Properties

Label 1170.2.q.d.359.4
Level $1170$
Weight $2$
Character 1170.359
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 359.4
Character \(\chi\) \(=\) 1170.359
Dual form 1170.2.q.d.629.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(1.91575 + 1.15322i) q^{5} +(-1.29303 - 1.29303i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.539189 - 2.17009i) q^{10} +(-3.42313 - 3.42313i) q^{11} +(-3.25273 + 1.55555i) q^{13} +1.82862i q^{14} -1.00000 q^{16} +4.71368i q^{17} +(-3.83222 - 3.83222i) q^{19} +(-1.15322 + 1.91575i) q^{20} +4.84104i q^{22} +3.20573i q^{23} +(2.34017 + 4.41855i) q^{25} +(3.39997 + 1.20009i) q^{26} +(1.29303 - 1.29303i) q^{28} +7.09142i q^{29} +(-4.09901 - 4.09901i) q^{31} +(0.707107 + 0.707107i) q^{32} +(3.33308 - 3.33308i) q^{34} +(-0.985969 - 3.96825i) q^{35} +(-3.72990 - 3.72990i) q^{37} +5.41957i q^{38} +(2.17009 - 0.539189i) q^{40} +(4.42620 - 4.42620i) q^{41} -7.68861 q^{43} +(3.42313 - 3.42313i) q^{44} +(2.26679 - 2.26679i) q^{46} +(-8.97668 + 8.97668i) q^{47} -3.65617i q^{49} +(1.46963 - 4.77914i) q^{50} +(-1.55555 - 3.25273i) q^{52} +6.86336 q^{53} +(-2.61023 - 10.5055i) q^{55} -1.82862 q^{56} +(5.01439 - 5.01439i) q^{58} +(-1.67463 - 1.67463i) q^{59} -11.6690 q^{61} +5.79687i q^{62} -1.00000i q^{64} +(-8.02530 - 0.771077i) q^{65} +(-5.61487 + 5.61487i) q^{67} -4.71368 q^{68} +(-2.10879 + 3.50316i) q^{70} +(3.05893 - 3.05893i) q^{71} +(-0.453716 - 0.453716i) q^{73} +5.27488i q^{74} +(3.83222 - 3.83222i) q^{76} +8.85239i q^{77} +8.29230 q^{79} +(-1.91575 - 1.15322i) q^{80} -6.25959 q^{82} +(-2.48030 - 2.48030i) q^{83} +(-5.43591 + 9.03023i) q^{85} +(5.43667 + 5.43667i) q^{86} -4.84104 q^{88} +(-3.36649 - 3.36649i) q^{89} +(6.21723 + 2.19451i) q^{91} -3.20573 q^{92} +12.6949 q^{94} +(-2.92217 - 11.7609i) q^{95} +(-3.71551 + 3.71551i) q^{97} +(-2.58530 + 2.58530i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 20 q^{13} - 24 q^{16} - 48 q^{19} - 32 q^{25} - 8 q^{31} + 16 q^{34} + 32 q^{37} + 8 q^{40} - 80 q^{43} + 8 q^{46} + 12 q^{52} + 16 q^{55} + 24 q^{58} - 16 q^{61} + 8 q^{67} - 40 q^{70} - 48 q^{73}+ \cdots - 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.91575 + 1.15322i 0.856748 + 0.515735i
\(6\) 0 0
\(7\) −1.29303 1.29303i −0.488718 0.488718i 0.419184 0.907902i \(-0.362316\pi\)
−0.907902 + 0.419184i \(0.862316\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) −0.539189 2.17009i −0.170506 0.686242i
\(11\) −3.42313 3.42313i −1.03211 1.03211i −0.999467 0.0326453i \(-0.989607\pi\)
−0.0326453 0.999467i \(-0.510393\pi\)
\(12\) 0 0
\(13\) −3.25273 + 1.55555i −0.902146 + 0.431431i
\(14\) 1.82862i 0.488718i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.71368i 1.14324i 0.820520 + 0.571618i \(0.193684\pi\)
−0.820520 + 0.571618i \(0.806316\pi\)
\(18\) 0 0
\(19\) −3.83222 3.83222i −0.879170 0.879170i 0.114278 0.993449i \(-0.463544\pi\)
−0.993449 + 0.114278i \(0.963544\pi\)
\(20\) −1.15322 + 1.91575i −0.257868 + 0.428374i
\(21\) 0 0
\(22\) 4.84104i 1.03211i
\(23\) 3.20573i 0.668440i 0.942495 + 0.334220i \(0.108473\pi\)
−0.942495 + 0.334220i \(0.891527\pi\)
\(24\) 0 0
\(25\) 2.34017 + 4.41855i 0.468035 + 0.883710i
\(26\) 3.39997 + 1.20009i 0.666789 + 0.235357i
\(27\) 0 0
\(28\) 1.29303 1.29303i 0.244359 0.244359i
\(29\) 7.09142i 1.31684i 0.752649 + 0.658422i \(0.228776\pi\)
−0.752649 + 0.658422i \(0.771224\pi\)
\(30\) 0 0
\(31\) −4.09901 4.09901i −0.736203 0.736203i 0.235638 0.971841i \(-0.424282\pi\)
−0.971841 + 0.235638i \(0.924282\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 3.33308 3.33308i 0.571618 0.571618i
\(35\) −0.985969 3.96825i −0.166659 0.670757i
\(36\) 0 0
\(37\) −3.72990 3.72990i −0.613192 0.613192i 0.330584 0.943776i \(-0.392754\pi\)
−0.943776 + 0.330584i \(0.892754\pi\)
\(38\) 5.41957i 0.879170i
\(39\) 0 0
\(40\) 2.17009 0.539189i 0.343121 0.0852532i
\(41\) 4.42620 4.42620i 0.691256 0.691256i −0.271253 0.962508i \(-0.587438\pi\)
0.962508 + 0.271253i \(0.0874379\pi\)
\(42\) 0 0
\(43\) −7.68861 −1.17250 −0.586251 0.810129i \(-0.699397\pi\)
−0.586251 + 0.810129i \(0.699397\pi\)
\(44\) 3.42313 3.42313i 0.516056 0.516056i
\(45\) 0 0
\(46\) 2.26679 2.26679i 0.334220 0.334220i
\(47\) −8.97668 + 8.97668i −1.30938 + 1.30938i −0.387523 + 0.921860i \(0.626669\pi\)
−0.921860 + 0.387523i \(0.873331\pi\)
\(48\) 0 0
\(49\) 3.65617i 0.522309i
\(50\) 1.46963 4.77914i 0.207838 0.675872i
\(51\) 0 0
\(52\) −1.55555 3.25273i −0.215716 0.451073i
\(53\) 6.86336 0.942754 0.471377 0.881932i \(-0.343757\pi\)
0.471377 + 0.881932i \(0.343757\pi\)
\(54\) 0 0
\(55\) −2.61023 10.5055i −0.351964 1.41656i
\(56\) −1.82862 −0.244359
\(57\) 0 0
\(58\) 5.01439 5.01439i 0.658422 0.658422i
\(59\) −1.67463 1.67463i −0.218018 0.218018i 0.589644 0.807663i \(-0.299268\pi\)
−0.807663 + 0.589644i \(0.799268\pi\)
\(60\) 0 0
\(61\) −11.6690 −1.49407 −0.747033 0.664787i \(-0.768522\pi\)
−0.747033 + 0.664787i \(0.768522\pi\)
\(62\) 5.79687i 0.736203i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.02530 0.771077i −0.995416 0.0956403i
\(66\) 0 0
\(67\) −5.61487 + 5.61487i −0.685966 + 0.685966i −0.961338 0.275372i \(-0.911199\pi\)
0.275372 + 0.961338i \(0.411199\pi\)
\(68\) −4.71368 −0.571618
\(69\) 0 0
\(70\) −2.10879 + 3.50316i −0.252049 + 0.418708i
\(71\) 3.05893 3.05893i 0.363028 0.363028i −0.501898 0.864927i \(-0.667365\pi\)
0.864927 + 0.501898i \(0.167365\pi\)
\(72\) 0 0
\(73\) −0.453716 0.453716i −0.0531034 0.0531034i 0.680056 0.733160i \(-0.261955\pi\)
−0.733160 + 0.680056i \(0.761955\pi\)
\(74\) 5.27488i 0.613192i
\(75\) 0 0
\(76\) 3.83222 3.83222i 0.439585 0.439585i
\(77\) 8.85239i 1.00882i
\(78\) 0 0
\(79\) 8.29230 0.932957 0.466479 0.884533i \(-0.345522\pi\)
0.466479 + 0.884533i \(0.345522\pi\)
\(80\) −1.91575 1.15322i −0.214187 0.128934i
\(81\) 0 0
\(82\) −6.25959 −0.691256
\(83\) −2.48030 2.48030i −0.272248 0.272248i 0.557756 0.830005i \(-0.311662\pi\)
−0.830005 + 0.557756i \(0.811662\pi\)
\(84\) 0 0
\(85\) −5.43591 + 9.03023i −0.589607 + 0.979465i
\(86\) 5.43667 + 5.43667i 0.586251 + 0.586251i
\(87\) 0 0
\(88\) −4.84104 −0.516056
\(89\) −3.36649 3.36649i −0.356847 0.356847i 0.505802 0.862649i \(-0.331196\pi\)
−0.862649 + 0.505802i \(0.831196\pi\)
\(90\) 0 0
\(91\) 6.21723 + 2.19451i 0.651743 + 0.230047i
\(92\) −3.20573 −0.334220
\(93\) 0 0
\(94\) 12.6949 1.30938
\(95\) −2.92217 11.7609i −0.299809 1.20665i
\(96\) 0 0
\(97\) −3.71551 + 3.71551i −0.377253 + 0.377253i −0.870110 0.492857i \(-0.835952\pi\)
0.492857 + 0.870110i \(0.335952\pi\)
\(98\) −2.58530 + 2.58530i −0.261155 + 0.261155i
\(99\) 0 0
\(100\) −4.41855 + 2.34017i −0.441855 + 0.234017i
\(101\) −16.9657 −1.68815 −0.844074 0.536227i \(-0.819849\pi\)
−0.844074 + 0.536227i \(0.819849\pi\)
\(102\) 0 0
\(103\) 15.3380 1.51129 0.755647 0.654979i \(-0.227322\pi\)
0.755647 + 0.654979i \(0.227322\pi\)
\(104\) −1.20009 + 3.39997i −0.117679 + 0.333394i
\(105\) 0 0
\(106\) −4.85313 4.85313i −0.471377 0.471377i
\(107\) 2.44651 0.236513 0.118256 0.992983i \(-0.462270\pi\)
0.118256 + 0.992983i \(0.462270\pi\)
\(108\) 0 0
\(109\) 11.7964 + 11.7964i 1.12989 + 1.12989i 0.990194 + 0.139700i \(0.0446137\pi\)
0.139700 + 0.990194i \(0.455386\pi\)
\(110\) −5.58277 + 9.27420i −0.532297 + 0.884260i
\(111\) 0 0
\(112\) 1.29303 + 1.29303i 0.122180 + 0.122180i
\(113\) −7.30279 −0.686988 −0.343494 0.939155i \(-0.611611\pi\)
−0.343494 + 0.939155i \(0.611611\pi\)
\(114\) 0 0
\(115\) −3.69690 + 6.14136i −0.344738 + 0.572685i
\(116\) −7.09142 −0.658422
\(117\) 0 0
\(118\) 2.36829i 0.218018i
\(119\) 6.09492 6.09492i 0.558720 0.558720i
\(120\) 0 0
\(121\) 12.4356i 1.13051i
\(122\) 8.25125 + 8.25125i 0.747033 + 0.747033i
\(123\) 0 0
\(124\) 4.09901 4.09901i 0.368102 0.368102i
\(125\) −0.612376 + 11.1636i −0.0547726 + 0.998499i
\(126\) 0 0
\(127\) −9.77725 −0.867591 −0.433795 0.901011i \(-0.642826\pi\)
−0.433795 + 0.901011i \(0.642826\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 5.12951 + 6.21998i 0.449888 + 0.545528i
\(131\) 3.06190i 0.267520i 0.991014 + 0.133760i \(0.0427051\pi\)
−0.991014 + 0.133760i \(0.957295\pi\)
\(132\) 0 0
\(133\) 9.91031i 0.859333i
\(134\) 7.94063 0.685966
\(135\) 0 0
\(136\) 3.33308 + 3.33308i 0.285809 + 0.285809i
\(137\) 15.8693 15.8693i 1.35580 1.35580i 0.476779 0.879023i \(-0.341804\pi\)
0.879023 0.476779i \(-0.158196\pi\)
\(138\) 0 0
\(139\) 1.10199 0.0934697 0.0467349 0.998907i \(-0.485118\pi\)
0.0467349 + 0.998907i \(0.485118\pi\)
\(140\) 3.96825 0.985969i 0.335379 0.0833296i
\(141\) 0 0
\(142\) −4.32598 −0.363028
\(143\) 16.4594 + 5.80968i 1.37640 + 0.485830i
\(144\) 0 0
\(145\) −8.17796 + 13.5854i −0.679143 + 1.12820i
\(146\) 0.641651i 0.0531034i
\(147\) 0 0
\(148\) 3.72990 3.72990i 0.306596 0.306596i
\(149\) −11.5204 + 11.5204i −0.943788 + 0.943788i −0.998502 0.0547142i \(-0.982575\pi\)
0.0547142 + 0.998502i \(0.482575\pi\)
\(150\) 0 0
\(151\) −13.1195 + 13.1195i −1.06765 + 1.06765i −0.0701126 + 0.997539i \(0.522336\pi\)
−0.997539 + 0.0701126i \(0.977664\pi\)
\(152\) −5.41957 −0.439585
\(153\) 0 0
\(154\) 6.25959 6.25959i 0.504412 0.504412i
\(155\) −3.12561 12.5797i −0.251055 1.01043i
\(156\) 0 0
\(157\) 18.1705i 1.45016i −0.688664 0.725080i \(-0.741803\pi\)
0.688664 0.725080i \(-0.258197\pi\)
\(158\) −5.86354 5.86354i −0.466479 0.466479i
\(159\) 0 0
\(160\) 0.539189 + 2.17009i 0.0426266 + 0.171560i
\(161\) 4.14509 4.14509i 0.326679 0.326679i
\(162\) 0 0
\(163\) −7.45812 7.45812i −0.584165 0.584165i 0.351880 0.936045i \(-0.385542\pi\)
−0.936045 + 0.351880i \(0.885542\pi\)
\(164\) 4.42620 + 4.42620i 0.345628 + 0.345628i
\(165\) 0 0
\(166\) 3.50767i 0.272248i
\(167\) −7.14982 + 7.14982i −0.553269 + 0.553269i −0.927383 0.374113i \(-0.877947\pi\)
0.374113 + 0.927383i \(0.377947\pi\)
\(168\) 0 0
\(169\) 8.16054 10.1196i 0.627734 0.778428i
\(170\) 10.2291 2.54157i 0.784536 0.194929i
\(171\) 0 0
\(172\) 7.68861i 0.586251i
\(173\) 15.0993i 1.14798i −0.818864 0.573988i \(-0.805396\pi\)
0.818864 0.573988i \(-0.194604\pi\)
\(174\) 0 0
\(175\) 2.68740 8.73921i 0.203148 0.660622i
\(176\) 3.42313 + 3.42313i 0.258028 + 0.258028i
\(177\) 0 0
\(178\) 4.76093i 0.356847i
\(179\) 16.4200 1.22729 0.613645 0.789582i \(-0.289703\pi\)
0.613645 + 0.789582i \(0.289703\pi\)
\(180\) 0 0
\(181\) 4.47735i 0.332799i 0.986058 + 0.166399i \(0.0532141\pi\)
−0.986058 + 0.166399i \(0.946786\pi\)
\(182\) −2.84450 5.94800i −0.210848 0.440895i
\(183\) 0 0
\(184\) 2.26679 + 2.26679i 0.167110 + 0.167110i
\(185\) −2.84416 11.4469i −0.209107 0.841596i
\(186\) 0 0
\(187\) 16.1355 16.1355i 1.17995 1.17995i
\(188\) −8.97668 8.97668i −0.654691 0.654691i
\(189\) 0 0
\(190\) −6.24995 + 10.3825i −0.453419 + 0.753228i
\(191\) 10.5841i 0.765836i 0.923782 + 0.382918i \(0.125081\pi\)
−0.923782 + 0.382918i \(0.874919\pi\)
\(192\) 0 0
\(193\) 7.20113 + 7.20113i 0.518348 + 0.518348i 0.917071 0.398723i \(-0.130546\pi\)
−0.398723 + 0.917071i \(0.630546\pi\)
\(194\) 5.25453 0.377253
\(195\) 0 0
\(196\) 3.65617 0.261155
\(197\) −9.16979 9.16979i −0.653321 0.653321i 0.300470 0.953791i \(-0.402856\pi\)
−0.953791 + 0.300470i \(0.902856\pi\)
\(198\) 0 0
\(199\) 20.7555i 1.47132i −0.677353 0.735658i \(-0.736873\pi\)
0.677353 0.735658i \(-0.263127\pi\)
\(200\) 4.77914 + 1.46963i 0.337936 + 0.103919i
\(201\) 0 0
\(202\) 11.9965 + 11.9965i 0.844074 + 0.844074i
\(203\) 9.16939 9.16939i 0.643565 0.643565i
\(204\) 0 0
\(205\) 13.5838 3.37510i 0.948737 0.235727i
\(206\) −10.8456 10.8456i −0.755647 0.755647i
\(207\) 0 0
\(208\) 3.25273 1.55555i 0.225536 0.107858i
\(209\) 26.2363i 1.81481i
\(210\) 0 0
\(211\) −19.9602 −1.37412 −0.687058 0.726603i \(-0.741098\pi\)
−0.687058 + 0.726603i \(0.741098\pi\)
\(212\) 6.86336i 0.471377i
\(213\) 0 0
\(214\) −1.72994 1.72994i −0.118256 0.118256i
\(215\) −14.7294 8.86665i −1.00454 0.604700i
\(216\) 0 0
\(217\) 10.6002i 0.719591i
\(218\) 16.6827i 1.12989i
\(219\) 0 0
\(220\) 10.5055 2.61023i 0.708278 0.175982i
\(221\) −7.33236 15.3324i −0.493228 1.03137i
\(222\) 0 0
\(223\) −9.64691 + 9.64691i −0.646005 + 0.646005i −0.952025 0.306020i \(-0.901002\pi\)
0.306020 + 0.952025i \(0.401002\pi\)
\(224\) 1.82862i 0.122180i
\(225\) 0 0
\(226\) 5.16385 + 5.16385i 0.343494 + 0.343494i
\(227\) 9.61668 + 9.61668i 0.638281 + 0.638281i 0.950131 0.311850i \(-0.100949\pi\)
−0.311850 + 0.950131i \(0.600949\pi\)
\(228\) 0 0
\(229\) −0.831438 + 0.831438i −0.0549429 + 0.0549429i −0.734044 0.679101i \(-0.762370\pi\)
0.679101 + 0.734044i \(0.262370\pi\)
\(230\) 6.95670 1.72849i 0.458711 0.113973i
\(231\) 0 0
\(232\) 5.01439 + 5.01439i 0.329211 + 0.329211i
\(233\) 13.0922i 0.857698i 0.903376 + 0.428849i \(0.141081\pi\)
−0.903376 + 0.428849i \(0.858919\pi\)
\(234\) 0 0
\(235\) −27.5491 + 6.84497i −1.79711 + 0.446517i
\(236\) 1.67463 1.67463i 0.109009 0.109009i
\(237\) 0 0
\(238\) −8.61951 −0.558720
\(239\) 8.83842 8.83842i 0.571710 0.571710i −0.360896 0.932606i \(-0.617529\pi\)
0.932606 + 0.360896i \(0.117529\pi\)
\(240\) 0 0
\(241\) 5.80438 5.80438i 0.373893 0.373893i −0.495000 0.868893i \(-0.664832\pi\)
0.868893 + 0.495000i \(0.164832\pi\)
\(242\) 8.79332 8.79332i 0.565256 0.565256i
\(243\) 0 0
\(244\) 11.6690i 0.747033i
\(245\) 4.21636 7.00429i 0.269373 0.447488i
\(246\) 0 0
\(247\) 18.4264 + 6.50398i 1.17244 + 0.413838i
\(248\) −5.79687 −0.368102
\(249\) 0 0
\(250\) 8.32684 7.46081i 0.526636 0.471863i
\(251\) 26.8994 1.69787 0.848936 0.528495i \(-0.177244\pi\)
0.848936 + 0.528495i \(0.177244\pi\)
\(252\) 0 0
\(253\) 10.9736 10.9736i 0.689905 0.689905i
\(254\) 6.91356 + 6.91356i 0.433795 + 0.433795i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.66502i 0.353374i −0.984267 0.176687i \(-0.943462\pi\)
0.984267 0.176687i \(-0.0565380\pi\)
\(258\) 0 0
\(259\) 9.64572i 0.599356i
\(260\) 0.771077 8.02530i 0.0478202 0.497708i
\(261\) 0 0
\(262\) 2.16509 2.16509i 0.133760 0.133760i
\(263\) −0.793522 −0.0489307 −0.0244653 0.999701i \(-0.507788\pi\)
−0.0244653 + 0.999701i \(0.507788\pi\)
\(264\) 0 0
\(265\) 13.1485 + 7.91495i 0.807703 + 0.486212i
\(266\) 7.00765 7.00765i 0.429666 0.429666i
\(267\) 0 0
\(268\) −5.61487 5.61487i −0.342983 0.342983i
\(269\) 13.2877i 0.810165i 0.914280 + 0.405083i \(0.132757\pi\)
−0.914280 + 0.405083i \(0.867243\pi\)
\(270\) 0 0
\(271\) 15.5871 15.5871i 0.946849 0.946849i −0.0518080 0.998657i \(-0.516498\pi\)
0.998657 + 0.0518080i \(0.0164984\pi\)
\(272\) 4.71368i 0.285809i
\(273\) 0 0
\(274\) −22.4425 −1.35580
\(275\) 7.11456 23.1360i 0.429024 1.39515i
\(276\) 0 0
\(277\) −11.4081 −0.685445 −0.342722 0.939437i \(-0.611349\pi\)
−0.342722 + 0.939437i \(0.611349\pi\)
\(278\) −0.779226 0.779226i −0.0467349 0.0467349i
\(279\) 0 0
\(280\) −3.50316 2.10879i −0.209354 0.126025i
\(281\) −18.4689 18.4689i −1.10176 1.10176i −0.994198 0.107565i \(-0.965695\pi\)
−0.107565 0.994198i \(-0.534305\pi\)
\(282\) 0 0
\(283\) 24.4471 1.45323 0.726615 0.687045i \(-0.241092\pi\)
0.726615 + 0.687045i \(0.241092\pi\)
\(284\) 3.05893 + 3.05893i 0.181514 + 0.181514i
\(285\) 0 0
\(286\) −7.53046 15.7466i −0.445286 0.931116i
\(287\) −11.4464 −0.675658
\(288\) 0 0
\(289\) −5.21882 −0.306989
\(290\) 15.3890 3.82362i 0.903673 0.224530i
\(291\) 0 0
\(292\) 0.453716 0.453716i 0.0265517 0.0265517i
\(293\) 12.7581 12.7581i 0.745336 0.745336i −0.228264 0.973599i \(-0.573305\pi\)
0.973599 + 0.228264i \(0.0733048\pi\)
\(294\) 0 0
\(295\) −1.27695 5.13939i −0.0743471 0.299227i
\(296\) −5.27488 −0.306596
\(297\) 0 0
\(298\) 16.2923 0.943788
\(299\) −4.98666 10.4274i −0.288386 0.603030i
\(300\) 0 0
\(301\) 9.94158 + 9.94158i 0.573023 + 0.573023i
\(302\) 18.5538 1.06765
\(303\) 0 0
\(304\) 3.83222 + 3.83222i 0.219793 + 0.219793i
\(305\) −22.3549 13.4569i −1.28004 0.770543i
\(306\) 0 0
\(307\) −1.54476 1.54476i −0.0881641 0.0881641i 0.661649 0.749813i \(-0.269857\pi\)
−0.749813 + 0.661649i \(0.769857\pi\)
\(308\) −8.85239 −0.504412
\(309\) 0 0
\(310\) −6.68506 + 11.1053i −0.379686 + 0.630741i
\(311\) 7.11421 0.403410 0.201705 0.979446i \(-0.435352\pi\)
0.201705 + 0.979446i \(0.435352\pi\)
\(312\) 0 0
\(313\) 4.63441i 0.261952i −0.991386 0.130976i \(-0.958189\pi\)
0.991386 0.130976i \(-0.0418112\pi\)
\(314\) −12.8485 + 12.8485i −0.725080 + 0.725080i
\(315\) 0 0
\(316\) 8.29230i 0.466479i
\(317\) −2.74539 2.74539i −0.154196 0.154196i 0.625793 0.779989i \(-0.284775\pi\)
−0.779989 + 0.625793i \(0.784775\pi\)
\(318\) 0 0
\(319\) 24.2748 24.2748i 1.35913 1.35913i
\(320\) 1.15322 1.91575i 0.0644669 0.107094i
\(321\) 0 0
\(322\) −5.86204 −0.326679
\(323\) 18.0639 18.0639i 1.00510 1.00510i
\(324\) 0 0
\(325\) −14.4852 10.7321i −0.803496 0.595311i
\(326\) 10.5474i 0.584165i
\(327\) 0 0
\(328\) 6.25959i 0.345628i
\(329\) 23.2142 1.27984
\(330\) 0 0
\(331\) −4.29030 4.29030i −0.235816 0.235816i 0.579299 0.815115i \(-0.303326\pi\)
−0.815115 + 0.579299i \(0.803326\pi\)
\(332\) 2.48030 2.48030i 0.136124 0.136124i
\(333\) 0 0
\(334\) 10.1114 0.553269
\(335\) −17.2319 + 4.28150i −0.941477 + 0.233923i
\(336\) 0 0
\(337\) −2.00498 −0.109218 −0.0546092 0.998508i \(-0.517391\pi\)
−0.0546092 + 0.998508i \(0.517391\pi\)
\(338\) −12.9260 + 1.38524i −0.703081 + 0.0753469i
\(339\) 0 0
\(340\) −9.03023 5.43591i −0.489733 0.294804i
\(341\) 28.0628i 1.51969i
\(342\) 0 0
\(343\) −13.7787 + 13.7787i −0.743980 + 0.743980i
\(344\) −5.43667 + 5.43667i −0.293126 + 0.293126i
\(345\) 0 0
\(346\) −10.6768 + 10.6768i −0.573988 + 0.573988i
\(347\) −17.8409 −0.957748 −0.478874 0.877884i \(-0.658955\pi\)
−0.478874 + 0.877884i \(0.658955\pi\)
\(348\) 0 0
\(349\) 19.2150 19.2150i 1.02855 1.02855i 0.0289745 0.999580i \(-0.490776\pi\)
0.999580 0.0289745i \(-0.00922416\pi\)
\(350\) −8.07983 + 4.27928i −0.431885 + 0.228737i
\(351\) 0 0
\(352\) 4.84104i 0.258028i
\(353\) 5.98145 + 5.98145i 0.318361 + 0.318361i 0.848137 0.529777i \(-0.177724\pi\)
−0.529777 + 0.848137i \(0.677724\pi\)
\(354\) 0 0
\(355\) 9.38776 2.33252i 0.498250 0.123797i
\(356\) 3.36649 3.36649i 0.178423 0.178423i
\(357\) 0 0
\(358\) −11.6107 11.6107i −0.613645 0.613645i
\(359\) 26.0867 + 26.0867i 1.37680 + 1.37680i 0.849966 + 0.526837i \(0.176622\pi\)
0.526837 + 0.849966i \(0.323378\pi\)
\(360\) 0 0
\(361\) 10.3717i 0.545881i
\(362\) 3.16597 3.16597i 0.166399 0.166399i
\(363\) 0 0
\(364\) −2.19451 + 6.21723i −0.115023 + 0.325872i
\(365\) −0.345971 1.39244i −0.0181090 0.0728836i
\(366\) 0 0
\(367\) 7.79988i 0.407150i 0.979059 + 0.203575i \(0.0652561\pi\)
−0.979059 + 0.203575i \(0.934744\pi\)
\(368\) 3.20573i 0.167110i
\(369\) 0 0
\(370\) −6.08309 + 10.1053i −0.316245 + 0.525351i
\(371\) −8.87450 8.87450i −0.460741 0.460741i
\(372\) 0 0
\(373\) 29.3018i 1.51719i 0.651563 + 0.758594i \(0.274114\pi\)
−0.651563 + 0.758594i \(0.725886\pi\)
\(374\) −22.8191 −1.17995
\(375\) 0 0
\(376\) 12.6949i 0.654691i
\(377\) −11.0310 23.0665i −0.568128 1.18799i
\(378\) 0 0
\(379\) −6.78165 6.78165i −0.348350 0.348350i 0.511145 0.859495i \(-0.329222\pi\)
−0.859495 + 0.511145i \(0.829222\pi\)
\(380\) 11.7609 2.92217i 0.603323 0.149904i
\(381\) 0 0
\(382\) 7.48406 7.48406i 0.382918 0.382918i
\(383\) 9.46794 + 9.46794i 0.483789 + 0.483789i 0.906339 0.422550i \(-0.138865\pi\)
−0.422550 + 0.906339i \(0.638865\pi\)
\(384\) 0 0
\(385\) −10.2087 + 16.9589i −0.520286 + 0.864308i
\(386\) 10.1839i 0.518348i
\(387\) 0 0
\(388\) −3.71551 3.71551i −0.188627 0.188627i
\(389\) 26.5150 1.34436 0.672182 0.740386i \(-0.265357\pi\)
0.672182 + 0.740386i \(0.265357\pi\)
\(390\) 0 0
\(391\) −15.1108 −0.764185
\(392\) −2.58530 2.58530i −0.130577 0.130577i
\(393\) 0 0
\(394\) 12.9680i 0.653321i
\(395\) 15.8860 + 9.56284i 0.799309 + 0.481159i
\(396\) 0 0
\(397\) −13.5450 13.5450i −0.679806 0.679806i 0.280150 0.959956i \(-0.409616\pi\)
−0.959956 + 0.280150i \(0.909616\pi\)
\(398\) −14.6763 + 14.6763i −0.735658 + 0.735658i
\(399\) 0 0
\(400\) −2.34017 4.41855i −0.117009 0.220928i
\(401\) 0.170681 + 0.170681i 0.00852341 + 0.00852341i 0.711356 0.702832i \(-0.248082\pi\)
−0.702832 + 0.711356i \(0.748082\pi\)
\(402\) 0 0
\(403\) 19.7092 + 6.95677i 0.981784 + 0.346541i
\(404\) 16.9657i 0.844074i
\(405\) 0 0
\(406\) −12.9675 −0.643565
\(407\) 25.5359i 1.26577i
\(408\) 0 0
\(409\) 15.8128 + 15.8128i 0.781895 + 0.781895i 0.980150 0.198255i \(-0.0635276\pi\)
−0.198255 + 0.980150i \(0.563528\pi\)
\(410\) −11.9918 7.21867i −0.592232 0.356505i
\(411\) 0 0
\(412\) 15.3380i 0.755647i
\(413\) 4.33069i 0.213099i
\(414\) 0 0
\(415\) −1.89130 7.61196i −0.0928402 0.373656i
\(416\) −3.39997 1.20009i −0.166697 0.0588393i
\(417\) 0 0
\(418\) 18.5519 18.5519i 0.907403 0.907403i
\(419\) 9.92023i 0.484635i 0.970197 + 0.242318i \(0.0779076\pi\)
−0.970197 + 0.242318i \(0.922092\pi\)
\(420\) 0 0
\(421\) 16.6990 + 16.6990i 0.813862 + 0.813862i 0.985210 0.171349i \(-0.0548125\pi\)
−0.171349 + 0.985210i \(0.554812\pi\)
\(422\) 14.1140 + 14.1140i 0.687058 + 0.687058i
\(423\) 0 0
\(424\) 4.85313 4.85313i 0.235689 0.235689i
\(425\) −20.8277 + 11.0308i −1.01029 + 0.535074i
\(426\) 0 0
\(427\) 15.0884 + 15.0884i 0.730177 + 0.730177i
\(428\) 2.44651i 0.118256i
\(429\) 0 0
\(430\) 4.14561 + 16.6849i 0.199919 + 0.804620i
\(431\) −17.0012 + 17.0012i −0.818920 + 0.818920i −0.985952 0.167032i \(-0.946582\pi\)
0.167032 + 0.985952i \(0.446582\pi\)
\(432\) 0 0
\(433\) 2.50595 0.120428 0.0602141 0.998185i \(-0.480822\pi\)
0.0602141 + 0.998185i \(0.480822\pi\)
\(434\) 7.49550 7.49550i 0.359796 0.359796i
\(435\) 0 0
\(436\) −11.7964 + 11.7964i −0.564947 + 0.564947i
\(437\) 12.2850 12.2850i 0.587673 0.587673i
\(438\) 0 0
\(439\) 29.9255i 1.42827i −0.700009 0.714134i \(-0.746821\pi\)
0.700009 0.714134i \(-0.253179\pi\)
\(440\) −9.27420 5.58277i −0.442130 0.266148i
\(441\) 0 0
\(442\) −5.65685 + 16.0264i −0.269069 + 0.762297i
\(443\) −7.51200 −0.356906 −0.178453 0.983948i \(-0.557109\pi\)
−0.178453 + 0.983948i \(0.557109\pi\)
\(444\) 0 0
\(445\) −2.56704 10.3316i −0.121689 0.489766i
\(446\) 13.6428 0.646005
\(447\) 0 0
\(448\) −1.29303 + 1.29303i −0.0610898 + 0.0610898i
\(449\) −12.7797 12.7797i −0.603113 0.603113i 0.338025 0.941137i \(-0.390241\pi\)
−0.941137 + 0.338025i \(0.890241\pi\)
\(450\) 0 0
\(451\) −30.3029 −1.42691
\(452\) 7.30279i 0.343494i
\(453\) 0 0
\(454\) 13.6000i 0.638281i
\(455\) 9.37990 + 11.3739i 0.439737 + 0.533219i
\(456\) 0 0
\(457\) 1.41879 1.41879i 0.0663682 0.0663682i −0.673144 0.739512i \(-0.735056\pi\)
0.739512 + 0.673144i \(0.235056\pi\)
\(458\) 1.17583 0.0549429
\(459\) 0 0
\(460\) −6.14136 3.69690i −0.286342 0.172369i
\(461\) 8.94270 8.94270i 0.416503 0.416503i −0.467494 0.883996i \(-0.654843\pi\)
0.883996 + 0.467494i \(0.154843\pi\)
\(462\) 0 0
\(463\) −1.64030 1.64030i −0.0762314 0.0762314i 0.667963 0.744194i \(-0.267166\pi\)
−0.744194 + 0.667963i \(0.767166\pi\)
\(464\) 7.09142i 0.329211i
\(465\) 0 0
\(466\) 9.25758 9.25758i 0.428849 0.428849i
\(467\) 21.6984i 1.00408i −0.864844 0.502040i \(-0.832583\pi\)
0.864844 0.502040i \(-0.167417\pi\)
\(468\) 0 0
\(469\) 14.5204 0.670488
\(470\) 24.3203 + 14.6400i 1.12181 + 0.675295i
\(471\) 0 0
\(472\) −2.36829 −0.109009
\(473\) 26.3191 + 26.3191i 1.21015 + 1.21015i
\(474\) 0 0
\(475\) 7.96479 25.9009i 0.365450 1.18841i
\(476\) 6.09492 + 6.09492i 0.279360 + 0.279360i
\(477\) 0 0
\(478\) −12.4994 −0.571710
\(479\) −3.65613 3.65613i −0.167053 0.167053i 0.618630 0.785683i \(-0.287688\pi\)
−0.785683 + 0.618630i \(0.787688\pi\)
\(480\) 0 0
\(481\) 17.9344 + 6.33034i 0.817739 + 0.288639i
\(482\) −8.20864 −0.373893
\(483\) 0 0
\(484\) −12.4356 −0.565256
\(485\) −11.4028 + 2.83318i −0.517773 + 0.128648i
\(486\) 0 0
\(487\) −24.5766 + 24.5766i −1.11367 + 1.11367i −0.121021 + 0.992650i \(0.538617\pi\)
−0.992650 + 0.121021i \(0.961383\pi\)
\(488\) −8.25125 + 8.25125i −0.373517 + 0.373517i
\(489\) 0 0
\(490\) −7.93420 + 1.97136i −0.358430 + 0.0890571i
\(491\) −35.0848 −1.58336 −0.791678 0.610939i \(-0.790792\pi\)
−0.791678 + 0.610939i \(0.790792\pi\)
\(492\) 0 0
\(493\) −33.4267 −1.50546
\(494\) −8.43040 17.6284i −0.379302 0.793140i
\(495\) 0 0
\(496\) 4.09901 + 4.09901i 0.184051 + 0.184051i
\(497\) −7.91056 −0.354837
\(498\) 0 0
\(499\) 6.90060 + 6.90060i 0.308913 + 0.308913i 0.844488 0.535575i \(-0.179905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(500\) −11.1636 0.612376i −0.499249 0.0273863i
\(501\) 0 0
\(502\) −19.0207 19.0207i −0.848936 0.848936i
\(503\) 8.61769 0.384244 0.192122 0.981371i \(-0.438463\pi\)
0.192122 + 0.981371i \(0.438463\pi\)
\(504\) 0 0
\(505\) −32.5019 19.5651i −1.44632 0.870637i
\(506\) −15.5190 −0.689905
\(507\) 0 0
\(508\) 9.77725i 0.433795i
\(509\) 12.3534 12.3534i 0.547555 0.547555i −0.378178 0.925733i \(-0.623449\pi\)
0.925733 + 0.378178i \(0.123449\pi\)
\(510\) 0 0
\(511\) 1.17333i 0.0519052i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) −4.00577 + 4.00577i −0.176687 + 0.176687i
\(515\) 29.3837 + 17.6880i 1.29480 + 0.779428i
\(516\) 0 0
\(517\) 61.4567 2.70286
\(518\) 6.82056 6.82056i 0.299678 0.299678i
\(519\) 0 0
\(520\) −6.21998 + 5.12951i −0.272764 + 0.224944i
\(521\) 42.6428i 1.86822i 0.356991 + 0.934108i \(0.383803\pi\)
−0.356991 + 0.934108i \(0.616197\pi\)
\(522\) 0 0
\(523\) 9.80957i 0.428942i 0.976730 + 0.214471i \(0.0688028\pi\)
−0.976730 + 0.214471i \(0.931197\pi\)
\(524\) −3.06190 −0.133760
\(525\) 0 0
\(526\) 0.561105 + 0.561105i 0.0244653 + 0.0244653i
\(527\) 19.3214 19.3214i 0.841654 0.841654i
\(528\) 0 0
\(529\) 12.7233 0.553188
\(530\) −3.70065 14.8941i −0.160746 0.646957i
\(531\) 0 0
\(532\) −9.91031 −0.429666
\(533\) −7.51208 + 21.2824i −0.325384 + 0.921843i
\(534\) 0 0
\(535\) 4.68689 + 2.82136i 0.202632 + 0.121978i
\(536\) 7.94063i 0.342983i
\(537\) 0 0
\(538\) 9.39582 9.39582i 0.405083 0.405083i
\(539\) −12.5155 + 12.5155i −0.539082 + 0.539082i
\(540\) 0 0
\(541\) 21.5440 21.5440i 0.926250 0.926250i −0.0712116 0.997461i \(-0.522687\pi\)
0.997461 + 0.0712116i \(0.0226866\pi\)
\(542\) −22.0435 −0.946849
\(543\) 0 0
\(544\) −3.33308 + 3.33308i −0.142905 + 0.142905i
\(545\) 8.99512 + 36.2029i 0.385308 + 1.55076i
\(546\) 0 0
\(547\) 26.1118i 1.11646i −0.829687 0.558229i \(-0.811481\pi\)
0.829687 0.558229i \(-0.188519\pi\)
\(548\) 15.8693 + 15.8693i 0.677901 + 0.677901i
\(549\) 0 0
\(550\) −21.3904 + 11.3289i −0.912088 + 0.483064i
\(551\) 27.1758 27.1758i 1.15773 1.15773i
\(552\) 0 0
\(553\) −10.7222 10.7222i −0.455953 0.455953i
\(554\) 8.06673 + 8.06673i 0.342722 + 0.342722i
\(555\) 0 0
\(556\) 1.10199i 0.0467349i
\(557\) −24.5719 + 24.5719i −1.04114 + 1.04114i −0.0420278 + 0.999116i \(0.513382\pi\)
−0.999116 + 0.0420278i \(0.986618\pi\)
\(558\) 0 0
\(559\) 25.0090 11.9600i 1.05777 0.505854i
\(560\) 0.985969 + 3.96825i 0.0416648 + 0.167689i
\(561\) 0 0
\(562\) 26.1190i 1.10176i
\(563\) 4.81449i 0.202907i 0.994840 + 0.101453i \(0.0323493\pi\)
−0.994840 + 0.101453i \(0.967651\pi\)
\(564\) 0 0
\(565\) −13.9903 8.42171i −0.588576 0.354304i
\(566\) −17.2867 17.2867i −0.726615 0.726615i
\(567\) 0 0
\(568\) 4.32598i 0.181514i
\(569\) −40.4223 −1.69459 −0.847295 0.531122i \(-0.821771\pi\)
−0.847295 + 0.531122i \(0.821771\pi\)
\(570\) 0 0
\(571\) 33.1629i 1.38782i −0.720060 0.693911i \(-0.755886\pi\)
0.720060 0.693911i \(-0.244114\pi\)
\(572\) −5.80968 + 16.4594i −0.242915 + 0.688201i
\(573\) 0 0
\(574\) 8.09381 + 8.09381i 0.337829 + 0.337829i
\(575\) −14.1647 + 7.50195i −0.590707 + 0.312853i
\(576\) 0 0
\(577\) 5.26107 5.26107i 0.219021 0.219021i −0.589065 0.808086i \(-0.700504\pi\)
0.808086 + 0.589065i \(0.200504\pi\)
\(578\) 3.69026 + 3.69026i 0.153495 + 0.153495i
\(579\) 0 0
\(580\) −13.5854 8.17796i −0.564102 0.339571i
\(581\) 6.41419i 0.266105i
\(582\) 0 0
\(583\) −23.4942 23.4942i −0.973028 0.973028i
\(584\) −0.641651 −0.0265517
\(585\) 0 0
\(586\) −18.0427 −0.745336
\(587\) 6.51985 + 6.51985i 0.269103 + 0.269103i 0.828739 0.559636i \(-0.189059\pi\)
−0.559636 + 0.828739i \(0.689059\pi\)
\(588\) 0 0
\(589\) 31.4165i 1.29450i
\(590\) −2.73115 + 4.53704i −0.112440 + 0.186787i
\(591\) 0 0
\(592\) 3.72990 + 3.72990i 0.153298 + 0.153298i
\(593\) −17.8642 + 17.8642i −0.733596 + 0.733596i −0.971330 0.237734i \(-0.923595\pi\)
0.237734 + 0.971330i \(0.423595\pi\)
\(594\) 0 0
\(595\) 18.7051 4.64755i 0.766834 0.190531i
\(596\) −11.5204 11.5204i −0.471894 0.471894i
\(597\) 0 0
\(598\) −3.84716 + 10.8994i −0.157322 + 0.445708i
\(599\) 22.7673i 0.930246i 0.885246 + 0.465123i \(0.153990\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(600\) 0 0
\(601\) 21.8501 0.891283 0.445641 0.895212i \(-0.352976\pi\)
0.445641 + 0.895212i \(0.352976\pi\)
\(602\) 14.0595i 0.573023i
\(603\) 0 0
\(604\) −13.1195 13.1195i −0.533826 0.533826i
\(605\) −14.3410 + 23.8235i −0.583044 + 0.968564i
\(606\) 0 0
\(607\) 25.6082i 1.03941i −0.854347 0.519703i \(-0.826043\pi\)
0.854347 0.519703i \(-0.173957\pi\)
\(608\) 5.41957i 0.219793i
\(609\) 0 0
\(610\) 6.29181 + 25.3228i 0.254748 + 1.02529i
\(611\) 15.2351 43.1624i 0.616346 1.74616i
\(612\) 0 0
\(613\) −29.1287 + 29.1287i −1.17650 + 1.17650i −0.195866 + 0.980631i \(0.562752\pi\)
−0.980631 + 0.195866i \(0.937248\pi\)
\(614\) 2.18462i 0.0881641i
\(615\) 0 0
\(616\) 6.25959 + 6.25959i 0.252206 + 0.252206i
\(617\) −26.1399 26.1399i −1.05235 1.05235i −0.998552 0.0537999i \(-0.982867\pi\)
−0.0537999 0.998552i \(-0.517133\pi\)
\(618\) 0 0
\(619\) −14.5983 + 14.5983i −0.586756 + 0.586756i −0.936751 0.349995i \(-0.886183\pi\)
0.349995 + 0.936751i \(0.386183\pi\)
\(620\) 12.5797 3.12561i 0.505213 0.125527i
\(621\) 0 0
\(622\) −5.03051 5.03051i −0.201705 0.201705i
\(623\) 8.70591i 0.348795i
\(624\) 0 0
\(625\) −14.0472 + 20.6803i −0.561887 + 0.827214i
\(626\) −3.27702 + 3.27702i −0.130976 + 0.130976i
\(627\) 0 0
\(628\) 18.1705 0.725080
\(629\) 17.5816 17.5816i 0.701024 0.701024i
\(630\) 0 0
\(631\) 0.525820 0.525820i 0.0209326 0.0209326i −0.696563 0.717496i \(-0.745288\pi\)
0.717496 + 0.696563i \(0.245288\pi\)
\(632\) 5.86354 5.86354i 0.233239 0.233239i
\(633\) 0 0
\(634\) 3.88256i 0.154196i
\(635\) −18.7307 11.2753i −0.743307 0.447447i
\(636\) 0 0
\(637\) 5.68734 + 11.8925i 0.225341 + 0.471199i
\(638\) −34.3298 −1.35913
\(639\) 0 0
\(640\) −2.17009 + 0.539189i −0.0857802 + 0.0213133i
\(641\) −22.8822 −0.903793 −0.451896 0.892070i \(-0.649252\pi\)
−0.451896 + 0.892070i \(0.649252\pi\)
\(642\) 0 0
\(643\) −16.3799 + 16.3799i −0.645961 + 0.645961i −0.952014 0.306053i \(-0.900991\pi\)
0.306053 + 0.952014i \(0.400991\pi\)
\(644\) 4.14509 + 4.14509i 0.163339 + 0.163339i
\(645\) 0 0
\(646\) −25.5461 −1.00510
\(647\) 36.9703i 1.45345i 0.686927 + 0.726727i \(0.258959\pi\)
−0.686927 + 0.726727i \(0.741041\pi\)
\(648\) 0 0
\(649\) 11.4650i 0.450039i
\(650\) 2.65385 + 17.8314i 0.104092 + 0.699403i
\(651\) 0 0
\(652\) 7.45812 7.45812i 0.292082 0.292082i
\(653\) −19.2597 −0.753690 −0.376845 0.926276i \(-0.622991\pi\)
−0.376845 + 0.926276i \(0.622991\pi\)
\(654\) 0 0
\(655\) −3.53104 + 5.86583i −0.137969 + 0.229197i
\(656\) −4.42620 + 4.42620i −0.172814 + 0.172814i
\(657\) 0 0
\(658\) −16.4149 16.4149i −0.639919 0.639919i
\(659\) 9.15739i 0.356721i −0.983965 0.178361i \(-0.942921\pi\)
0.983965 0.178361i \(-0.0570794\pi\)
\(660\) 0 0
\(661\) 6.14563 6.14563i 0.239037 0.239037i −0.577414 0.816451i \(-0.695938\pi\)
0.816451 + 0.577414i \(0.195938\pi\)
\(662\) 6.06739i 0.235816i
\(663\) 0 0
\(664\) −3.50767 −0.136124
\(665\) −11.4288 + 18.9856i −0.443188 + 0.736232i
\(666\) 0 0
\(667\) −22.7331 −0.880231
\(668\) −7.14982 7.14982i −0.276635 0.276635i
\(669\) 0 0
\(670\) 15.2122 + 9.15728i 0.587700 + 0.353777i
\(671\) 39.9446 + 39.9446i 1.54204 + 1.54204i
\(672\) 0 0
\(673\) −22.1797 −0.854964 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(674\) 1.41774 + 1.41774i 0.0546092 + 0.0546092i
\(675\) 0 0
\(676\) 10.1196 + 8.16054i 0.389214 + 0.313867i
\(677\) −1.47676 −0.0567566 −0.0283783 0.999597i \(-0.509034\pi\)
−0.0283783 + 0.999597i \(0.509034\pi\)
\(678\) 0 0
\(679\) 9.60851 0.368741
\(680\) 2.54157 + 10.2291i 0.0974646 + 0.392268i
\(681\) 0 0
\(682\) 19.8434 19.8434i 0.759844 0.759844i
\(683\) −4.17460 + 4.17460i −0.159736 + 0.159736i −0.782450 0.622713i \(-0.786030\pi\)
0.622713 + 0.782450i \(0.286030\pi\)
\(684\) 0 0
\(685\) 48.7022 12.1008i 1.86082 0.462346i
\(686\) 19.4860 0.743980
\(687\) 0 0
\(688\) 7.68861 0.293126
\(689\) −22.3247 + 10.6763i −0.850502 + 0.406734i
\(690\) 0 0
\(691\) 11.4564 + 11.4564i 0.435823 + 0.435823i 0.890604 0.454781i \(-0.150282\pi\)
−0.454781 + 0.890604i \(0.650282\pi\)
\(692\) 15.0993 0.573988
\(693\) 0 0
\(694\) 12.6154 + 12.6154i 0.478874 + 0.478874i
\(695\) 2.11114 + 1.27084i 0.0800800 + 0.0482056i
\(696\) 0 0
\(697\) 20.8637 + 20.8637i 0.790269 + 0.790269i
\(698\) −27.1741 −1.02855
\(699\) 0 0
\(700\) 8.73921 + 2.68740i 0.330311 + 0.101574i
\(701\) −35.5224 −1.34166 −0.670831 0.741611i \(-0.734062\pi\)
−0.670831 + 0.741611i \(0.734062\pi\)
\(702\) 0 0
\(703\) 28.5876i 1.07820i
\(704\) −3.42313 + 3.42313i −0.129014 + 0.129014i
\(705\) 0 0
\(706\) 8.45905i 0.318361i
\(707\) 21.9371 + 21.9371i 0.825028 + 0.825028i
\(708\) 0 0
\(709\) −3.23400 + 3.23400i −0.121455 + 0.121455i −0.765222 0.643767i \(-0.777371\pi\)
0.643767 + 0.765222i \(0.277371\pi\)
\(710\) −8.28749 4.98880i −0.311024 0.187226i
\(711\) 0 0
\(712\) −4.76093 −0.178423
\(713\) 13.1403 13.1403i 0.492108 0.492108i
\(714\) 0 0
\(715\) 24.8321 + 30.1111i 0.928669 + 1.12609i
\(716\) 16.4200i 0.613645i
\(717\) 0 0
\(718\) 36.8922i 1.37680i
\(719\) 11.9941 0.447304 0.223652 0.974669i \(-0.428202\pi\)
0.223652 + 0.974669i \(0.428202\pi\)
\(720\) 0 0
\(721\) −19.8324 19.8324i −0.738597 0.738597i
\(722\) 7.33393 7.33393i 0.272941 0.272941i
\(723\) 0 0
\(724\) −4.47735 −0.166399
\(725\) −31.3338 + 16.5952i −1.16371 + 0.616328i
\(726\) 0 0
\(727\) −45.7458 −1.69662 −0.848308 0.529503i \(-0.822379\pi\)
−0.848308 + 0.529503i \(0.822379\pi\)
\(728\) 5.94800 2.84450i 0.220447 0.105424i
\(729\) 0 0
\(730\) −0.739964 + 1.22924i −0.0273873 + 0.0454963i
\(731\) 36.2417i 1.34045i
\(732\) 0 0
\(733\) −21.7680 + 21.7680i −0.804018 + 0.804018i −0.983721 0.179703i \(-0.942486\pi\)
0.179703 + 0.983721i \(0.442486\pi\)
\(734\) 5.51534 5.51534i 0.203575 0.203575i
\(735\) 0 0
\(736\) −2.26679 + 2.26679i −0.0835550 + 0.0835550i
\(737\) 38.4409 1.41599
\(738\) 0 0
\(739\) −19.9122 + 19.9122i −0.732484 + 0.732484i −0.971111 0.238627i \(-0.923303\pi\)
0.238627 + 0.971111i \(0.423303\pi\)
\(740\) 11.4469 2.84416i 0.420798 0.104553i
\(741\) 0 0
\(742\) 12.5504i 0.460741i
\(743\) −5.98788 5.98788i −0.219674 0.219674i 0.588687 0.808361i \(-0.299645\pi\)
−0.808361 + 0.588687i \(0.799645\pi\)
\(744\) 0 0
\(745\) −35.3557 + 8.78463i −1.29533 + 0.321844i
\(746\) 20.7195 20.7195i 0.758594 0.758594i
\(747\) 0 0
\(748\) 16.1355 + 16.1355i 0.589974 + 0.589974i
\(749\) −3.16340 3.16340i −0.115588 0.115588i
\(750\) 0 0
\(751\) 22.9102i 0.836005i −0.908446 0.418002i \(-0.862730\pi\)
0.908446 0.418002i \(-0.137270\pi\)
\(752\) 8.97668 8.97668i 0.327346 0.327346i
\(753\) 0 0
\(754\) −8.51035 + 24.1106i −0.309929 + 0.878056i
\(755\) −40.2634 + 10.0040i −1.46533 + 0.364083i
\(756\) 0 0
\(757\) 0.704519i 0.0256062i 0.999918 + 0.0128031i \(0.00407546\pi\)
−0.999918 + 0.0128031i \(0.995925\pi\)
\(758\) 9.59070i 0.348350i
\(759\) 0 0
\(760\) −10.3825 6.24995i −0.376614 0.226710i
\(761\) 24.4534 + 24.4534i 0.886434 + 0.886434i 0.994179 0.107744i \(-0.0343628\pi\)
−0.107744 + 0.994179i \(0.534363\pi\)
\(762\) 0 0
\(763\) 30.5062i 1.10440i
\(764\) −10.5841 −0.382918
\(765\) 0 0
\(766\) 13.3897i 0.483789i
\(767\) 8.05210 + 2.84216i 0.290744 + 0.102624i
\(768\) 0 0
\(769\) −23.7953 23.7953i −0.858080 0.858080i 0.133032 0.991112i \(-0.457529\pi\)
−0.991112 + 0.133032i \(0.957529\pi\)
\(770\) 19.2105 4.77311i 0.692297 0.172011i
\(771\) 0 0
\(772\) −7.20113 + 7.20113i −0.259174 + 0.259174i
\(773\) 2.81372 + 2.81372i 0.101202 + 0.101202i 0.755895 0.654693i \(-0.227202\pi\)
−0.654693 + 0.755895i \(0.727202\pi\)
\(774\) 0 0
\(775\) 8.51928 27.7040i 0.306022 0.995159i
\(776\) 5.25453i 0.188627i
\(777\) 0 0
\(778\) −18.7489 18.7489i −0.672182 0.672182i
\(779\) −33.9243 −1.21546
\(780\) 0 0
\(781\) −20.9422 −0.749372
\(782\) 10.6849 + 10.6849i 0.382092 + 0.382092i
\(783\) 0 0
\(784\) 3.65617i 0.130577i
\(785\) 20.9545 34.8100i 0.747899 1.24242i
\(786\) 0 0
\(787\) −37.4915 37.4915i −1.33643 1.33643i −0.899493 0.436934i \(-0.856064\pi\)
−0.436934 0.899493i \(-0.643936\pi\)
\(788\) 9.16979 9.16979i 0.326660 0.326660i
\(789\) 0 0
\(790\) −4.47112 17.9950i −0.159075 0.640234i
\(791\) 9.44270 + 9.44270i 0.335744 + 0.335744i
\(792\) 0 0
\(793\) 37.9563 18.1517i 1.34787 0.644587i
\(794\) 19.1556i 0.679806i
\(795\) 0 0
\(796\) 20.7555 0.735658
\(797\) 17.4404i 0.617770i −0.951099 0.308885i \(-0.900044\pi\)
0.951099 0.308885i \(-0.0999557\pi\)
\(798\) 0 0
\(799\) −42.3132 42.3132i −1.49693 1.49693i
\(800\) −1.46963 + 4.77914i −0.0519594 + 0.168968i
\(801\) 0 0
\(802\) 0.241380i 0.00852341i
\(803\) 3.10626i 0.109617i
\(804\) 0 0
\(805\) 12.7211 3.16075i 0.448361 0.111402i
\(806\) −9.01731 18.8557i −0.317621 0.664163i
\(807\) 0 0
\(808\) −11.9965 + 11.9965i −0.422037 + 0.422037i
\(809\) 42.5773i 1.49694i 0.663170 + 0.748469i \(0.269211\pi\)
−0.663170 + 0.748469i \(0.730789\pi\)
\(810\) 0 0
\(811\) 7.59986 + 7.59986i 0.266867 + 0.266867i 0.827837 0.560969i \(-0.189571\pi\)
−0.560969 + 0.827837i \(0.689571\pi\)
\(812\) 9.16939 + 9.16939i 0.321783 + 0.321783i
\(813\) 0 0
\(814\) 18.0566 18.0566i 0.632883 0.632883i
\(815\) −5.68703 22.8887i −0.199208 0.801756i
\(816\) 0 0
\(817\) 29.4644 + 29.4644i 1.03083 + 1.03083i
\(818\) 22.3627i 0.781895i
\(819\) 0 0
\(820\) 3.37510 + 13.5838i 0.117864 + 0.474368i
\(821\) −1.44315 + 1.44315i −0.0503664 + 0.0503664i −0.731841 0.681475i \(-0.761339\pi\)
0.681475 + 0.731841i \(0.261339\pi\)
\(822\) 0 0
\(823\) 41.1421 1.43412 0.717061 0.697010i \(-0.245487\pi\)
0.717061 + 0.697010i \(0.245487\pi\)
\(824\) 10.8456 10.8456i 0.377824 0.377824i
\(825\) 0 0
\(826\) 3.06226 3.06226i 0.106550 0.106550i
\(827\) −9.52443 + 9.52443i −0.331197 + 0.331197i −0.853041 0.521844i \(-0.825244\pi\)
0.521844 + 0.853041i \(0.325244\pi\)
\(828\) 0 0
\(829\) 8.86204i 0.307792i −0.988087 0.153896i \(-0.950818\pi\)
0.988087 0.153896i \(-0.0491820\pi\)
\(830\) −4.04512 + 6.71982i −0.140408 + 0.233248i
\(831\) 0 0
\(832\) 1.55555 + 3.25273i 0.0539289 + 0.112768i
\(833\) 17.2340 0.597123
\(834\) 0 0
\(835\) −21.9425 + 5.45194i −0.759353 + 0.188672i
\(836\) −26.2363 −0.907403
\(837\) 0 0
\(838\) 7.01466 7.01466i 0.242318 0.242318i
\(839\) 5.91015 + 5.91015i 0.204041 + 0.204041i 0.801729 0.597688i \(-0.203914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(840\) 0 0
\(841\) −21.2882 −0.734077
\(842\) 23.6160i 0.813862i
\(843\) 0 0
\(844\) 19.9602i 0.687058i
\(845\) 27.3036 9.97563i 0.939273 0.343172i
\(846\) 0 0
\(847\) 16.0796 16.0796i 0.552501 0.552501i
\(848\) −6.86336 −0.235689
\(849\) 0 0
\(850\) 22.5274 + 6.92739i 0.772682 + 0.237608i
\(851\) 11.9570 11.9570i 0.409882 0.409882i
\(852\) 0 0
\(853\) 1.70532 + 1.70532i 0.0583891 + 0.0583891i 0.735698 0.677309i \(-0.236854\pi\)
−0.677309 + 0.735698i \(0.736854\pi\)
\(854\) 21.3382i 0.730177i
\(855\) 0 0
\(856\) 1.72994 1.72994i 0.0591281 0.0591281i
\(857\) 35.6660i 1.21833i −0.793044 0.609164i \(-0.791505\pi\)
0.793044 0.609164i \(-0.208495\pi\)
\(858\) 0 0
\(859\) −40.5671 −1.38413 −0.692065 0.721835i \(-0.743299\pi\)
−0.692065 + 0.721835i \(0.743299\pi\)
\(860\) 8.86665 14.7294i 0.302350 0.502269i
\(861\) 0 0
\(862\) 24.0434 0.818920
\(863\) −8.23230 8.23230i −0.280231 0.280231i 0.552970 0.833201i \(-0.313494\pi\)
−0.833201 + 0.552970i \(0.813494\pi\)
\(864\) 0 0
\(865\) 17.4128 28.9264i 0.592051 0.983526i
\(866\) −1.77197 1.77197i −0.0602141 0.0602141i
\(867\) 0 0
\(868\) −10.6002 −0.359796
\(869\) −28.3856 28.3856i −0.962916 0.962916i
\(870\) 0 0
\(871\) 9.52948 26.9979i 0.322894 0.914789i
\(872\) 16.6827 0.564947
\(873\) 0 0
\(874\) −17.3737 −0.587673
\(875\) 15.2266 13.6430i 0.514753 0.461216i
\(876\) 0 0
\(877\) 23.5233 23.5233i 0.794327 0.794327i −0.187868 0.982194i \(-0.560158\pi\)
0.982194 + 0.187868i \(0.0601576\pi\)
\(878\) −21.1606 + 21.1606i −0.714134 + 0.714134i
\(879\) 0 0
\(880\) 2.61023 + 10.5055i 0.0879909 + 0.354139i
\(881\) 29.8500 1.00567 0.502837 0.864381i \(-0.332290\pi\)
0.502837 + 0.864381i \(0.332290\pi\)
\(882\) 0 0
\(883\) 23.1619 0.779459 0.389729 0.920929i \(-0.372569\pi\)
0.389729 + 0.920929i \(0.372569\pi\)
\(884\) 15.3324 7.33236i 0.515683 0.246614i
\(885\) 0 0
\(886\) 5.31179 + 5.31179i 0.178453 + 0.178453i
\(887\) −46.8884 −1.57436 −0.787180 0.616723i \(-0.788460\pi\)
−0.787180 + 0.616723i \(0.788460\pi\)
\(888\) 0 0
\(889\) 12.6422 + 12.6422i 0.424007 + 0.424007i
\(890\) −5.49040 + 9.12074i −0.184039 + 0.305728i
\(891\) 0 0
\(892\) −9.64691 9.64691i −0.323002 0.323002i
\(893\) 68.8011 2.30234
\(894\) 0 0
\(895\) 31.4566 + 18.9359i 1.05148 + 0.632956i
\(896\) 1.82862 0.0610898
\(897\) 0 0
\(898\) 18.0733i 0.603113i
\(899\) 29.0678 29.0678i 0.969464 0.969464i
\(900\) 0 0
\(901\) 32.3517i 1.07779i
\(902\) 21.4274 + 21.4274i 0.713453 + 0.713453i
\(903\) 0 0
\(904\) −5.16385 + 5.16385i −0.171747 + 0.171747i
\(905\) −5.16337 + 8.57747i −0.171636 + 0.285125i
\(906\) 0 0
\(907\) 12.7144 0.422174 0.211087 0.977467i \(-0.432300\pi\)
0.211087 + 0.977467i \(0.432300\pi\)
\(908\) −9.61668 + 9.61668i −0.319141 + 0.319141i
\(909\) 0 0
\(910\) 1.41000 14.6752i 0.0467412 0.486478i
\(911\) 9.67389i 0.320510i −0.987076 0.160255i \(-0.948768\pi\)
0.987076 0.160255i \(-0.0512317\pi\)
\(912\) 0 0
\(913\) 16.9808i 0.561982i
\(914\) −2.00647 −0.0663682
\(915\) 0 0
\(916\) −0.831438 0.831438i −0.0274715 0.0274715i
\(917\) 3.95912 3.95912i 0.130742 0.130742i
\(918\) 0 0
\(919\) −10.5683 −0.348616 −0.174308 0.984691i \(-0.555769\pi\)
−0.174308 + 0.984691i \(0.555769\pi\)
\(920\) 1.72849 + 6.95670i 0.0569867 + 0.229356i
\(921\) 0 0
\(922\) −12.6469 −0.416503
\(923\) −5.19157 + 14.7082i −0.170883 + 0.484126i
\(924\) 0 0
\(925\) 7.75215 25.2094i 0.254889 0.828879i
\(926\) 2.31974i 0.0762314i
\(927\) 0 0
\(928\) −5.01439 + 5.01439i −0.164605 + 0.164605i
\(929\) −7.91139 + 7.91139i −0.259564 + 0.259564i −0.824877 0.565313i \(-0.808756\pi\)
0.565313 + 0.824877i \(0.308756\pi\)
\(930\) 0 0
\(931\) −14.0112 + 14.0112i −0.459199 + 0.459199i
\(932\) −13.0922 −0.428849
\(933\) 0 0
\(934\) −15.3431 + 15.3431i −0.502040 + 0.502040i
\(935\) 49.5194 12.3038i 1.61946 0.402378i
\(936\) 0 0
\(937\) 10.4694i 0.342020i −0.985269 0.171010i \(-0.945297\pi\)
0.985269 0.171010i \(-0.0547030\pi\)
\(938\) −10.2674 10.2674i −0.335244 0.335244i
\(939\) 0 0
\(940\) −6.84497 27.5491i −0.223258 0.898553i
\(941\) 25.1112 25.1112i 0.818600 0.818600i −0.167305 0.985905i \(-0.553506\pi\)
0.985905 + 0.167305i \(0.0535064\pi\)
\(942\) 0 0
\(943\) 14.1892 + 14.1892i 0.462063 + 0.462063i
\(944\) 1.67463 + 1.67463i 0.0545046 + 0.0545046i
\(945\) 0 0
\(946\) 37.2208i 1.21015i
\(947\) 6.75196 6.75196i 0.219409 0.219409i −0.588840 0.808249i \(-0.700415\pi\)
0.808249 + 0.588840i \(0.200415\pi\)
\(948\) 0 0
\(949\) 2.18159 + 0.770040i 0.0708175 + 0.0249966i
\(950\) −23.9466 + 12.6827i −0.776932 + 0.411482i
\(951\) 0 0
\(952\) 8.61951i 0.279360i
\(953\) 36.1972i 1.17254i 0.810115 + 0.586271i \(0.199405\pi\)
−0.810115 + 0.586271i \(0.800595\pi\)
\(954\) 0 0
\(955\) −12.2057 + 20.2764i −0.394968 + 0.656128i
\(956\) 8.83842 + 8.83842i 0.285855 + 0.285855i
\(957\) 0 0
\(958\) 5.17055i 0.167053i
\(959\) −41.0387 −1.32521
\(960\) 0 0
\(961\) 2.60369i 0.0839899i
\(962\) −8.20533 17.1578i −0.264550 0.553189i
\(963\) 0 0
\(964\) 5.80438 + 5.80438i 0.186947 + 0.186947i
\(965\) 5.49106 + 22.1000i 0.176764 + 0.711425i
\(966\) 0 0
\(967\) 26.5164 26.5164i 0.852709 0.852709i −0.137757 0.990466i \(-0.543989\pi\)
0.990466 + 0.137757i \(0.0439893\pi\)
\(968\) 8.79332 + 8.79332i 0.282628 + 0.282628i
\(969\) 0 0
\(970\) 10.0663 + 6.05962i 0.323211 + 0.194563i
\(971\) 35.6136i 1.14290i 0.820638 + 0.571448i \(0.193618\pi\)
−0.820638 + 0.571448i \(0.806382\pi\)
\(972\) 0 0
\(973\) −1.42490 1.42490i −0.0456803 0.0456803i
\(974\) 34.7565 1.11367
\(975\) 0 0
\(976\) 11.6690 0.373517
\(977\) −1.70264 1.70264i −0.0544722 0.0544722i 0.679346 0.733818i \(-0.262264\pi\)
−0.733818 + 0.679346i \(0.762264\pi\)
\(978\) 0 0
\(979\) 23.0478i 0.736612i
\(980\) 7.00429 + 4.21636i 0.223744 + 0.134687i
\(981\) 0 0
\(982\) 24.8087 + 24.8087i 0.791678 + 0.791678i
\(983\) 11.2285 11.2285i 0.358134 0.358134i −0.504991 0.863125i \(-0.668504\pi\)
0.863125 + 0.504991i \(0.168504\pi\)
\(984\) 0 0
\(985\) −6.99223 28.1418i −0.222791 0.896672i
\(986\) 23.6363 + 23.6363i 0.752732 + 0.752732i
\(987\) 0 0
\(988\) −6.50398 + 18.4264i −0.206919 + 0.586221i
\(989\) 24.6476i 0.783747i
\(990\) 0 0
\(991\) −1.44965 −0.0460497 −0.0230248 0.999735i \(-0.507330\pi\)
−0.0230248 + 0.999735i \(0.507330\pi\)
\(992\) 5.79687i 0.184051i
\(993\) 0 0
\(994\) 5.59361 + 5.59361i 0.177419 + 0.177419i
\(995\) 23.9356 39.7622i 0.758809 1.26055i
\(996\) 0 0
\(997\) 47.2336i 1.49590i 0.663753 + 0.747952i \(0.268963\pi\)
−0.663753 + 0.747952i \(0.731037\pi\)
\(998\) 9.75893i 0.308913i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.d.359.4 yes 24
3.2 odd 2 inner 1170.2.q.d.359.12 yes 24
5.4 even 2 1170.2.q.c.359.9 yes 24
13.5 odd 4 1170.2.q.c.629.1 yes 24
15.14 odd 2 1170.2.q.c.359.1 24
39.5 even 4 1170.2.q.c.629.9 yes 24
65.44 odd 4 inner 1170.2.q.d.629.12 yes 24
195.44 even 4 inner 1170.2.q.d.629.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.1 24 15.14 odd 2
1170.2.q.c.359.9 yes 24 5.4 even 2
1170.2.q.c.629.1 yes 24 13.5 odd 4
1170.2.q.c.629.9 yes 24 39.5 even 4
1170.2.q.d.359.4 yes 24 1.1 even 1 trivial
1170.2.q.d.359.12 yes 24 3.2 odd 2 inner
1170.2.q.d.629.4 yes 24 195.44 even 4 inner
1170.2.q.d.629.12 yes 24 65.44 odd 4 inner