Properties

Label 2-1188-3.2-c2-0-11
Degree $2$
Conductor $1188$
Sign $-i$
Analytic cond. $32.3706$
Root an. cond. $5.68952$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.78i·5-s + 11.8·7-s + 3.31i·11-s − 11.8·13-s + 32.9i·17-s + 20.0·19-s − 31.8i·23-s + 2.11·25-s + 46.9i·29-s + 27.7·31-s + 56.5i·35-s − 63.8·37-s + 4.45i·41-s − 20.4·43-s − 72.2i·47-s + ⋯
L(s)  = 1  + 0.956i·5-s + 1.68·7-s + 0.301i·11-s − 0.913·13-s + 1.93i·17-s + 1.05·19-s − 1.38i·23-s + 0.0844·25-s + 1.61i·29-s + 0.894·31-s + 1.61i·35-s − 1.72·37-s + 0.108i·41-s − 0.475·43-s − 1.53i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1188 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1188 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1188\)    =    \(2^{2} \cdot 3^{3} \cdot 11\)
Sign: $-i$
Analytic conductor: \(32.3706\)
Root analytic conductor: \(5.68952\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1188} (485, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1188,\ (\ :1),\ -i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.181152072\)
\(L(\frac12)\) \(\approx\) \(2.181152072\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 - 3.31iT \)
good5 \( 1 - 4.78iT - 25T^{2} \)
7 \( 1 - 11.8T + 49T^{2} \)
13 \( 1 + 11.8T + 169T^{2} \)
17 \( 1 - 32.9iT - 289T^{2} \)
19 \( 1 - 20.0T + 361T^{2} \)
23 \( 1 + 31.8iT - 529T^{2} \)
29 \( 1 - 46.9iT - 841T^{2} \)
31 \( 1 - 27.7T + 961T^{2} \)
37 \( 1 + 63.8T + 1.36e3T^{2} \)
41 \( 1 - 4.45iT - 1.68e3T^{2} \)
43 \( 1 + 20.4T + 1.84e3T^{2} \)
47 \( 1 + 72.2iT - 2.20e3T^{2} \)
53 \( 1 - 6.97iT - 2.80e3T^{2} \)
59 \( 1 - 10.5iT - 3.48e3T^{2} \)
61 \( 1 + 25.0T + 3.72e3T^{2} \)
67 \( 1 - 48.1T + 4.48e3T^{2} \)
71 \( 1 - 12.2iT - 5.04e3T^{2} \)
73 \( 1 - 41.5T + 5.32e3T^{2} \)
79 \( 1 + 113.T + 6.24e3T^{2} \)
83 \( 1 - 121. iT - 6.88e3T^{2} \)
89 \( 1 - 130. iT - 7.92e3T^{2} \)
97 \( 1 + 98.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.09917017909731018451994456961, −8.682016142193287071334344054110, −8.211176411246814315926042690531, −7.24623996279374493258788055605, −6.65498362557540457743656080280, −5.37835061859915932790383224650, −4.72870653335324649729698589682, −3.60710650021332746975840878834, −2.39569915601341632861281478357, −1.44107124035687800555527166508, 0.67989822400422896359428325785, 1.72461094808579109956644274588, 2.99318809321559214542346592905, 4.53500377773030232197246522120, 4.97964586018812520272094236524, 5.62836854128819792439597335512, 7.22452155647545959901004134924, 7.71288916729872703306167096541, 8.518188625093100750695130381539, 9.345658650083635385646056305433

Graph of the $Z$-function along the critical line