Properties

Label 1188.3.e
Level $1188$
Weight $3$
Character orbit 1188.e
Rep. character $\chi_{1188}(485,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $4$
Sturm bound $648$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1188 = 2^{2} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1188.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(648\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1188, [\chi])\).

Total New Old
Modular forms 450 26 424
Cusp forms 414 26 388
Eisenstein series 36 0 36

Trace form

\( 26 q + 14 q^{7} - 98 q^{13} + 22 q^{19} + 18 q^{25} - 68 q^{31} - 2 q^{37} + 84 q^{43} + 240 q^{49} - 234 q^{61} + 106 q^{67} - 118 q^{73} - 118 q^{79} - 36 q^{85} - 210 q^{91} + 270 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1188, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1188.3.e.a 1188.e 3.b $2$ $32.371$ \(\Q(\sqrt{-11}) \) None 1188.3.e.a \(0\) \(0\) \(0\) \(-22\) $\mathrm{SU}(2)[C_{2}]$ \(q-2\beta q^{5}-11q^{7}-\beta q^{11}+q^{13}+2\beta q^{17}+\cdots\)
1188.3.e.b 1188.e 3.b $4$ $32.371$ \(\Q(\sqrt{-2}, \sqrt{-11})\) None 1188.3.e.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{2}-\beta _{3})q^{5}+2q^{7}+\beta _{3}q^{11}+(-5+\cdots)q^{13}+\cdots\)
1188.3.e.c 1188.e 3.b $8$ $32.371$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 1188.3.e.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{5}+(1+\beta _{4})q^{7}-\beta _{1}q^{11}+(-2+\cdots)q^{13}+\cdots\)
1188.3.e.d 1188.e 3.b $12$ $32.371$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1188.3.e.d \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+(2+\beta _{2})q^{7}-\beta _{6}q^{11}+(-5+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(1188, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1188, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(594, [\chi])\)\(^{\oplus 2}\)