 0.196098i \(-0.0628272\pi\)
\(102\) 0 0
\(103\) −153.093 −1.48634 −0.743169 0.669104i \(-0.766678\pi\)
−0.743169 + 0.669104i \(0.766678\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 176.770i − 1.65205i −0.563631 0.826027i \(-0.690596\pi\)
0.563631 0.826027i \(-0.309404\pi\)
\(108\) 0 0
\(109\) 1.96578 0.0180346 0.00901732 0.999959i \(-0.497130\pi\)
0.00901732 + 0.999959i \(0.497130\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 29.4916i − 0.260988i −0.991449 0.130494i \(-0.958344\pi\)
0.991449 0.130494i \(-0.0416563\pi\)
\(114\) 0 0
\(115\) 186.178 1.61894
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 57.1498i − 0.480250i
\(120\) 0 0
\(121\) −11.0000 −0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 52.4512i 0.419609i
\(126\) 0 0
\(127\) −162.789 −1.28180 −0.640902 0.767622i \(-0.721440\pi\)
−0.640902 + 0.767622i \(0.721440\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 15.7976i − 0.120593i −0.998181 0.0602964i \(-0.980795\pi\)
0.998181 0.0602964i \(-0.0192046\pi\)
\(132\) 0 0
\(133\) −64.9770 −0.488549
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 123.988i 0.905022i 0.891759 + 0.452511i \(0.149472\pi\)
−0.891759 + 0.452511i \(0.850528\pi\)
\(138\) 0 0
\(139\) 56.1505 0.403961 0.201980 0.979390i \(-0.435262\pi\)
0.201980 + 0.979390i \(0.435262\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 37.5103i 0.262310i
\(144\) 0 0
\(145\) −15.4747 −0.106722
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 200.205i − 1.34365i −0.740708 0.671827i \(-0.765510\pi\)
0.740708 0.671827i \(-0.234490\pi\)
\(150\) 0 0
\(151\) −116.060 −0.768609 −0.384305 0.923206i \(-0.625559\pi\)
−0.384305 + 0.923206i \(0.625559\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 303.802i − 1.96001i
\(156\) 0 0
\(157\) −209.506 −1.33443 −0.667215 0.744865i \(-0.732514\pi\)
−0.667215 + 0.744865i \(0.732514\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 68.1503i − 0.423294i
\(162\) 0 0
\(163\) 11.4638 0.0703298 0.0351649 0.999382i \(-0.488804\pi\)
0.0351649 + 0.999382i \(0.488804\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 291.934i 1.74811i 0.485831 + 0.874053i \(0.338517\pi\)
−0.485831 + 0.874053i \(0.661483\pi\)
\(168\) 0 0
\(169\) −41.0886 −0.243128
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 270.241i − 1.56208i −0.624478 0.781042i \(-0.714688\pi\)
0.624478 0.781042i \(-0.285312\pi\)
\(174\) 0 0
\(175\) −40.0341 −0.228766
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 146.964i − 0.821029i −0.911854 0.410515i \(-0.865349\pi\)
0.911854 0.410515i \(-0.134651\pi\)
\(180\) 0 0
\(181\) −69.9537 −0.386484 −0.193242 0.981151i \(-0.561900\pi\)
−0.193242 + 0.981151i \(0.561900\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 446.658i 2.41437i
\(186\) 0 0
\(187\) −79.9983 −0.427799
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 306.674i − 1.60562i −0.596233 0.802812i \(-0.703336\pi\)
0.596233 0.802812i \(-0.296664\pi\)
\(192\) 0 0
\(193\) 232.543 1.20489 0.602444 0.798161i \(-0.294194\pi\)
0.602444 + 0.798161i \(0.294194\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 194.742i 0.988536i 0.869309 + 0.494268i \(0.164564\pi\)
−0.869309 + 0.494268i \(0.835436\pi\)
\(198\) 0 0
\(199\) −110.029 −0.552909 −0.276454 0.961027i \(-0.589159\pi\)
−0.276454 + 0.961027i \(0.589159\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.66451i 0.0279040i
\(204\) 0 0
\(205\) −87.8070 −0.428327
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 90.9548i 0.435191i
\(210\) 0 0
\(211\) 175.701 0.832706 0.416353 0.909203i \(-0.363308\pi\)
0.416353 + 0.909203i \(0.363308\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 359.798i 1.67348i
\(216\) 0 0
\(217\) −111.207 −0.512473
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 272.797i 1.23437i
\(222\) 0 0
\(223\) 192.105 0.861458 0.430729 0.902481i \(-0.358256\pi\)
0.430729 + 0.902481i \(0.358256\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 218.719i − 0.963522i −0.876303 0.481761i \(-0.839997\pi\)
0.876303 0.481761i \(-0.160003\pi\)
\(228\) 0 0
\(229\) −83.0039 −0.362462 −0.181231 0.983441i \(-0.558008\pi\)
−0.181231 + 0.983441i \(0.558008\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 62.3899i − 0.267768i −0.990997 0.133884i \(-0.957255\pi\)
0.990997 0.133884i \(-0.0427449\pi\)
\(234\) 0 0
\(235\) 257.229 1.09459
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 248.939i − 1.04159i −0.853683 0.520793i \(-0.825636\pi\)
0.853683 0.520793i \(-0.174364\pi\)
\(240\) 0 0
\(241\) −391.340 −1.62382 −0.811909 0.583784i \(-0.801572\pi\)
−0.811909 + 0.583784i \(0.801572\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 280.828i − 1.14624i
\(246\) 0 0
\(247\) 310.159 1.25570
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 300.168i − 1.19589i −0.801538 0.597944i \(-0.795984\pi\)
0.801538 0.597944i \(-0.204016\pi\)
\(252\) 0 0
\(253\) −95.3969 −0.377063
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 264.747i 1.03015i 0.857147 + 0.515073i \(0.172235\pi\)
−0.857147 + 0.515073i \(0.827765\pi\)
\(258\) 0 0
\(259\) 163.499 0.631271
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 15.9887i 0.0607937i 0.999538 + 0.0303968i \(0.00967711\pi\)
−0.999538 + 0.0303968i \(0.990323\pi\)
\(264\) 0 0
\(265\) 642.710 2.42532
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 510.478i 1.89769i 0.315748 + 0.948843i \(0.397745\pi\)
−0.315748 + 0.948843i \(0.602255\pi\)
\(270\) 0 0
\(271\) 192.719 0.711139 0.355569 0.934650i \(-0.384287\pi\)
0.355569 + 0.934650i \(0.384287\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 56.0398i 0.203781i
\(276\) 0 0
\(277\) 75.1251 0.271210 0.135605 0.990763i \(-0.456702\pi\)
0.135605 + 0.990763i \(0.456702\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 227.381i − 0.809184i −0.914497 0.404592i \(-0.867414\pi\)
0.914497 0.404592i \(-0.132586\pi\)
\(282\) 0 0
\(283\) 6.80965 0.0240624 0.0120312 0.999928i \(-0.496170\pi\)
0.0120312 + 0.999928i \(0.496170\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 32.1418i 0.111992i
\(288\) 0 0
\(289\) −292.794 −1.01313
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 234.435i 0.800120i 0.916489 + 0.400060i \(0.131011\pi\)
−0.916489 + 0.400060i \(0.868989\pi\)
\(294\) 0 0
\(295\) −282.713 −0.958349
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 325.306i 1.08798i
\(300\) 0 0
\(301\) 131.704 0.437555
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 52.3000i − 0.171475i
\(306\) 0 0
\(307\) −42.0857 −0.137087 −0.0685435 0.997648i \(-0.521835\pi\)
−0.0685435 + 0.997648i \(0.521835\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 64.7703i − 0.208265i −0.994563 0.104132i \(-0.966793\pi\)
0.994563 0.104132i \(-0.0332065\pi\)
\(312\) 0 0
\(313\) −212.875 −0.680112 −0.340056 0.940405i \(-0.610446\pi\)
−0.340056 + 0.940405i \(0.610446\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 336.207i 1.06059i 0.847813 + 0.530295i \(0.177919\pi\)
−0.847813 + 0.530295i \(0.822081\pi\)
\(318\) 0 0
\(319\) 7.92919 0.0248564
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 661.476i 2.04791i
\(324\) 0 0
\(325\) 191.097 0.587992
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 94.1587i − 0.286197i
\(330\) 0 0
\(331\) 248.741 0.751482 0.375741 0.926725i \(-0.377388\pi\)
0.375741 + 0.926725i \(0.377388\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 47.9208i − 0.143047i
\(336\) 0 0
\(337\) −244.817 −0.726460 −0.363230 0.931699i \(-0.618326\pi\)
−0.363230 + 0.931699i \(0.618326\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 155.667i 0.456502i
\(342\) 0 0
\(343\) −218.896 −0.638179
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 231.000i 0.665706i 0.942979 + 0.332853i \(0.108011\pi\)
−0.942979 + 0.332853i \(0.891989\pi\)
\(348\) 0 0
\(349\) 431.359 1.23598 0.617992 0.786184i \(-0.287946\pi\)
0.617992 + 0.786184i \(0.287946\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 30.1441i − 0.0853940i −0.999088 0.0426970i \(-0.986405\pi\)
0.999088 0.0426970i \(-0.0135950\pi\)
\(354\) 0 0
\(355\) −389.812 −1.09806
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 166.652i 0.464211i 0.972691 + 0.232106i \(0.0745615\pi\)
−0.972691 + 0.232106i \(0.925439\pi\)
\(360\) 0 0
\(361\) 391.071 1.08330
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 676.688i 1.85394i
\(366\) 0 0
\(367\) 349.845 0.953257 0.476629 0.879105i \(-0.341859\pi\)
0.476629 + 0.879105i \(0.341859\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 235.264i − 0.634135i
\(372\) 0 0
\(373\) −305.960 −0.820268 −0.410134 0.912025i \(-0.634518\pi\)
−0.410134 + 0.912025i \(0.634518\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 27.0388i − 0.0717209i
\(378\) 0 0
\(379\) −452.238 −1.19324 −0.596620 0.802524i \(-0.703490\pi\)
−0.596620 + 0.802524i \(0.703490\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 67.6757i 0.176699i 0.996090 + 0.0883495i \(0.0281592\pi\)
−0.996090 + 0.0883495i \(0.971841\pi\)
\(384\) 0 0
\(385\) 50.8646 0.132116
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 199.299i − 0.512338i −0.966632 0.256169i \(-0.917540\pi\)
0.966632 0.256169i \(-0.0824603\pi\)
\(390\) 0 0
\(391\) −693.781 −1.77438
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 367.631i − 0.930711i
\(396\) 0 0
\(397\) −548.910 −1.38264 −0.691322 0.722546i \(-0.742972\pi\)
−0.691322 + 0.722546i \(0.742972\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 576.087i 1.43663i 0.695720 + 0.718313i \(0.255085\pi\)
−0.695720 + 0.718313i \(0.744915\pi\)
\(402\) 0 0
\(403\) 530.830 1.31720
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 228.866i − 0.562325i
\(408\) 0 0
\(409\) 462.589 1.13102 0.565512 0.824740i \(-0.308679\pi\)
0.565512 + 0.824740i \(0.308679\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 103.487i 0.250574i
\(414\) 0 0
\(415\) 991.049 2.38807
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.2312i 0.0530578i 0.999648 + 0.0265289i \(0.00844540\pi\)
−0.999648 + 0.0265289i \(0.991555\pi\)
\(420\) 0 0
\(421\) −323.082 −0.767416 −0.383708 0.923454i \(-0.625353\pi\)
−0.383708 + 0.923454i \(0.625353\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 407.554i 0.958950i
\(426\) 0 0
\(427\) −19.1444 −0.0448347
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 119.463i − 0.277177i −0.990350 0.138588i \(-0.955743\pi\)
0.990350 0.138588i \(-0.0442565\pi\)
\(432\) 0 0
\(433\) −3.24221 −0.00748778 −0.00374389 0.999993i \(-0.501192\pi\)
−0.00374389 + 0.999993i \(0.501192\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 788.801i 1.80504i
\(438\) 0 0
\(439\) −594.548 −1.35432 −0.677162 0.735834i \(-0.736790\pi\)
−0.677162 + 0.735834i \(0.736790\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 17.6351i − 0.0398083i −0.999802 0.0199041i \(-0.993664\pi\)
0.999802 0.0199041i \(-0.00633610\pi\)
\(444\) 0 0
\(445\) −259.024 −0.582076
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 477.445i 1.06335i 0.846948 + 0.531676i \(0.178438\pi\)
−0.846948 + 0.531676i \(0.821562\pi\)
\(450\) 0 0
\(451\) 44.9921 0.0997607
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 173.450i − 0.381209i
\(456\) 0 0
\(457\) −784.832 −1.71736 −0.858678 0.512516i \(-0.828714\pi\)
−0.858678 + 0.512516i \(0.828714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 368.778i 0.799952i 0.916526 + 0.399976i \(0.130982\pi\)
−0.916526 + 0.399976i \(0.869018\pi\)
\(462\) 0 0
\(463\) −854.206 −1.84494 −0.922469 0.386072i \(-0.873832\pi\)
−0.922469 + 0.386072i \(0.873832\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 69.8195i 0.149507i 0.997202 + 0.0747533i \(0.0238169\pi\)
−0.997202 + 0.0747533i \(0.976183\pi\)
\(468\) 0 0
\(469\) −17.5414 −0.0374018
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 184.360i − 0.389767i
\(474\) 0 0
\(475\) 463.372 0.975520
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 863.327i − 1.80235i −0.433452 0.901177i \(-0.642705\pi\)
0.433452 0.901177i \(-0.357295\pi\)
\(480\) 0 0
\(481\) −780.441 −1.62254
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 351.360i 0.724453i
\(486\) 0 0
\(487\) −453.852 −0.931934 −0.465967 0.884802i \(-0.654293\pi\)
−0.465967 + 0.884802i \(0.654293\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 164.399i − 0.334825i −0.985887 0.167413i \(-0.946459\pi\)
0.985887 0.167413i \(-0.0535412\pi\)
\(492\) 0 0
\(493\) 57.6657 0.116969
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 142.691i 0.287104i
\(498\) 0 0
\(499\) 426.028 0.853764 0.426882 0.904307i \(-0.359612\pi\)
0.426882 + 0.904307i \(0.359612\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 512.798i 1.01948i 0.860329 + 0.509740i \(0.170258\pi\)
−0.860329 + 0.509740i \(0.829742\pi\)
\(504\) 0 0
\(505\) 256.398 0.507719
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 616.672i 1.21154i 0.795641 + 0.605769i \(0.207134\pi\)
−0.795641 + 0.605769i \(0.792866\pi\)
\(510\) 0 0
\(511\) 247.702 0.484739
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 990.933i − 1.92414i
\(516\) 0 0
\(517\) −131.803 −0.254939
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 882.973i 1.69477i 0.530983 + 0.847383i \(0.321823\pi\)
−0.530983 + 0.847383i \(0.678177\pi\)
\(522\) 0 0
\(523\) 173.680 0.332084 0.166042 0.986119i \(-0.446901\pi\)
0.166042 + 0.986119i \(0.446901\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1132.10i 2.14820i
\(528\) 0 0
\(529\) −298.325 −0.563941
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 153.424i − 0.287851i
\(534\) 0 0
\(535\) 1144.19 2.13867
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 143.896i 0.266968i
\(540\) 0 0
\(541\) 686.979 1.26983 0.634916 0.772581i \(-0.281035\pi\)
0.634916 + 0.772581i \(0.281035\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.7240i 0.0233468i
\(546\) 0 0
\(547\) 226.292 0.413697 0.206848 0.978373i \(-0.433679\pi\)
0.206848 + 0.978373i \(0.433679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 65.5635i − 0.118990i
\(552\) 0 0
\(553\) −134.571 −0.243348
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 972.179i − 1.74538i −0.488271 0.872692i \(-0.662372\pi\)
0.488271 0.872692i \(-0.337628\pi\)
\(558\) 0 0
\(559\) −628.672 −1.12464
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 280.795i − 0.498748i −0.968407 0.249374i \(-0.919775\pi\)
0.968407 0.249374i \(-0.0802248\pi\)
\(564\) 0 0
\(565\) 190.892 0.337862
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 354.038i 0.622211i 0.950375 + 0.311105i \(0.100699\pi\)
−0.950375 + 0.311105i \(0.899301\pi\)
\(570\) 0 0
\(571\) 287.332 0.503209 0.251605 0.967830i \(-0.419042\pi\)
0.251605 + 0.967830i \(0.419042\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 486.002i 0.845221i
\(576\) 0 0
\(577\) 822.994 1.42633 0.713167 0.700995i \(-0.247260\pi\)
0.713167 + 0.700995i \(0.247260\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 362.774i − 0.624395i
\(582\) 0 0
\(583\) −329.323 −0.564876
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 366.304i − 0.624028i −0.950078 0.312014i \(-0.898996\pi\)
0.950078 0.312014i \(-0.101004\pi\)
\(588\) 0 0
\(589\) 1287.15 2.18532
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 1018.50i − 1.71754i −0.512360 0.858771i \(-0.671228\pi\)
0.512360 0.858771i \(-0.328772\pi\)
\(594\) 0 0
\(595\) 369.917 0.621709
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 279.285i − 0.466252i −0.972447 0.233126i \(-0.925105\pi\)
0.972447 0.233126i \(-0.0748955\pi\)
\(600\) 0 0
\(601\) 858.207 1.42797 0.713983 0.700163i \(-0.246889\pi\)
0.713983 + 0.700163i \(0.246889\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 71.2004i − 0.117687i
\(606\) 0 0
\(607\) −231.764 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 449.454i 0.735603i
\(612\) 0 0
\(613\) 567.997 0.926585 0.463292 0.886205i \(-0.346668\pi\)
0.463292 + 0.886205i \(0.346668\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 768.319i − 1.24525i −0.782521 0.622625i \(-0.786066\pi\)
0.782521 0.622625i \(-0.213934\pi\)
\(618\) 0 0
\(619\) −649.024 −1.04850 −0.524252 0.851563i \(-0.675655\pi\)
−0.524252 + 0.851563i \(0.675655\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 94.8156i 0.152192i
\(624\) 0 0
\(625\) −761.920 −1.21907
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1664.45i − 2.64618i
\(630\) 0 0
\(631\) 426.539 0.675973 0.337986 0.941151i \(-0.390254\pi\)
0.337986 + 0.941151i \(0.390254\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1053.70i − 1.65936i
\(636\) 0 0
\(637\) 490.689 0.770312
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 565.451i 0.882139i 0.897473 + 0.441069i \(0.145401\pi\)
−0.897473 + 0.441069i \(0.854599\pi\)
\(642\) 0 0
\(643\) −1115.23 −1.73442 −0.867211 0.497940i \(-0.834090\pi\)
−0.867211 + 0.497940i \(0.834090\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 562.467i − 0.869346i −0.900588 0.434673i \(-0.856864\pi\)
0.900588 0.434673i \(-0.143136\pi\)
\(648\) 0 0
\(649\) 144.861 0.223207
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 738.483i − 1.13091i −0.824780 0.565454i \(-0.808701\pi\)
0.824780 0.565454i \(-0.191299\pi\)
\(654\) 0 0
\(655\) 102.254 0.156114
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 16.6506i − 0.0252665i −0.999920 0.0126332i \(-0.995979\pi\)
0.999920 0.0126332i \(-0.00402139\pi\)
\(660\) 0 0
\(661\) −415.280 −0.628261 −0.314130 0.949380i \(-0.601713\pi\)
−0.314130 + 0.949380i \(0.601713\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 420.580i − 0.632452i
\(666\) 0 0
\(667\) 68.7655 0.103097
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 26.7984i 0.0399379i
\(672\) 0 0
\(673\) −72.0072 −0.106994 −0.0534972 0.998568i \(-0.517037\pi\)
−0.0534972 + 0.998568i \(0.517037\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 515.299i 0.761151i 0.924750 + 0.380576i \(0.124274\pi\)
−0.924750 + 0.380576i \(0.875726\pi\)
\(678\) 0 0
\(679\) 128.615 0.189419
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1068.87i 1.56497i 0.622669 + 0.782485i \(0.286048\pi\)
−0.622669 + 0.782485i \(0.713952\pi\)
\(684\) 0 0
\(685\) −802.545 −1.17160
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1123.00i 1.62990i
\(690\) 0 0
\(691\) −844.368 −1.22195 −0.610975 0.791650i \(-0.709223\pi\)
−0.610975 + 0.791650i \(0.709223\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 363.449i 0.522948i
\(696\) 0 0
\(697\) 327.208 0.469452
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 726.985i 1.03707i 0.855057 + 0.518534i \(0.173522\pi\)
−0.855057 + 0.518534i \(0.826478\pi\)
\(702\) 0 0
\(703\) −1892.41 −2.69190
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 93.8546i − 0.132751i
\(708\) 0 0
\(709\) 908.394 1.28123 0.640616 0.767861i \(-0.278679\pi\)
0.640616 + 0.767861i \(0.278679\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1350.02i 1.89343i
\(714\) 0 0
\(715\) −242.795 −0.339574
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 231.093i 0.321409i 0.987003 + 0.160704i \(0.0513766\pi\)
−0.987003 + 0.160704i \(0.948623\pi\)
\(720\) 0 0
\(721\) −362.731 −0.503094
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 40.3955i − 0.0557179i
\(726\) 0 0
\(727\) 118.093 0.162438 0.0812192 0.996696i \(-0.474119\pi\)
0.0812192 + 0.996696i \(0.474119\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1340.77i − 1.83416i
\(732\) 0 0
\(733\) 831.429 1.13428 0.567141 0.823621i \(-0.308049\pi\)
0.567141 + 0.823621i \(0.308049\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24.5545i 0.0333168i
\(738\) 0 0
\(739\) 538.823 0.729124 0.364562 0.931179i \(-0.381219\pi\)
0.364562 + 0.931179i \(0.381219\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 567.594i − 0.763922i −0.924178 0.381961i \(-0.875249\pi\)
0.924178 0.381961i \(-0.124751\pi\)
\(744\) 0 0
\(745\) 1295.88 1.73943
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 418.830i − 0.559186i
\(750\) 0 0
\(751\) 149.289 0.198787 0.0993933 0.995048i \(-0.468310\pi\)
0.0993933 + 0.995048i \(0.468310\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 751.229i − 0.995005i
\(756\) 0 0
\(757\) −845.341 −1.11670 −0.558349 0.829606i \(-0.688565\pi\)
−0.558349 + 0.829606i \(0.688565\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1413.64i − 1.85761i −0.370568 0.928805i \(-0.620837\pi\)
0.370568 0.928805i \(-0.379163\pi\)
\(762\) 0 0
\(763\) 4.65762 0.00610435
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 493.982i − 0.644044i
\(768\) 0 0
\(769\) −985.743 −1.28185 −0.640925 0.767604i \(-0.721449\pi\)
−0.640925 + 0.767604i \(0.721449\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.1448i 0.0558148i 0.999611 + 0.0279074i \(0.00888435\pi\)
−0.999611 + 0.0279074i \(0.991116\pi\)
\(774\) 0 0
\(775\) 793.051 1.02329
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 372.023i − 0.477564i
\(780\) 0 0
\(781\) 199.738 0.255747
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 1356.08i − 1.72749i
\(786\) 0 0
\(787\) 1137.96 1.44594 0.722971 0.690879i \(-0.242776\pi\)
0.722971 + 0.690879i \(0.242776\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 69.8760i − 0.0883389i
\(792\) 0 0
\(793\) 91.3832 0.115237
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 719.024i − 0.902164i −0.892483 0.451082i \(-0.851038\pi\)
0.892483 0.451082i \(-0.148962\pi\)
\(798\) 0 0
\(799\) −958.550 −1.19969
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 346.733i − 0.431797i
\(804\) 0 0
\(805\) 441.121 0.547976
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 785.000i 0.970334i 0.874422 + 0.485167i \(0.161241\pi\)
−0.874422 + 0.485167i \(0.838759\pi\)
\(810\) 0 0
\(811\) −1113.43 −1.37291 −0.686454 0.727173i \(-0.740834\pi\)
−0.686454 + 0.727173i \(0.740834\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 74.2022i 0.0910456i
\(816\) 0 0
\(817\) −1524.40 −1.86585
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 82.6636i 0.100686i 0.998732 + 0.0503432i \(0.0160315\pi\)
−0.998732 + 0.0503432i \(0.983968\pi\)
\(822\) 0 0
\(823\) −452.004 −0.549215 −0.274608 0.961556i \(-0.588548\pi\)
−0.274608 + 0.961556i \(0.588548\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 897.131i − 1.08480i −0.840120 0.542401i \(-0.817515\pi\)
0.840120 0.542401i \(-0.182485\pi\)
\(828\) 0 0
\(829\) −1269.92 −1.53187 −0.765934 0.642919i \(-0.777723\pi\)
−0.765934 + 0.642919i \(0.777723\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1046.49i 1.25629i
\(834\) 0 0
\(835\) −1889.62 −2.26301
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.94159i 0.00469796i 0.999997 + 0.00234898i \(0.000747704\pi\)
−0.999997 + 0.00234898i \(0.999252\pi\)
\(840\) 0 0
\(841\) 835.284 0.993204
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 265.956i − 0.314741i
\(846\) 0 0
\(847\) −26.0629 −0.0307708
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1984.83i − 2.33235i
\(852\) 0 0
\(853\) 164.757 0.193150 0.0965749 0.995326i \(-0.469211\pi\)
0.0965749 + 0.995326i \(0.469211\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 73.4834i 0.0857449i 0.999081 + 0.0428725i \(0.0136509\pi\)
−0.999081 + 0.0428725i \(0.986349\pi\)
\(858\) 0 0
\(859\) 757.689 0.882059 0.441029 0.897493i \(-0.354613\pi\)
0.441029 + 0.897493i \(0.354613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 1561.72i − 1.80964i −0.425795 0.904820i \(-0.640006\pi\)
0.425795 0.904820i \(-0.359994\pi\)
\(864\) 0 0
\(865\) 1749.20 2.02220
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 188.373i 0.216770i
\(870\) 0 0
\(871\) 83.7316 0.0961328
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 124.275i 0.142029i
\(876\) 0 0
\(877\) 750.204 0.855421 0.427710 0.903916i \(-0.359320\pi\)
0.427710 + 0.903916i \(0.359320\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1473.45i − 1.67247i −0.548371 0.836235i \(-0.684752\pi\)
0.548371 0.836235i \(-0.315248\pi\)
\(882\) 0 0
\(883\) 77.1642 0.0873886 0.0436943 0.999045i \(-0.486087\pi\)
0.0436943 + 0.999045i \(0.486087\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1599.71i 1.80350i 0.432257 + 0.901751i \(0.357717\pi\)
−0.432257 + 0.901751i \(0.642283\pi\)
\(888\) 0 0
\(889\) −385.705 −0.433864
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1089.83i 1.22042i
\(894\) 0 0
\(895\) 951.264 1.06287
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 112.211i − 0.124817i
\(900\) 0 0
\(901\) −2395.02 −2.65819
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 452.793i − 0.500324i
\(906\) 0 0
\(907\) 58.8324 0.0648648 0.0324324 0.999474i \(-0.489675\pi\)
0.0324324 + 0.999474i \(0.489675\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 446.671i 0.490308i 0.969484 + 0.245154i \(0.0788386\pi\)
−0.969484 + 0.245154i \(0.921161\pi\)
\(912\) 0 0
\(913\) −507.811 −0.556200
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 37.4302i − 0.0408181i
\(918\) 0 0
\(919\) −1130.10 −1.22971 −0.614854 0.788641i \(-0.710785\pi\)
−0.614854 + 0.788641i \(0.710785\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 681.114i − 0.737935i
\(924\) 0 0
\(925\) −1165.96 −1.26050
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 369.630i − 0.397879i −0.980012 0.198939i \(-0.936250\pi\)
0.980012 0.198939i \(-0.0637497\pi\)
\(930\) 0 0
\(931\) 1189.82 1.27800
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 517.810i − 0.553808i
\(936\) 0 0
\(937\) −445.723 −0.475692 −0.237846 0.971303i \(-0.576441\pi\)
−0.237846 + 0.971303i \(0.576441\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 42.8294i − 0.0455148i −0.999741 0.0227574i \(-0.992755\pi\)
0.999741 0.0227574i \(-0.00724453\pi\)
\(942\) 0 0
\(943\) 390.191 0.413777
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 735.865i 0.777049i 0.921438 + 0.388525i \(0.127015\pi\)
−0.921438 + 0.388525i \(0.872985\pi\)
\(948\) 0 0
\(949\) −1182.37 −1.24591
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 739.927i − 0.776419i −0.921571 0.388210i \(-0.873094\pi\)
0.921571 0.388210i \(-0.126906\pi\)
\(954\) 0 0
\(955\) 1985.03 2.07856
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 293.772i 0.306331i
\(960\) 0 0
\(961\) 1241.94 1.29234
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1505.20i 1.55979i
\(966\) 0 0
\(967\) 935.751 0.967684 0.483842 0.875155i \(-0.339241\pi\)
0.483842 + 0.875155i \(0.339241\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1731.44i − 1.78315i −0.452869 0.891577i \(-0.649599\pi\)
0.452869 0.891577i \(-0.350401\pi\)
\(972\) 0 0
\(973\) 133.040 0.136732
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1135.16i − 1.16189i −0.813944 0.580944i \(-0.802684\pi\)
0.813944 0.580944i \(-0.197316\pi\)
\(978\) 0 0
\(979\) 132.723 0.135570
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 689.115i 0.701032i 0.936557 + 0.350516i \(0.113994\pi\)
−0.936557 + 0.350516i \(0.886006\pi\)
\(984\) 0 0
\(985\) −1260.52 −1.27971
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1598.85i − 1.61663i
\(990\) 0 0
\(991\) 665.099 0.671139 0.335569 0.942015i \(-0.391071\pi\)
0.335569 + 0.942015i \(0.391071\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 712.190i − 0.715769i
\(996\) 0 0
\(997\) 1024.30 1.02738 0.513691 0.857975i \(-0.328278\pi\)
0.513691 + 0.857975i \(0.328278\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1188.3.e.c.485.8 yes 8
3.2 odd 2 inner 1188.3.e.c.485.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1188.3.e.c.485.1 8 3.2 odd 2 inner
1188.3.e.c.485.8 yes 8 1.1 even 1 trivial