Properties

Label 2-1188-3.2-c2-0-21
Degree $2$
Conductor $1188$
Sign $i$
Analytic cond. $32.3706$
Root an. cond. $5.68952$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.47i·5-s + 2.36·7-s − 3.31i·11-s − 11.3·13-s − 24.1i·17-s − 27.4·19-s − 28.7i·23-s − 16.8·25-s + 2.39i·29-s − 46.9·31-s + 15.3i·35-s + 69.0·37-s + 13.5i·41-s + 55.5·43-s − 39.7i·47-s + ⋯
L(s)  = 1  + 1.29i·5-s + 0.338·7-s − 0.301i·11-s − 0.869·13-s − 1.41i·17-s − 1.44·19-s − 1.25i·23-s − 0.675·25-s + 0.0824i·29-s − 1.51·31-s + 0.438i·35-s + 1.86·37-s + 0.330i·41-s + 1.29·43-s − 0.845i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1188 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1188 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1188\)    =    \(2^{2} \cdot 3^{3} \cdot 11\)
Sign: $i$
Analytic conductor: \(32.3706\)
Root analytic conductor: \(5.68952\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1188} (485, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1188,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.9139729452\)
\(L(\frac12)\) \(\approx\) \(0.9139729452\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 3.31iT \)
good5 \( 1 - 6.47iT - 25T^{2} \)
7 \( 1 - 2.36T + 49T^{2} \)
13 \( 1 + 11.3T + 169T^{2} \)
17 \( 1 + 24.1iT - 289T^{2} \)
19 \( 1 + 27.4T + 361T^{2} \)
23 \( 1 + 28.7iT - 529T^{2} \)
29 \( 1 - 2.39iT - 841T^{2} \)
31 \( 1 + 46.9T + 961T^{2} \)
37 \( 1 - 69.0T + 1.36e3T^{2} \)
41 \( 1 - 13.5iT - 1.68e3T^{2} \)
43 \( 1 - 55.5T + 1.84e3T^{2} \)
47 \( 1 + 39.7iT - 2.20e3T^{2} \)
53 \( 1 + 99.2iT - 2.80e3T^{2} \)
59 \( 1 - 43.6iT - 3.48e3T^{2} \)
61 \( 1 + 8.08T + 3.72e3T^{2} \)
67 \( 1 + 7.40T + 4.48e3T^{2} \)
71 \( 1 - 60.2iT - 5.04e3T^{2} \)
73 \( 1 - 104.T + 5.32e3T^{2} \)
79 \( 1 + 56.7T + 6.24e3T^{2} \)
83 \( 1 + 153. iT - 6.88e3T^{2} \)
89 \( 1 - 40.0iT - 7.92e3T^{2} \)
97 \( 1 - 54.2T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.474543444199348279537072228097, −8.514018371980498437161808934247, −7.55801078073584818945127350333, −6.91671004820288118099395522678, −6.18209700892717403247261378228, −5.05508548053532292459873085521, −4.10815694415350421454620042877, −2.86323493110281652139644622730, −2.23604858236567334205367777504, −0.27083942480870941118703987908, 1.28257555065241748655262291564, 2.25874979047403704281617983921, 3.92469935512606735379848981892, 4.57048699939380283020332929160, 5.47203526335912534238443117833, 6.28749538075193273112595749552, 7.59139538718321521130313769790, 8.083335583579956653411841480880, 9.075625699074022242499895878403, 9.503153688947069042164663494354

Graph of the $Z$-function along the critical line