Properties

Label 1188.3.e.c
Level $1188$
Weight $3$
Character orbit 1188.e
Analytic conductor $32.371$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1188,3,Mod(485,1188)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1188, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1188.485"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1188 = 2^{2} \cdot 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1188.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3706554060\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 46x^{6} + 637x^{4} + 2880x^{2} + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{5} + (\beta_{4} + 1) q^{7} - \beta_1 q^{11} + ( - \beta_{3} - 2) q^{13} + (\beta_{2} - 2 \beta_1) q^{17} + ( - 2 \beta_{7} - \beta_{4} + 3) q^{19} + ( - \beta_{6} - \beta_{5}) q^{23} + ( - \beta_{7} - \beta_{4} - 1) q^{25}+ \cdots + (6 \beta_{7} + 2 \beta_{4} - 2 \beta_{3} - 17) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 20 q^{13} + 16 q^{19} - 12 q^{25} - 32 q^{31} - 20 q^{37} - 48 q^{43} + 84 q^{49} + 36 q^{61} + 16 q^{67} + 200 q^{73} - 28 q^{79} - 60 q^{85} - 228 q^{91} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 46x^{6} + 637x^{4} + 2880x^{2} + 2916 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{7} + 46\nu^{5} + 583\nu^{3} + 1638\nu ) / 324 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{7} + 65\nu^{5} + 275\nu^{3} - 2124\nu ) / 162 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 31\nu^{4} + 256\nu^{2} + 972 ) / 72 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{6} + 37\nu^{4} + 322\nu^{2} + 432 ) / 36 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5\nu^{7} + 203\nu^{5} + 2240\nu^{3} + 6300\nu ) / 648 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 46\nu^{5} + 637\nu^{3} + 3852\nu ) / 162 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{4} + 29\nu^{2} + 126 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4\beta_{6} - 4\beta_{5} + \beta_{2} - 2\beta_1 ) / 33 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} - \beta_{4} + 2\beta_{3} - 36 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -65\beta_{6} + 164\beta_{5} - 41\beta_{2} - 116\beta_1 ) / 33 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -11\beta_{7} + 29\beta_{4} - 58\beta_{3} + 666 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 1345\beta_{6} - 4612\beta_{5} + 955\beta_{2} + 5020\beta_1 ) / 33 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 85\beta_{7} - 643\beta_{4} + 1502\beta_{3} - 14346 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -30527\beta_{6} + 123092\beta_{5} - 21665\beta_{2} - 149324\beta_1 ) / 33 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1188\mathbb{Z}\right)^\times\).

\(n\) \(353\) \(541\) \(595\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
485.1
1.18638i
4.98184i
3.69664i
2.47158i
2.47158i
3.69664i
4.98184i
1.18638i
0 0 0 6.47276i 0 2.36935 0 0 0
485.2 0 0 0 5.30468i 0 −0.564603 0 0 0
485.3 0 0 0 4.78414i 0 11.8134 0 0 0
485.4 0 0 0 3.61605i 0 −9.61820 0 0 0
485.5 0 0 0 3.61605i 0 −9.61820 0 0 0
485.6 0 0 0 4.78414i 0 11.8134 0 0 0
485.7 0 0 0 5.30468i 0 −0.564603 0 0 0
485.8 0 0 0 6.47276i 0 2.36935 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 485.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1188.3.e.c 8
3.b odd 2 1 inner 1188.3.e.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1188.3.e.c 8 1.a even 1 1 trivial
1188.3.e.c 8 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 106T_{5}^{6} + 3997T_{5}^{4} + 63360T_{5}^{2} + 352836 \) acting on \(S_{3}^{\mathrm{new}}(1188, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 106 T^{6} + \cdots + 352836 \) Copy content Toggle raw display
$7$ \( (T^{4} - 4 T^{3} + \cdots + 152)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 11)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 10 T^{3} + \cdots - 17817)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 24158484900 \) Copy content Toggle raw display
$19$ \( (T^{4} - 8 T^{3} + \cdots + 28488)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 228078835776 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 4115479104 \) Copy content Toggle raw display
$31$ \( (T^{4} + 16 T^{3} + \cdots + 1136160)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 10 T^{3} + \cdots + 1429356)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 4115479104 \) Copy content Toggle raw display
$43$ \( (T^{4} + 24 T^{3} + \cdots + 37888)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 228999940969536 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 6264598514724 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 2504040397056 \) Copy content Toggle raw display
$61$ \( (T^{4} - 18 T^{3} + \cdots - 1229609)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 8 T^{3} + \cdots + 932385)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 15706700596224 \) Copy content Toggle raw display
$73$ \( (T^{4} - 100 T^{3} + \cdots - 24227568)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 14 T^{3} + \cdots + 25297691)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 669865914805824 \) Copy content Toggle raw display
$97$ \( (T^{4} + 60 T^{3} + \cdots + 15077077)^{2} \) Copy content Toggle raw display
show more
show less