L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (1.91 + 1.15i)5-s + (−1.29 − 1.29i)7-s + (0.707 − 0.707i)8-s + (−0.539 − 2.17i)10-s + (−3.42 − 3.42i)11-s + (−3.25 + 1.55i)13-s + 1.82i·14-s − 1.00·16-s + 4.71i·17-s + (−3.83 − 3.83i)19-s + (−1.15 + 1.91i)20-s + 4.84i·22-s + 3.20i·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.856 + 0.515i)5-s + (−0.488 − 0.488i)7-s + (0.250 − 0.250i)8-s + (−0.170 − 0.686i)10-s + (−1.03 − 1.03i)11-s + (−0.902 + 0.431i)13-s + 0.488i·14-s − 0.250·16-s + 1.14i·17-s + (−0.879 − 0.879i)19-s + (−0.257 + 0.428i)20-s + 1.03i·22-s + 0.668i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.847 - 0.530i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.847 - 0.530i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.07293317225\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.07293317225\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.91 - 1.15i)T \) |
| 13 | \( 1 + (3.25 - 1.55i)T \) |
good | 7 | \( 1 + (1.29 + 1.29i)T + 7iT^{2} \) |
| 11 | \( 1 + (3.42 + 3.42i)T + 11iT^{2} \) |
| 17 | \( 1 - 4.71iT - 17T^{2} \) |
| 19 | \( 1 + (3.83 + 3.83i)T + 19iT^{2} \) |
| 23 | \( 1 - 3.20iT - 23T^{2} \) |
| 29 | \( 1 - 7.09iT - 29T^{2} \) |
| 31 | \( 1 + (4.09 + 4.09i)T + 31iT^{2} \) |
| 37 | \( 1 + (3.72 + 3.72i)T + 37iT^{2} \) |
| 41 | \( 1 + (-4.42 + 4.42i)T - 41iT^{2} \) |
| 43 | \( 1 + 7.68T + 43T^{2} \) |
| 47 | \( 1 + (8.97 - 8.97i)T - 47iT^{2} \) |
| 53 | \( 1 - 6.86T + 53T^{2} \) |
| 59 | \( 1 + (1.67 + 1.67i)T + 59iT^{2} \) |
| 61 | \( 1 + 11.6T + 61T^{2} \) |
| 67 | \( 1 + (5.61 - 5.61i)T - 67iT^{2} \) |
| 71 | \( 1 + (-3.05 + 3.05i)T - 71iT^{2} \) |
| 73 | \( 1 + (0.453 + 0.453i)T + 73iT^{2} \) |
| 79 | \( 1 - 8.29T + 79T^{2} \) |
| 83 | \( 1 + (2.48 + 2.48i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.36 + 3.36i)T + 89iT^{2} \) |
| 97 | \( 1 + (3.71 - 3.71i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26369491286949211734423475252, −9.373327226256448334208615045798, −8.713129764505218601158813702224, −7.65762971486966398736135473685, −6.88649643681773533085300932361, −6.01938082690150303079514169273, −5.03468606062117233192861456945, −3.67740503015836432737075014660, −2.79978495064715708317848102637, −1.79102668270345583130925261038,
0.03351759359098162403683427510, 1.93060201320649935368267876063, 2.77115898098556408488209924620, 4.65810704622017128980086791771, 5.21928129846523639931340558677, 6.11315455307801772641254172526, 6.96560602458570618745156751031, 7.86997005391504658843584785580, 8.624190932922583019979997650065, 9.610886362745310069094137257624