Defining parameters
Level: | \( N \) | \(=\) | \( 1188 = 2^{2} \cdot 3^{3} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1188.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(648\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1188, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 450 | 26 | 424 |
Cusp forms | 414 | 26 | 388 |
Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1188, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1188.3.e.a | $2$ | $32.371$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(0\) | \(0\) | \(-22\) | \(q-2\beta q^{5}-11q^{7}-\beta q^{11}+q^{13}+2\beta q^{17}+\cdots\) |
1188.3.e.b | $4$ | $32.371$ | \(\Q(\sqrt{-2}, \sqrt{-11})\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+(\beta _{2}-\beta _{3})q^{5}+2q^{7}+\beta _{3}q^{11}+(-5+\cdots)q^{13}+\cdots\) |
1188.3.e.c | $8$ | $32.371$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{5}q^{5}+(1+\beta _{4})q^{7}-\beta _{1}q^{11}+(-2+\cdots)q^{13}+\cdots\) |
1188.3.e.d | $12$ | $32.371$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(20\) | \(q+\beta _{1}q^{5}+(2+\beta _{2})q^{7}-\beta _{6}q^{11}+(-5+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(1188, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1188, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(297, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(594, [\chi])\)\(^{\oplus 2}\)